Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Research Article

Quercetin Ameliorates Neuropathic Pain after Brachial Plexus Avulsion via Suppressing Oxidative Damage through Inhibition of PKC/MAPK/ NOX Pathway

Author(s): Yanfeng Huang, Xie Zhang, Yidan Zou, Qiuju Yuan*, Yan-Fang Xian* and Zhi-Xiu Lin

Volume 21, Issue 11, 2023

Published on: 03 August, 2023

Page: [2343 - 2361] Pages: 19

DOI: 10.2174/1570159X21666230802144940

Price: $65

conference banner
Abstract

Background: Brachial plexus avulsion (BPA) animally involves the separation of spinal nerve roots themselves and the correlative spinal cord segment, leading to formidable neuropathic pain of the upper limb.

Methods: The right seventh cervical (C7) ventral and dorsal roots were avulsed to establish a neuropathic pain model in rats. After operation, rats were treated with quercetin (QCN) by intragastric administration for 1 week. The effects of QCN were evaluated using mechanical allodynia tests and biochemical assay kits.

Results: QCN treatment significantly attenuated the avulsion-provoked mechanical allodynia, elevated the levels of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) and total antioxidant capacity (TAC) in the C7 spinal dorsal horn. In addition, QCN administration inhibited the activations of macrophages, microglia and astrocytes in the C6 dorsal root ganglion (DRG) and C6-8 spinal dorsal horn, as well as attenuated the release of purinergic 2X (P2X) receptors in C6 DRG. The molecular mechanism underlying the above alterations was found to be related to the suppression of the PKC/MAPK/NOX signal pathway. To further study the anti-oxidative effects of QCN, we applied QCN on the H2O2-induced BV-2 cells in vitro, and the results attested that QCN significantly ameliorated the H2O2-induced ROS production in BV-2 cells, inhibited the H2O2-induced activation of PKC/MAPK/NOX pathway.

Conclusion: Our study for the first time provided evidence that QCN was able to attenuate pain hypersensitivity following the C7 spinal root avulsion in rats, and the molecular mechanisms involve the reduction of both neuro-inflammatory infiltration and oxidative stress via suppression of P2X receptors and inhibition of the activation of PKC/MAPK/NOX pathway. The results indicate that QCN is a natural compound with great promise worthy of further development into a novel therapeutic method for the treatment of BPA-induced neuropathic pain.

Graphical Abstract

[1]
Su, H.; Yuan, Q.; Zhou, L.; Wu, W. Brachial plexus avulsion: A model for axonal regeneration study. Neural Regeneration; So, KF.; Xu, X-M., Eds.; Academic Press: Oxford, 2015, pp. 101-115.
[http://dx.doi.org/10.1016/B978-0-12-801732-6.00006-9]
[2]
Terzis, J.K.; Vekris, M.D.; Soucacos, P.N. Outcomes of brachial plexus reconstruction in 204 patients with devastating paralysis. Plast. Reconstr. Surg., 1999, 104(5), 1221-1240.
[http://dx.doi.org/10.1097/00006534-199910000-00001] [PMID: 10513901]
[3]
Guida, F.; Luongo, L.; Aviello, G.; Palazzo, E.; De Chiaro, M.; Gatta, L.; Boccella, S.; Marabese, I.; Zjawiony, J.K.; Capasso, R.; Izzo, A.A.; de Novellis, V.; Maione, S. Salvinorin A reduces mechanical allodynia and spinal neuronal hyperexcitability induced by peripheral formalin injection. Mol. Pain, 2012, 8, 1744-8069-8-60.
[http://dx.doi.org/10.1186/1744-8069-8-60] [PMID: 22913292]
[4]
Bruxelle, J.; Travers, V.; Thiebaut, J.B. Occurrence and treatment of pain after brachial plexus injury. Clin. Orthop. Relat. Res., 1988, 237, 87-95.
[http://dx.doi.org/10.1097/00003086-198812000-00013] [PMID: 3056648]
[5]
Abdel-Aziz, S.; Ghaleb, A.H. Cervical spinal cord stimulation for the management of pain from brachial plexus avulsion. Pain Med., 2014, 15(4), 712-714.
[http://dx.doi.org/10.1111/pme.12313] [PMID: 24308369]
[6]
Widerström-Noga, E. Neuropathic pain and spinal cord injury: Phenotypes and pharmacological management. Drugs, 2017, 77(9), 967-984.
[http://dx.doi.org/10.1007/s40265-017-0747-8] [PMID: 28451808]
[7]
Teixeira, M.J.; da Paz, M.G.S.; Bina, M.T.; Santos, S.N.; Raicher, I.; Galhardoni, R.; Fernandes, D.T.; Yeng, L.T.; Baptista, A.F.; de Andrade, D.C. Neuropathic pain after brachial plexus avulsion - central and peripheral mechanisms. BMC Neurol., 2015, 15(1), 73.
[http://dx.doi.org/10.1186/s12883-015-0329-x] [PMID: 25935556]
[8]
Woolf, C.J.; Salter, M.W. Neuronal plasticity: Increasing the gain in pain. Science, 2000, 288(5472), 1765-1768.
[http://dx.doi.org/10.1126/science.288.5472.1765] [PMID: 10846153]
[9]
Ji, R.R.; Strichartz, G. Cell signaling and the genesis of neuropathic pain. Sci. STKE, 2004, 2004(252), reE14.
[http://dx.doi.org/10.1126/stke.2522004re14] [PMID: 15454629]
[10]
Li, J.; Deng, G.Y.; Wang, H.W.; Yang, M.; Yang, R.; Li, X.N. Interleukin-1 beta pre-treated bone marrow stromal cells alleviate neuropathic pain through CCL7-mediated inhibition of microglial activation in the spinal cord. Sci. Rep., 2017, 7, 42260.
[http://dx.doi.org/10.1038/srep42260] [PMID: 28195183]
[11]
Bleehen, T.; Keele, C.A. Observations on the algogenic actions of adenosine compounds on the human blister base preparation. Pain, 1977, 3(4), 367-377.
[http://dx.doi.org/10.1016/0304-3959(77)90066-5] [PMID: 198725]
[12]
Burnstock, G. Purinergic signalling. Br J Pharmacol., 2006, 147(S1), S172-S181.
[13]
Burnstock, G. Purinergic receptors and pain. Curr. Pharm. Des., 2009, 15(15), 1717-1735.
[http://dx.doi.org/10.2174/138161209788186335] [PMID: 19442186]
[14]
Burnstock, G. Purinergic P2 receptors as targets for novel analgesics. Pharmacol. Ther., 2006, 110(3), 433-454.
[http://dx.doi.org/10.1016/j.pharmthera.2005.08.013] [PMID: 16226312]
[15]
Burnstock, G. Physiology and pathophysiology of purinergic neurotransmission. Physiol. Rev., 2007, 87(2), 659-797.
[http://dx.doi.org/10.1152/physrev.00043.2006] [PMID: 17429044]
[16]
Chizh, B.A.; Illes, P. P2X receptors and nociception. Pharmacol. Rev., 2001, 53(4), 553-568.
[PMID: 11734618]
[17]
Roberts, J.A.; Vial, C.; Digby, H.R.; Agboh, K.C.; Wen, H.; Atterbury-Thomas, A.; Evans, R.J. Molecular properties of P2X receptors. Pflugers Arch., 2006, 452(5), 486-500.
[http://dx.doi.org/10.1007/s00424-006-0073-6] [PMID: 16607539]
[18]
Obata, K.; Yamanaka, H.; Dai, Y.; Mizushima, T.; Fukuoka, T.; Tokunaga, A.; Noguchi, K. Differential activation of MAPK in injured and uninjured DRG neurons following chronic constriction injury of the sciatic nerve in rats. Eur. J. Neurosci., 2004, 20(11), 2881-2895.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03754.x] [PMID: 15579142]
[19]
Guedes, R.P.; Bosco, L.D.; Teixeira, C.M.; Araújo, A.S.R.; Llesuy, S.; Belló-Klein, A.; Ribeiro, M.F.M.; Partata, W.A. Neuropathic pain modifies antioxidant activity in rat spinal cord. Neurochem. Res., 2006, 31(5), 603-609.
[http://dx.doi.org/10.1007/s11064-006-9058-2] [PMID: 16770731]
[20]
Salvemini, D.; Little, J.W.; Doyle, T.; Neumann, W.L. Roles of reactive oxygen and nitrogen species in pain. Free Radic. Biol. Med., 2011, 51(5), 951-966.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.026] [PMID: 21277369]
[21]
Qiu, L.L.; Ji, M.H.; Zhang, H.; Yang, J.J.; Sun, X.R.; Tang, H.; Wang, J.; Liu, W.X.; Yang, J.J. NADPH oxidase 2-derived reactive oxygen species in the hippocampus might contribute to microglial activation in postoperative cognitive dysfunction in aged mice. Brain Behav. Immun., 2016, 51, 109-118.
[http://dx.doi.org/10.1016/j.bbi.2015.08.002] [PMID: 26254234]
[22]
Santos, C.X.C.; Raza, S.; Shah, A.M. Redox signaling in the cardiomyocyte: From physiology to failure. Int. J. Biochem. Cell Biol., 2016, 74, 145-151.
[http://dx.doi.org/10.1016/j.biocel.2016.03.002] [PMID: 26987585]
[23]
Benna, J.E.; Dang, P.M.C.; Gaudry, M.; Fay, M.; Morel, F.; Hakim, J.; Gougerot-Pocidalo, M.A. Phosphorylation of the respiratory burst oxidase subunit p67(phox) during human neutrophil activation. Regulation by protein kinase C-dependent and independent pathways. J. Biol. Chem., 1997, 272(27), 17204-17208.
[http://dx.doi.org/10.1074/jbc.272.27.17204] [PMID: 9202043]
[24]
Reeves, E.P.; Dekker, L.V.; Forbes, L.V.; Wientjes, F.B.; Grogan, A.; Pappin, D.J.C.; Segal, A.W. Direct interaction between p47phox and protein kinase C: Evidence for targeting of protein kinase C by p47phox in neutrophils. Biochem. J., 1999, 344(3), 859-866.
[http://dx.doi.org/10.1042/bj3440859] [PMID: 10585874]
[25]
Min, K.J.; Pyo, H.K.; Yang, M.S.; Ji, K.A.; Jou, I.; Joe, E.H. Gangliosides activate microglia viaprotein kinase C and NADPH oxidase. Glia, 2004, 48(3), 197-206.
[http://dx.doi.org/10.1002/glia.20069] [PMID: 15390122]
[26]
Wellington, B. Quality of life issues for patients following traumatic brachial plexus injury – Part 1 A Literature review. J. Orthop. Nurs., 2009, 13(4), 194-200.
[http://dx.doi.org/10.1016/j.joon.2009.07.047] [PMID: 19657266]
[27]
Chanchal, S.K.; Mahajan, U.B.; Siddharth, S.; Reddy, N.; Goyal, S.N.; Patil, P.H.; Bommanahalli, B.P.; Kundu, C.N.; Patil, C.R.; Ojha, S. In vivo and in vitro protective effects of omeprazole against neuropathic pain. Sci. Rep., 2016, 6(1), 30007.
[http://dx.doi.org/10.1038/srep30007] [PMID: 27435304]
[28]
Kato, N.; Htut, M.; Taggart, M.; Carlstedt, T.; Birch, R. The effects of operative delay on the relief of neuropathic pain after injury to the brachial plexus. J. Bone Joint Surg. Br., 2006, 88-B(6), 756-759.
[http://dx.doi.org/10.1302/0301-620X.88B6.16995] [PMID: 16720769]
[29]
Hertog, M.G.L.; Feskens, E.J.M.; Kromhout, D.; Hertog, M.G.L.; Hollman, P.C.H.; Hertog, M.G.L.; Katan, M.B. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet, 1993, 342(8878), 1007-1011.
[http://dx.doi.org/10.1016/0140-6736(93)92876-U] [PMID: 8105262]
[30]
Ghosh, D.; Ghosh, S.; Sarkar, S.; Ghosh, A.; Das, N.; Saha, K.D.; Mandal, A.K. Quercetin in vesicular delivery systems: Evaluation in combating arsenic-induced acute liver toxicity associated gene expression in rat model. Chem. Biol. Interact., 2010, 186(1), 61-71.
[http://dx.doi.org/10.1016/j.cbi.2010.03.048] [PMID: 20371363]
[31]
Chopra, M.; Fitzsimons, P.E.E.; Strain, J.J.; Thurnham, D.I.; Howard, A.N. Nonalcoholic red wine extract and quercetin inhibit LDL oxidation without affecting plasma antioxidant vitamin and carotenoid concentrations. Clin. Chem., 2000, 46(8), 1162-1170.
[http://dx.doi.org/10.1093/clinchem/46.8.1162] [PMID: 10926898]
[32]
Boesch-Saadatmandi, C.; Wagner, A.E.; Wolffram, S.; Rimbach, G. Effect of quercetin on inflammatory gene expression in mice liver in vivo – role of redox factor 1, miRNA-122 and miRNA-125b. Pharmacol. Res., 2012, 65(5), 523-530.
[http://dx.doi.org/10.1016/j.phrs.2012.02.007] [PMID: 22402395]
[33]
Ossola, B.; Kääriäinen, T.M.; Männistö, P.T. The multiple faces of quercetin in neuroprotection. Expert Opin. Drug Saf., 2009, 8(4), 397-409.
[http://dx.doi.org/10.1517/14740330903026944] [PMID: 19538101]
[34]
Gao, W.; Zan, Y.; Wang, Z.J.; Hu, X.; Huang, F. Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCε-dependent activation of TRPV1. Acta Pharmacol. Sin., 2016, 37(9), 1166-1177.
[http://dx.doi.org/10.1038/aps.2016.58] [PMID: 27498772]
[35]
Ji, C.; Xu, Y.; Han, F.; Sun, D.; Zhang, H.; Li, X.; Yao, X.; Wang, H. Quercetin alleviates thermal and cold hyperalgesia in a rat neuropathic pain model by inhibiting Toll-like receptor signaling. Biomed. Pharmacother., 2017, 94, 652-658.
[http://dx.doi.org/10.1016/j.biopha.2017.07.145] [PMID: 28787700]
[36]
Muto, N.; Matsuoka, Y.; Arakawa, K.; Kurita, M.; Omiya, H.; Taniguchi, A.; Kaku, R.; Morimatsu, H. Quercetin attenuates neuropathic pain in rats with spared nerve injury. Acta Med. Okayama, 2018, 72(5), 457-465.
[http://dx.doi.org/10.18926/AMO/56243] [PMID: 30369602]
[37]
Ye, G.; Lin, C.; Zhang, Y.; Ma, Z.; Chen, Y.; Kong, L.; Yuan, L.; Ma, T. Quercetin alleviates neuropathic pain in the rat CCI model by mediating AMPK/MAPK pathway. J. Pain Res., 2021, 14, 1289-1301.
[http://dx.doi.org/10.2147/JPR.S298727] [PMID: 34040433]
[38]
Yang, R.; Li, L.; Yuan, H.; Liu, H.; Gong, Y.; Zou, L.; Li, S.; Wang, Z.; Shi, L.; Jia, T.; Zhao, S.; Wu, B.; Yi, Z.; Gao, Y.; Li, G.; Xu, H.; Liu, S.; Zhang, C.; Li, G.; Liang, S. Quercetin relieved diabetic neuropathic pain by inhibiting upregulated P2X 4 receptor in dorsal root ganglia. J. Cell. Physiol., 2019, 234(3), 2756-2764.
[http://dx.doi.org/10.1002/jcp.27091] [PMID: 30145789]
[39]
Chen, J.; Xu, Z.C.; Xu, X-M.; Zhang, J.H. Experimental spinal cord injury models. Animal models of acute neurological injuries; Chen, J.; Xu, X-M.; Xu, Z.C., Eds.; Humana Press: New Jersey, USA, 2009, pp. 411-487.
[http://dx.doi.org/10.1007/978-1-60327-185-1]
[40]
Huang, Y.; Zhang, X.; Huang, Q.; Dou, Y.; Qu, C.; Xu, Q.; Yuan, Q.; Xian, Y.F.; Lin, Z.X. Quercetin enhances survival and axonal regeneration of motoneurons after spinal root avulsion and reimplantation: experiments in a rat model of brachial plexus avulsion. Inflamm. Regen., 2022, 42(1), 56.
[http://dx.doi.org/10.1186/s41232-022-00245-3] [PMID: 36456978]
[41]
Hou, A.L.; Xu, W.D. A model of neuropathic pain in brachial plexus avulsion injury and associated spinal glial cell activation. J. Pain Res., 2018, 11, 3171-3179.
[http://dx.doi.org/10.2147/JPR.S174663] [PMID: 30588069]
[42]
Hargreaves, K.; Dubner, R.; Brown, F.; Flores, C.; Joris, J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain, 1988, 32(1), 77-88.
[http://dx.doi.org/10.1016/0304-3959(88)90026-7] [PMID: 3340425]
[43]
Qin, L.; Li, G.; Qian, X.; Liu, Y.; Wu, X.; Liu, B.; Hong, J.S.; Block, M.L. Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation. Glia, 2005, 52(1), 78-84.
[http://dx.doi.org/10.1002/glia.20225] [PMID: 15920727]
[44]
Jung, J.S.; Shin, J.A.; Park, E.M.; Lee, J.E.; Kang, Y.S.; Min, S.W.; Kim, D.H.; Hyun, J.W.; Shin, C.Y.; Kim, H.S. Anti-inflammatory mechanism of ginsenoside Rh1 in lipopolysaccharide-stimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase-1 expression. J. Neurochem., 2010, 115(6), 1668-1680.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07075.x] [PMID: 20969575]
[45]
Wang, X.; Zhang, G.; Qiao, Y.; Feng, C.; Zhao, X. Crocetin attenuates spared nerve injury-induced neuropathic pain in mice. J. Pharmacol. Sci., 2017, 135(4), 141-147.
[http://dx.doi.org/10.1016/j.jphs.2017.08.007] [PMID: 29217355]
[46]
Taoka, Y.; Naruo, M.; Koyanagi, E.; Urakado, M.; Inoue, M. Superoxide radicals play important roles in the pathogenesis of spinal cord injury. Paraplegia, 1995, 33(8), 450-453.
[PMID: 7478738]
[47]
Ying, M.; Liu, H.; Zhang, T.; Jiang, C.; Gong, Y.; Wu, B.; Zou, L.; Yi, Z.; Rao, S.; Li, G.; Zhang, C.; Jia, T.; Zhao, S.; Yuan, H.; Shi, L.; Li, L.; Liang, S.; Liu, S. Effect of artemisinin on neuropathic pain mediated by P2X4 receptor in dorsal root ganglia. Neurochem. Int., 2017, 108, 27-33.
[http://dx.doi.org/10.1016/j.neuint.2017.02.004] [PMID: 28192150]
[48]
Velázquez, K.; Mohammad, H.; Sweitzer, S. Protein kinase C in pain: Involvement of multiple isoforms. Pharmacol. Res., 2007, 55(6), 578-589.
[http://dx.doi.org/10.1016/j.phrs.2007.04.006] [PMID: 17548207]
[49]
Doyle, T.; Bryant, L.; Muscoli, C.; Cuzzocrea, S.; Esposito, E.; Chen, Z.; Salvemini, D. Spinal NADPH oxidase is a source of superoxide in the development of morphine-induced hyperalgesia and antinociceptive tolerance. Neurosci. Lett., 2010, 483(2), 85-89.
[http://dx.doi.org/10.1016/j.neulet.2010.07.013] [PMID: 20637262]
[50]
Kallenborn-Gerhardt, W.; Schröder, K.; Geisslinger, G.; Schmidtko, A. NOXious signaling in pain processing. Pharmacol. Ther., 2013, 137(3), 309-317.
[http://dx.doi.org/10.1016/j.pharmthera.2012.11.001] [PMID: 23146925]
[51]
Tang, Y.; Ling, Z.M.; Fu, R.; Li, Y.Q.; Cheng, X.; Song, F.H.; Luo, H.X.; Zhou, L.H. Time-specific microRNA changes during spinal motoneuron degeneration in adult rats following unilateral brachial plexus root avulsion: ipsilateral vs. contralateral changes. BMC Neurosci., 2014, 15(1), 92.
[http://dx.doi.org/10.1186/1471-2202-15-92] [PMID: 25055855]
[52]
Dhaouadi, Z.; Nsangou, M.; Garrab, N.; Anouar, E.H.; Marakchi, K.; Lahmar, S. DFT study of the reaction of quercetin with and radicals. J. Mol. Struct. Theochem., 2009, 904(1-3), 35-42.
[http://dx.doi.org/10.1016/j.theochem.2009.02.034]
[53]
Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods, 2018, 40, 68-75.
[http://dx.doi.org/10.1016/j.jff.2017.10.047]
[54]
Zhang, X.; Lin, Z. The therapeutic effects of berberine on spinal root avulsion-induced motoneuron death and neuropathic pain in adult rats, disserlation. Cell, 2019, 11(5), 796.
[55]
Seltzer, Z.; Dubner, R.; Shir, Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain, 1990, 43(2), 205-218.
[http://dx.doi.org/10.1016/0304-3959(90)91074-S] [PMID: 1982347]
[56]
Decosterd, I.; Woolf, C.J. Spared nerve injury: An animal model of persistent peripheral neuropathic pain. Pain, 2000, 87(2), 149-158.
[http://dx.doi.org/10.1016/S0304-3959(00)00276-1] [PMID: 10924808]
[57]
Challa, S.R. Surgical animal models of neuropathic pain. Pros and Cons. Int. J. Neurosci., 2015, 125(3), 170-174.
[http://dx.doi.org/10.3109/00207454.2014.922559] [PMID: 24831263]
[58]
Kim, S.H.; Chung, J.M. Sympathectomy alleviates mechanical allodynia in an experimental animal model for neuropathy in the rat. Neurosci. Lett., 1991, 134(1), 131-134.
[http://dx.doi.org/10.1016/0304-3940(91)90524-W] [PMID: 1815146]
[59]
Lombard, M.C.; Nashold, B.S., Jr; Albe-Fessard, D. Deafferentation hypersensitivity in the rat after dorsal rhizotomy: A possible animal model of chronic pain. Pain, 1979, 6(2), 163-174.
[http://dx.doi.org/10.1016/0304-3959(79)90123-4] [PMID: 460928]
[60]
Parry, W.C.B. Pain in avulsion of the brachial plexus. Neurosurgery, 1984, 15(6), 960-965.
[http://dx.doi.org/10.1227/00006123-198412000-00039] [PMID: 6334817]
[61]
Rodrigues-Filho, R.; Santos, A.R.S.; Bertelli, J.A.; Calixto, J.B. Avulsion injury of the rat brachial plexus triggers hyperalgesia and allodynia in the hindpaws: A new model for the study of neuropathic pain. Brain Res., 2003, 982(2), 186-194.
[http://dx.doi.org/10.1016/S0006-8993(03)03007-5] [PMID: 12915254]
[62]
Huan, K.W.S.J.; Tan, J.S.W.; Tan, S.H.; Teoh, L.C.; Yong, F.C. Restoration of shoulder abduction in brachial plexus avulsion injuries with double neurotization from the spinal accessory nerve: A report of 13 cases. J. Hand Surg. Eur. Vol., 2017, 42(7), 700-705.
[http://dx.doi.org/10.1177/1753193416680725] [PMID: 27913804]
[63]
Jiang, Y.; Lao, J. The phrenic nerve transfer in the treatment of a septuagenarian with brachial plexus avulsion injury: a case report. Int. J. Neurosci., 2018, 128(5), 467-471.
[http://dx.doi.org/10.1080/00207454.2017.1398154] [PMID: 29077513]
[64]
Basbaum, A.I.; Bautista, D.M.; Scherrer, G.; Julius, D. Cellular and molecular mechanisms of pain. Cell, 2009, 139(2), 267-284.
[http://dx.doi.org/10.1016/j.cell.2009.09.028] [PMID: 19837031]
[65]
Gold, M.S.; Gebhart, G.F. Nociceptor sensitization in pain pathogenesis. Nat. Med., 2010, 16(11), 1248-1257.
[http://dx.doi.org/10.1038/nm.2235] [PMID: 20948530]
[66]
Kuner, R. Central mechanisms of pathological pain. Nat. Med., 2010, 16(11), 1258-1266.
[http://dx.doi.org/10.1038/nm.2231] [PMID: 20948531]
[67]
Calvo, M.; Dawes, J.M.; Bennett, D.L.H. The role of the immune system in the generation of neuropathic pain. Lancet Neurol., 2012, 11(7), 629-642.
[http://dx.doi.org/10.1016/S1474-4422(12)70134-5] [PMID: 22710756]
[68]
Ji, RR; Berta, T; Nedergaard, M Glia and pain: Is chronic pain a gliopathy? Pain., 2013, 154(S1), S10-S28.
[http://dx.doi.org/10.1016/j.pain.2013.06.022]
[69]
Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[70]
Jha, M.K.; Jo, M.; Kim, J.H.; Suk, K. Microglia-astrocyte crosstalk: An intimate molecular conversation. Neuroscientist, 2019, 25(3), 227-240.
[http://dx.doi.org/10.1177/1073858418783959] [PMID: 29931997]
[71]
Koizumi, S.; Fujishita, K.; Inoue, K.; Shigemoto-Mogami, Y.; Tsuda, M.; Inoue, K. Ca2+ waves in keratinocytes are transmitted to sensory neurons: The involvement of extracellular ATP and P2Y2 receptor activation. Biochem. J., 2004, 380(2), 329-338.
[http://dx.doi.org/10.1042/bj20031089] [PMID: 14967069]
[72]
Cook, S.P.; McCleskey, E.W. Cell damage excites nociceptors through release of cytosolic ATP. Pain, 2002, 95(1), 41-47.
[http://dx.doi.org/10.1016/S0304-3959(01)00372-4] [PMID: 11790466]
[73]
Xu, G.Y.; Li, G.; Liu, N.; Huang, L.Y.M. Mechanisms underlying purinergic P2X3 receptor-mediated mechanical allodynia induced in diabetic rats. Mol. Pain, 2011, 7, 1744-8069-7-60.
[http://dx.doi.org/10.1186/1744-8069-7-60] [PMID: 21851615]
[74]
Migita, K.; Moriyama, T.; Koguchi, M.; Honda, K.; Katsuragi, T.; Takano, Y.; Ueno, S. Modulation of P2X receptors in dorsal root ganglion neurons of streptozotocin-induced diabetic neuropathy. Neurosci. Lett., 2009, 452(2), 200-203.
[http://dx.doi.org/10.1016/j.neulet.2009.01.048] [PMID: 19383439]
[75]
Lu, Z.M.; Xie, F.; Fu, H.; Liu, M.G.; Cao, F.L.; Hao, J.; Chen, J. Roles of peripheral P2X and P2Y receptors in the development of melittin-induced nociception and hypersensitivity. Neurochem. Res., 2008, 33(10), 2085-2091.
[http://dx.doi.org/10.1007/s11064-008-9689-6] [PMID: 18404374]
[76]
Zhang, Y.; Liu, Y.; Li, Q.; Wang, X.; Zheng, X.; Yang, B.; Wan, B.; Ma, J.; Liu, Z. 1,8-cineole decreases neuropathic pain probably viaa mechanism mediating P2X3 receptor in the dorsal root ganglion. Neurochem. Int., 2018, 121, 69-74.
[http://dx.doi.org/10.1016/j.neuint.2018.09.007] [PMID: 30248433]
[77]
Wang, W.S.; Tu, W.Z.; Cheng, R.D.; He, R.; Ruan, L.H.; Zhang, L.; Gong, Y.S.; Fan, X.F.; Hu, J.; Cheng, B.; Lai, Y.P.; Zou, E.M.; Jiang, S.H. Electroacupuncture and A-317491 depress the transmission of pain on primary afferent mediated by the P2X3 receptor in rats with chronic neuropathic pain states. J. Neurosci. Res., 2014, 92(12), 1703-1713.
[http://dx.doi.org/10.1002/jnr.23451] [PMID: 25041872]
[78]
Yu, J.; Fu, P.; Zhang, Y.; Liu, S.; Cui, D. Pregabalin alters nociceptive behavior and expression level of P2X3 receptor in the spinal dorsal horn in a rat model induced by chronic compression of the dorsal root ganglion. Anat. Rec., 2013, 296(12), 1907-1912.
[http://dx.doi.org/10.1002/ar.22816] [PMID: 24136739]
[79]
Inoue, K.; Tsuda, M.; Koizumi, S. ATP receptors in pain sensation: Involvement of spinal microglia and P2X4 receptors. Purinergic Signal., 2005, 1(2), 95-100.
[http://dx.doi.org/10.1007/s11302-005-6210-4] [PMID: 18404495]
[80]
Tsuda, M.; Shigemoto-Mogami, Y.; Koizumi, S.; Mizokoshi, A.; Kohsaka, S.; Salter, M.W.; Inoue, K. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature, 2003, 424(6950), 778-783.
[http://dx.doi.org/10.1038/nature01786] [PMID: 12917686]
[81]
Carrasco, C.; Naziroǧlu, M.; Rodríguez, A.B.; Pariente, J.A. Neuropathic pain: Delving into the oxidative origin and the possible implication of transient receptor potential channels. Front. Physiol., 2018, 9, 95.
[http://dx.doi.org/10.3389/fphys.2018.00095] [PMID: 29491840]
[82]
Shim, H.S.; Bae, C.; Wang, J.; Lee, K.H.; Hankerd, K.M.; Kim, H.K.; Chung, J.M.; La, J.H. Peripheral and central oxidative stress in chemotherapy-induced neuropathic pain. Mol. Pain, 2019, 15.
[http://dx.doi.org/10.1177/1744806919840098] [PMID: 30857460]
[83]
Kim, H.K.; Park, S.K.; Zhou, J.L.; Taglialatela, G.; Chung, K.; Coggeshall, R.E.; Chung, J.M. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain, 2004, 111(1), 116-124.
[http://dx.doi.org/10.1016/j.pain.2004.06.008] [PMID: 15327815]
[84]
de M Bandeira, S.; da Fonseca, L.J.; da S Guedes, G.; Rabelo, L.A.; Goulart, M.O.; Vasconcelos, S.M. Oxidative stress as an underlying contributor in the development of chronic complications in diabetes mellitus. Int. J. Mol. Sci., 2013, 14(2), 3265-3284.
[http://dx.doi.org/10.3390/ijms14023265] [PMID: 23385234]
[85]
Drummond, G.R.; Selemidis, S.; Griendling, K.K.; Sobey, C.G. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat. Rev. Drug Discov., 2011, 10(6), 453-471.
[http://dx.doi.org/10.1038/nrd3403] [PMID: 21629295]
[86]
Babior, B.M. NADPH oxidase: An update. Blood, 1999, 93(5), 1464-1476.
[http://dx.doi.org/10.1182/blood.V93.5.1464] [PMID: 10029572]
[87]
Hackel, D.; Pflücke, D.; Neumann, A.; Viebahn, J.; Mousa, S.; Wischmeyer, E.; Roewer, N.; Brack, A.; Rittner, H.L. The connection of monocytes and reactive oxygen species in pain. PLoS One, 2013, 8(5), e63564.
[http://dx.doi.org/10.1371/journal.pone.0063564] [PMID: 23658840]
[88]
Ibi, M.; Matsuno, K.; Shiba, D.; Katsuyama, M.; Iwata, K.; Kakehi, T.; Nakagawa, T.; Sango, K.; Shirai, Y.; Yokoyama, T.; Kaneko, S.; Saito, N.; Yabe-Nishimura, C. Reactive oxygen species derived from NOX1/NADPH oxidase enhance inflammatory pain. J. Neurosci., 2008, 28(38), 9486-9494.
[http://dx.doi.org/10.1523/JNEUROSCI.1857-08.2008] [PMID: 18799680]
[89]
Teixeira-Santos, L.; Albino-Teixeira, A.; Pinho, D. Neuroinflammation, oxidative stress and their interplay in neuropathic pain: Focus on specialized pro-resolving mediators and NADPH oxidase inhibitors as potential therapeutic strategies. Pharmacol. Res., 2020, 162, 105280.
[http://dx.doi.org/10.1016/j.phrs.2020.105280] [PMID: 33161139]
[90]
Han, J.E.; Choi, J.W. Control of JNK for an activation of NADPH oxidase in LPS-stimulated BV2 microglia. Arch. Pharm. Res., 2012, 35(4), 709-715.
[http://dx.doi.org/10.1007/s12272-012-0415-1] [PMID: 22553064]
[91]
Block, M.L.; Zecca, L.; Hong, J.S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci., 2007, 8(1), 57-69.
[http://dx.doi.org/10.1038/nrn2038] [PMID: 17180163]
[92]
Hanisch, U.K.; Kettenmann, H. Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci., 2007, 10(11), 1387-1394.
[http://dx.doi.org/10.1038/nn1997] [PMID: 17965659]
[93]
Wolf, S.A.; Boddeke, H.W.G.M.; Kettenmann, H. Microglia in physiology and disease. Annu. Rev. Physiol., 2017, 79(1), 619-643.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034406] [PMID: 27959620]
[94]
Oh, S.H.; Ryu, B.; Ngo, D.H.; Kim, W.S.; Kim, D.G.; Kim, S.K. 4-hydroxybenzaldehyde-chitooligomers suppresses H2O2-induced oxidative damage in microglia BV-2 cells. Carbohydr. Res., 2017, 440-441, 32-37.
[http://dx.doi.org/10.1016/j.carres.2017.01.007] [PMID: 28192685]
[95]
Awada, R.; Rondeau, P.; Grès, S.; Saulnier-Blache, J.S.; d’Hellencourt, L.C.; Bourdon, E. Autotaxin protects microglial cells against oxidative stress. Free Radic. Biol. Med., 2012, 52(2), 516-526.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.11.014] [PMID: 22155714]
[96]
Bocchini, V.; Mazzolla, R.; Barluzzi, R.; Blasi, E.; Sick, P.; Kettenmann, H. An immortalized cell line expresses properties of activated microglial cells. J. Neurosci. Res., 1992, 31(4), 616-621.
[http://dx.doi.org/10.1002/jnr.490310405] [PMID: 1578513]
[97]
Ryu, B.; Himaya, S.W.A.; Napitupulu, R.J.; Eom, T.K.; Kim, S.K. Sulfated chitooligosaccharide II (SCOS II) suppress collagen degradation in TNF-induced chondrosarcoma cells viaNF-κB pathway. Carbohydr. Res., 2012, 350, 55-61.
[http://dx.doi.org/10.1016/j.carres.2011.12.028] [PMID: 22264629]
[98]
Quinn, M.T.; Schepetkin, I.A. Role of NADPH oxidase in formation and function of multinucleated giant cells. J. Innate Immun., 2009, 1(6), 509-526.
[http://dx.doi.org/10.1159/000228158] [PMID: 20375608]
[99]
Hsu, H.T.; Tseng, Y.T.; Wong, W.J.; Liu, C.M.; Lo, Y.C. Resveratrol prevents nanoparticles-induced inflammation and oxidative stress viadownregulation of PKC-α and NADPH oxidase in lung epithelial A549 cells. BMC Complement. Altern. Med., 2018, 18(1), 211.
[http://dx.doi.org/10.1186/s12906-018-2278-6] [PMID: 29986680]
[100]
Chen, F.; Yu, Y.; Haigh, S.; Johnson, J.; Lucas, R.; Stepp, D.W.; Fulton, D.J.R. Regulation of NADPH oxidase 5 by protein kinase C isoforms. PLoS One, 2014, 9(2), e88405.
[http://dx.doi.org/10.1371/journal.pone.0088405] [PMID: 24505490]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy