Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Systematic Review Article

Functional MRI Techniques Suggesting that the Stress System Interacts with Three Large Scale Core Brain Networks to Help Coordinate the Adaptive Response: A Systematic Review

Author(s): George Paltoglou*, Charikleia Stefanaki and George P. Chrousos

Volume 22, Issue 5, 2024

Published on: 03 August, 2023

Page: [976 - 989] Pages: 14

DOI: 10.2174/1570159X21666230801151718

Price: $65

Abstract

Objective: Synthesis of functional MRI (fMRI) and functional connectivity (FC) analysis data on human stress system (SS) function, as it relates to the dynamic function of the Salience (SN), Default Mode (DMN) and Central Executive (CEN) networks.

Methods: Systematic search of Medline, Scopus, Clinical Trials.gov, and Google Scholar databases of studies published prior to September 2022 resulted in 28 full-text articles included for qualitative synthesis.

Results: Acute stress changes the states of intra-/inter- neural network FCs and activities from those of resting, low arousal state in the SN, DMN and CEN, during which intra- and inter-network FCs and activities of all three networks are low. SS activation is positively linked to the activity of the SN and negatively to that of the DMN, while, in parallel, it is associated with an initial decrease and a subsequent increase of the intra- network FC and activity of the CEN. The FC between the DMN and the CEN increases, while those between the SN and the CEN decrease, allowing time for frontal lobe strategy input and “proper” CEN activity and task decision. SN activation is linked to sensory hypersensitivity, “impaired” memory, and a switch from serial to parallel processing, while trait mindfulness is associated with FC changes promoting CEN activity and producing a “task-ready state”.

Conclusion: SS activation is tightly connected to that of the SN, with stress hormones likely potentiating the intra-network FC of the latter, attenuating that of the DMN, and causing a biphasic suppression- to-activation response of the CEN, all adaptive changes favoring proper decisions and survival.

« Previous
Graphical Abstract

[1]
Chrousos, G.P.; Gold, P.W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA, 1992, 267(9), 1244-1252.
[http://dx.doi.org/10.1001/jama.1992.03480090092034] [PMID: 1538563]
[2]
Cobb, M. A brief history of wires in the brain. Front. Ecol. Evol., 2021, 9, 760269.
[http://dx.doi.org/10.3389/fevo.2021.760269]
[3]
Ludwig, P.E.; Reddy, V.; Varacallo, M. Neuroanatomy, Central Nervous System (CNS). In: StatPearls; Treasure Island (FL): StatPearls Publishing, 2022.
[4]
Sporns, O.; Tononi, G.; Kötter, R. The human connectome: A structural description of the human brain. PLOS Comput. Biol., 2005, 1(4), e42.
[http://dx.doi.org/10.1371/journal.pcbi.0010042] [PMID: 16201007]
[5]
Kim, S.Y.; Chung, K.; Deisseroth, K. Light microscopy mapping of connections in the intact brain. Trends Cogn. Sci., 2013, 17(12), 596-599.
[http://dx.doi.org/10.1016/j.tics.2013.10.005] [PMID: 24210964]
[6]
Chrousos, G.P. Stress and disorders of the stress system. Nat. Rev. Endocrinol., 2009, 5(7), 374-381.
[http://dx.doi.org/10.1038/nrendo.2009.106] [PMID: 19488073]
[7]
Stratakis, C.A.; Chrousos, G.P. Neuroendocrinology and pathophysiology of the stress system. Ann. N. Y. Acad. Sci., 1995, 771(1 Stress), 1-18.
[http://dx.doi.org/10.1111/j.1749-6632.1995.tb44666.x] [PMID: 8597390]
[8]
Gold, P.W. The organization of the stress system and its dysregulation in depressive illness. Mol. Psychiatry, 2015, 20(1), 32-47.
[http://dx.doi.org/10.1038/mp.2014.163] [PMID: 25486982]
[9]
Kousta, S. Mapping the structural and functional architecture of the brain. Trends Cogn. Sci., 2013, 17(12), 595.
[http://dx.doi.org/10.1016/j.tics.2013.10.009]
[10]
Baliyan, V.; Das, C.J.; Sharma, R.; Gupta, A.K. Diffusion weighted imaging: Technique and applications. World J. Radiol., 2016, 8(9), 785-798.
[http://dx.doi.org/10.4329/wjr.v8.i9.785] [PMID: 27721941]
[11]
Glover, G.H. Overview of functional magnetic resonance imaging. Neurosurg. Clin. N. Am., 2011, 22(2), 133-139. vii.
[http://dx.doi.org/10.1016/j.nec.2010.11.001] [PMID: 21435566]
[12]
Uddin, L.Q. Complex relationships between structural and functional brain connectivity. Trends Cogn. Sci., 2013, 17(12), 600-602.
[http://dx.doi.org/10.1016/j.tics.2013.09.011] [PMID: 24094797]
[13]
Le Bihan, D.; Breton, E.; Lallemand, D.; Grenier, P.; Cabanis, E.; Laval-Jeantet, M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 1986, 161(2), 401-407.
[http://dx.doi.org/10.1148/radiology.161.2.3763909] [PMID: 3763909]
[14]
Biswal, B.; Zerrin Yetkin, F.; Haughton, V.M.; Hyde, J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn. Reson. Med., 1995, 34(4), 537-541.
[http://dx.doi.org/10.1002/mrm.1910340409] [PMID: 8524021]
[15]
Chang, C.; Glover, G.H. Time–frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage, 2010, 50(1), 81-98.
[http://dx.doi.org/10.1016/j.neuroimage.2009.12.011] [PMID: 20006716]
[16]
Fox, M.D.; Raichle, M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci., 2007, 8(9), 700-711.
[http://dx.doi.org/10.1038/nrn2201] [PMID: 17704812]
[17]
Borogovac, A.; Asllani, I. Arterial Spin Labeling (ASL) fMRI: advantages, theoretical constrains, and experimental challenges in neurosciences. Int. J. Biomed. Imaging, 2012, 2012, 818456.
[PMID: 22966219]
[18]
Liégeois, R.; Li, J.; Kong, R.; Orban, C.; Van De Ville, D.; Ge, T.; Sabuncu, M.R.; Yeo, B.T.T. Resting brain dynamics at different timescales capture distinct aspects of human behavior. Nat. Commun., 2019, 10(1), 2317.
[http://dx.doi.org/10.1038/s41467-019-10317-7] [PMID: 31127095]
[19]
Zhang, S.; Li, X.; Lv, J.; Jiang, X.; Guo, L.; Liu, T. Characterizing and differentiating task-based and resting state fMRI signals via two-stage sparse representations. Brain Imaging Behav., 2016, 10(1), 21-32.
[http://dx.doi.org/10.1007/s11682-015-9359-7] [PMID: 25732072]
[20]
Logothetis, N.K. What we can do and what we cannot do with fMRI. Nature, 2008, 453(7197), 869-878.
[http://dx.doi.org/10.1038/nature06976] [PMID: 18548064]
[21]
Patanaik, A.; Tandi, J.; Ong, J.L.; Wang, C.; Zhou, J.; Chee, M.W.L. Dynamic functional connectivity and its behavioral correlates beyond vigilance. Neuroimage, 2018, 177, 1-10.
[http://dx.doi.org/10.1016/j.neuroimage.2018.04.049] [PMID: 29704612]
[22]
Honey, C.J.; Sporns, O.; Cammoun, L.; Gigandet, X.; Thiran, J.P.; Meuli, R.; Hagmann, P. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA, 2009, 106(6), 2035-2040.
[http://dx.doi.org/10.1073/pnas.0811168106] [PMID: 19188601]
[23]
Allen, E.A.; Damaraju, E.; Plis, S.M.; Erhardt, E.B.; Eichele, T.; Calhoun, V.D. Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex, 2014, 24(3), 663-676.
[http://dx.doi.org/10.1093/cercor/bhs352] [PMID: 23146964]
[24]
Zhang, X.; Huettel, S.A.; Mullette-Gillman, O.D.A.; Guo, H.; Wang, L. Exploring common changes after acute mental stress and acute tryptophan depletion: Resting-state fMRI studies. J. Psychiatr. Res., 2019, 113, 172-180.
[http://dx.doi.org/10.1016/j.jpsychires.2019.03.025] [PMID: 30959228]
[25]
Pan, J.; Zhan, L.; Hu, C.; Yang, J.; Wang, C.; Gu, L.; Zhong, S.; Huang, Y.; Wu, Q.; Xie, X.; Chen, Q.; Zhou, H.; Huang, M.; Wu, X. Emotion regulation and complex brain networks: association between expressive suppression and efficiency in the fronto-parietal network and default-mode network. Front. Hum. Neurosci., 2018, 12, 70.
[http://dx.doi.org/10.3389/fnhum.2018.00070] [PMID: 29662443]
[26]
Barch, D.M. Brain network interactions in health and disease. Trends Cogn. Sci., 2013, 17(12), 603-605.
[http://dx.doi.org/10.1016/j.tics.2013.09.004] [PMID: 24080424]
[27]
Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci., 2011, 15(10), 483-506.
[http://dx.doi.org/10.1016/j.tics.2011.08.003] [PMID: 21908230]
[28]
Zhang, W.; Hashemi, M.M.; Kaldewaij, R.; Koch, S.B.J.; Beckmann, C.; Klumpers, F.; Roelofs, K. Acute stress alters the ‘default’ brain processing. Neuroimage, 2019, 189, 870-877.
[http://dx.doi.org/10.1016/j.neuroimage.2019.01.063] [PMID: 30703518]
[29]
Teng, J.; Ong, J.L.; Patanaik, A.; Tandi, J.; Zhou, J.H.; Chee, M.W.L.; Lim, J. Vigilance declines following sleep deprivation are associated with two previously identified dynamic connectivity states. Neuroimage, 2019, 200, 382-390.
[http://dx.doi.org/10.1016/j.neuroimage.2019.07.004] [PMID: 31276798]
[30]
Shapiro, S.L.; Carlson, L.E.; Astin, J.A.; Freedman, B. Mechanisms of mindfulness. J. Clin. Psychol., 2006, 62(3), 373-386.
[http://dx.doi.org/10.1002/jclp.20237] [PMID: 16385481]
[31]
Kabat-Zinn, J. Full catastrophe living: using the wisdom of your body and mind to face stress, pain, and illness, 2009.
[32]
Mooneyham, B.W.; Mrazek, M.D.; Mrazek, A.J.; Mrazek, K.L.; Phillips, D.T.; Schooler, J.W. States of mind: Characterizing the neural bases of focus and mind-wandering through dynamic functional connectivity. J. Cogn. Neurosci., 2017, 29(3), 495-506.
[http://dx.doi.org/10.1162/jocn_a_01066] [PMID: 27779908]
[33]
Hsu, N.S.; Fang, H.Y.; David, K.K.; Gnadt, J.W.; Peng, G.C.Y.; Talley, E.M.; Ward, J.M.; Ngai, J.; Koroshetz, W.J. The promise of the BRAIN initiative: NIH strategies for understanding neural circuit function. Curr. Opin. Neurobiol., 2020, 65, 162-166.
[http://dx.doi.org/10.1016/j.conb.2020.10.008] [PMID: 33279793]
[34]
Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.M.; Gavaghan, D.J.; McQuay, H.J. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control. Clin. Trials, 1996, 17(1), 1-12.
[http://dx.doi.org/10.1016/0197-2456(95)00134-4] [PMID: 8721797]
[35]
Sinha, R.; Lacadie, C.; Skudlarski, P.; Wexler, B. Neural circuits underlying emotional distress in humans. Ann. N. Y. Acad. Sci., 2004, 1032(1), 254-257.
[http://dx.doi.org/10.1196/annals.1314.032] [PMID: 15677422]
[36]
Wang, J.; Rao, H.; Wetmore, G.S.; Furlan, P.M.; Korczykowski, M.; Dinges, D.F.; Detre, J.A. Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress. Proc. Natl. Acad. Sci. USA, 2005, 102(49), 17804-17809.
[http://dx.doi.org/10.1073/pnas.0503082102] [PMID: 16306271]
[37]
Veer, I.M.; Oei, N.Y.L.; Spinhoven, P.; van Buchem, M.A.; Elzinga, B.M.; Rombouts, S.A.R.B. Beyond acute social stress: Increased functional connectivity between amygdala and cortical midline structures. Neuroimage, 2011, 57(4), 1534-1541.
[http://dx.doi.org/10.1016/j.neuroimage.2011.05.074] [PMID: 21664280]
[38]
Henckens, M.J.A.G.; van Wingen, G.A.; Joëls, M.; Fernández, G. Corticosteroid induced decoupling of the amygdala in men. Cereb. Cortex, 2012, 22(10), 2336-2345.
[http://dx.doi.org/10.1093/cercor/bhr313] [PMID: 22079927]
[39]
Qin, S.; Hermans, E.J.; van Marle, H.J.F.; Fernández, G. Understanding low reliability of memories for neutral information encoded under stress: alterations in memory-related activation in the hippocampus and midbrain. J. Neurosci., 2012, 32(12), 4032-4041.
[http://dx.doi.org/10.1523/JNEUROSCI.3101-11.2012] [PMID: 22442069]
[40]
Schwabe, L.; Tegenthoff, M.; Höffken, O.; Wolf, O.T. Mineralocorticoid receptor blockade prevents stress-induced modulation of multiple memory systems in the human brain. Biol. Psychiatry, 2013, 74(11), 801-808.
[http://dx.doi.org/10.1016/j.biopsych.2013.06.001] [PMID: 23871473]
[41]
Gathmann, B.; Schulte, F.P.; Maderwald, S.; Pawlikowski, M.; Starcke, K.; Schäfer, L.C.; Schöler, T.; Wolf, O.T.; Brand, M. Stress and decision making: neural correlates of the interaction between stress, executive functions, and decision making under risk. Exp. Brain Res., 2014, 232(3), 957-973.
[http://dx.doi.org/10.1007/s00221-013-3808-6] [PMID: 24408441]
[42]
Oei, N.Y.L.; Both, S.; van Heemst, D.; van der Grond, J. Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli. Psychoneuroendocrinology, 2014, 39, 111-120.
[http://dx.doi.org/10.1016/j.psyneuen.2013.10.005] [PMID: 24275010]
[43]
Grimm, S.; Pestke, K.; Feeser, M.; Aust, S.; Weigand, A.; Wang, J.; Wingenfeld, K.; Pruessner, J.C.; La Marca, R.; Böker, H.; Bajbouj, M. Early life stress modulates oxytocin effects on limbic system during acute psychosocial stress. Soc. Cogn. Affect. Neurosci., 2014, 9(11), 1828-1835.
[http://dx.doi.org/10.1093/scan/nsu020] [PMID: 24478326]
[44]
Fan, Y.; Pestke, K.; Feeser, M.; Aust, S.; Pruessner, J.C.; Böker, H.; Bajbouj, M.; Grimm, S. Amygdala-hippocampal connectivity changes during acute psychosocial stress: Joint effect of early life stress and oxytocin. Neuropsychopharmacology, 2015, 40(12), 2736-2744.
[http://dx.doi.org/10.1038/npp.2015.123] [PMID: 25924202]
[45]
Vogel, S.; Klumpers, F.; Kroes, M.C.W.; Oplaat, K.T.; Krugers, H.J.; Oitzl, M.S.; Joëls, M.; Fernández, G. A stress-induced shift from trace to delay conditioning depends on the mineralocorticoid receptor. Biol. Psychiatry, 2015, 78(12), 830-839.
[http://dx.doi.org/10.1016/j.biopsych.2015.02.014] [PMID: 25823790]
[46]
Khalili-Mahani, N.; Niesters, M.; van Osch, M.J.; Oitzl, M.; Veer, I.; de Rooij, M.; van Gerven, J.; van Buchem, M.A.; Beckmann, C.F.; Rombouts, S.A.R.B.; Dahan, A. Ketamine interactions with biomarkers of stress: A randomized placebo-controlled repeated measures resting-state fMRI and PCASL pilot study in healthy men. Neuroimage, 2015, 108, 396-409.
[http://dx.doi.org/10.1016/j.neuroimage.2014.12.050] [PMID: 25554429]
[47]
Everaerd, D.; Klumpers, F.; van Wingen, G.; Tendolkar, I.; Fernández, G. Association between neuroticism and amygdala responsivity emerges under stressful conditions. Neuroimage, 2015, 112, 218-224.
[http://dx.doi.org/10.1016/j.neuroimage.2015.03.014] [PMID: 25776217]
[48]
Maier, S.U.; Makwana, A.B.; Hare, T.A. Acute stress impairs self-control in goal-directed choice by altering multiple functional connections within the brain’s decision circuits. Neuron, 2015, 87(3), 621-631.
[http://dx.doi.org/10.1016/j.neuron.2015.07.005] [PMID: 26247866]
[49]
Henckens, M.J.A.G.; Klumpers, F.; Everaerd, D.; Kooijman, S.C.; van Wingen, G.A.; Fernández, G