Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Structural and Functional Analysis of Urease Accessory Protein E from Vancomycin-Resistance Staphylococcus aureus MU50 Strain

Author(s): Humaira Siddiqui, Atia-tul-Wahab*, Aftab Ahmed and M. Iqbal Choudhary*

Volume 30, Issue 9, 2023

Published on: 15 September, 2023

Page: [754 - 762] Pages: 9

DOI: 10.2174/0929866530666230801163340

Price: $65

Abstract

Background: An increasing prevalence of biofilm forming strains by vancomycinresistance Staphylococcus aureus (VRSA) is one of the most important causes of antimicrobial resistance. VRSA possesses various regulatory factors to form and sustain biofilm in biotic or abiotic conditions. Among them, ureolytic activity is an important factor in the stabilization of biofilms by neutralizing the acidic environment. Various urease accessory proteins are required to activate the urease enzyme inside the biofilm.

Objective: To optimize the cloning, expression and purification of urease accessory protein E from VRSA for determination of the secondary structure, and functional characterization by using Berthelot’s method.

Methods: BAB58453.1 gene (which encodes possible urease accessory protein E), having 38% similarity to Bacillus pasteurii UreE protein, was cloned, expressed, and purified by single-step affinity chromatography for performing secondary structural studies using circular dichroism spectroscopy, and functional analysis using Berthelot’s and crystal violet assay.

Results: Structure elucidation using NMR and circular dichroism spectroscopy techniques revealed that UreE protein has a partially foldedα-helical structure. Using Berthelot's method, it was identified that the purified UreE protein has enhanced urease enzyme activity, in comparison to the control. From the results of Berthelot’s and crystal violet assays, it was deduced that the selected gene (UreE protein) plays a key role in enhancing urease enzyme activity and contributes to biofilm stability.

Conclusion: Structural studies on VRSA urease accessory proteins could aid in the identification of new drug targets or the development of effective antibiofilm strategies (in combination with other drug targets) against infections caused by biofilm-producing strains.

Graphical Abstract

[1]
McGuinness, W.A.; Malachowa, N.; DeLeo, F.R. Vancomycin resistance in Staphylococcus aureus. Yale J. Biol. Med., 2017, 90(2), 269-281.
[http://dx.doi.org/10.1099/mic.0.2007/005942-0] [PMID: 28656013]
[2]
Shettigar, K.; Murali, T.S. Virulence factors and clonal diversity of Staphylococcus aureus in colonization and wound infection with emphasis on diabetic foot infection. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(12), 2235-2246.
[http://dx.doi.org/10.1007/s10096-020-03984-8] [PMID: 32683595]
[3]
Gimza, B.D.; Cassat, J.E. Mechanisms of antibiotic failure during Staphylococcus aureus osteomyelitis. Front. Immunol., 2021, 12, 638085.
[http://dx.doi.org/10.3389/fimmu.2021.638085] [PMID: 33643322]
[4]
Senobar Tahaei, S.A.; Stájer, A.; Barrak, I.; Ostorházi, E.; Szabó, D.; Gajdács, M. Correlation between biofilm-formation and the antibiotic resistant phenotype in Staphylococcus aureus isolates: Laboratory-based study in Hungary and a review of the literature. Infect. Drug Resist., 2021, 14, 1155-1168.
[http://dx.doi.org/10.2147/IDR.S303992] [PMID: 33790586]
[5]
Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers, 2018, 4(1), 18033.
[http://dx.doi.org/10.1038/nrdp.2018.33] [PMID: 29849094]
[6]
Zhou, C.; Bhinderwala, F.; Lehman, M.K.; Thomas, V.C.; Chaudhari, S.S.; Yamada, K.J.; Foster, K.W.; Powers, R.; Kielian, T.; Fey, P.D. Urease is an essential component of the acid response network of Staphylococcus aureus and is required for a persistent murine kidney infection. PLoS Pathog., 2019, 15(1), e1007538.
[http://dx.doi.org/10.1371/journal.ppat.1007538] [PMID: 30608981]
[7]
Hughes, G.; Webber, M.A. Novel approaches to the treatment of bacterial biofilm infections. Br. J. Pharmacol., 2017, 174(14), 2237-2246.
[http://dx.doi.org/10.1111/bph.13706] [PMID: 28063237]
[8]
Hirshfield, I.N.; Terzulli, S.; O’Byrne, C. Weak organic acids: A panoply of effects on bacteria. Sci. Prog., 2003, 86(4), 245-270.
[http://dx.doi.org/10.3184/003685003783238626] [PMID: 15508892]
[9]
Sigurdarson, J.J.; Svane, S.; Karring, H. The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Rev. Environ. Sci. Biotechnol., 2018, 17(2), 241-258.
[http://dx.doi.org/10.1007/s11157-018-9466-1]
[10]
Zhou, C.; Fey, P.D. The acid response network of Staphylococcus aureus. Curr. Opin. Microbiol., 2020, 55, 67-73.
[http://dx.doi.org/10.1016/j.mib.2020.03.006] [PMID: 32361405]
[11]
Mazzei, L.; Musiani, F.; Ciurli, S. The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate. JBIC, 2020, 25(6), 829-845.
[http://dx.doi.org/10.1007/s00775-020-01808-w]
[12]
Şahin, R. Extracelluler enzymes, pathogenity and biofilm forming in staphylococci. Clin Dia and Cure Open A Open J., 2019, 1(1), 12-17.
[13]
Rego, Y.F.; Queiroz, M.P.; Brito, T.O.; Carvalho, P.G.; de Queiroz, V.T.; de Fátima, Â.; Macedo, F. Jr A review on the development of urease inhibitors as antimicrobial agents against pathogenic bacteria. J. Adv. Res., 2018, 13, 69-100.
[http://dx.doi.org/10.1016/j.jare.2018.05.003] [PMID: 30094084]
[14]
Maier, R.; Benoit, S. Role of nickel in microbial pathogenesis. Inorganics, 2019, 7(7), 80.
[http://dx.doi.org/10.3390/inorganics7070080]
[15]
Liu, X.; Zhang, Q.; Zhou, N.; Tian, Y. Expression of an acid urease with urethanase activity in E. coli and analysis of urease gene. Mol. Biotechnol., 2017, 59(2-3), 84-97.
[http://dx.doi.org/10.1007/s12033-017-9994-x] [PMID: 28197768]
[16]
Nim, Y.S.; Wong, K.B. The maturation pathway of nickel urease. Inorganics, 2019, 7(7), 85.
[http://dx.doi.org/10.3390/inorganics7070085]
[17]
Sriwanthana, B.; Island, M.D.; Maneval, D.; Mobley, H.L. Single-step purification of Proteus mirabilis urease accessory protein UreE, a protein with a naturally occurring histidine tail, by nickel chelate affinity chromatography. J. Bacteriol., 1994, 176(22), 6836-6841.
[http://dx.doi.org/10.1128/jb.176.22.6836-6841.1994] [PMID: 7961442]
[18]
Remaut, H.; Safarov, N.; Ciurli, S.; Van Beeumen, J. Structural basis for Ni2+ transport and assembly of the urease active site by the metallochaperone UreE from Bacillus pasteurii. J. Biol. Chem., 2001, 276(52), 49365-49370.
[http://dx.doi.org/10.1074/jbc.M108304200] [PMID: 11602602]
[19]
Benoit, S.L.; Mehta, N.; Weinberg, M.V.; Maier, C.; Maier, R.J. Interaction between the Helicobacter pylori accessory proteins HypA and UreE is needed for urease maturation. Microbiology, 2007, 153(5), 1474-1482.
[http://dx.doi.org/10.1099/mic.0.2006/003228-0] [PMID: 17464061]
[20]
Schilcher, K.; Horswill, A.R. Staphylococcal biofilm development: Structure, regulation, and treatment strategies. Microbiol. Mol. Biol. Rev., 2020, 84(3), e00026-e19.
[http://dx.doi.org/10.1128/MMBR.00026-19] [PMID: 32792334]
[21]
Patton, C.J.; Crouch, S.R. Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia. Anal. Chem., 1977, 49(3), 464-469.
[http://dx.doi.org/10.1021/ac50011a034]
[22]
Xu, Z.; Liang, Y.; Lin, S.; Chen, D.; Li, B.; Li, L.; Deng, Y. Crystal violet and XTT assays on Staphylococcus aureus biofilm quantification. Curr. Microbiol., 2016, 73(4), 474-482.
[http://dx.doi.org/10.1007/s00284-016-1081-1] [PMID: 27324342]
[23]
Weichselbaum, T.E.; Hagerty, J.C.; Mark, H.B. Jr Reaction rate method for ammonia and blood urea nitrogen utilizing a pentacyanonitrosylferrate catalyzed Berthelot reaction. Anal. Chem., 1969, 41(6), 848-850.
[http://dx.doi.org/10.1021/ac60275a046] [PMID: 5788025]
[24]
Spinelli, J.B.; Kelley, L.P.; Haigis, M.C. An LC-MS approach to quantitative measurement of ammonia isotopologues. Sci. Rep., 2017, 7(1), 10304.
[http://dx.doi.org/10.1038/s41598-017-09993-6] [PMID: 28871132]
[25]
Yao, H.; Wynendaele, E.; De Spiegeleer, B. Thermal sensitivity as a quality control attribute for biotherapeutics: The L‐asparaginase case. Drug Test. Anal., 2020, 12(1), 67-77.
[http://dx.doi.org/10.1002/dta.2691] [PMID: 31471998]
[26]
Zambelli, B.; Banaszak, K.; Merloni, A.; Kiliszek, A.; Rypniewski, W.; Ciurli, S. Selectivity of Ni(II) and Zn(II) binding to Sporosarcina pasteurii UreE, a metallochaperone in the urease assembly: A calorimetric and crystallographic study. J. Biol. Inorg. Chem., 2013, 18(8), 1005-1017.
[http://dx.doi.org/10.1007/s00775-013-1049-6] [PMID: 24126709]
[27]
Bore, E.; Langsrud, S.; Langsrud, Ø.; Rode, T.M.; Holck, A. Acid-shock responses in Staphylococcus aureus investigated by global gene expression analysis. Microbiology, 2007, 153(7), 2289-2303.
[http://dx.doi.org/10.1099/mic.0.2007/005942-0] [PMID: 17600073]
[28]
Lu, Q.; Tan, D.; Xu, Y.; Liu, M.; He, Y.; Li, C. Inactivation of jack bean urease by nitidine chloride from Zanthoxylum nitidum: Elucidation of inhibitory efficacy, kinetics and mechanism. J. Agric. Food Chem., 2021, 69(46), 13772-13779.
[http://dx.doi.org/10.1021/acs.jafc.1c04801] [PMID: 34767340]
[29]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[30]
Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; Žídek, A.; Green, T.; Tunyasuvunakool, K.; Petersen, S.; Jumper, J.; Clancy, E.; Green, R.; Vora, A.; Lutfi, M.; Figurnov, M.; Cowie, A.; Hobbs, N.; Kohli, P.; Kleywegt, G.; Birney, E.; Hassabis, D.; Velankar, S. Alphafold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res., 2022, 50(D1), D439-D444.
[http://dx.doi.org/10.1093/nar/gkab1061] [PMID: 34791371]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy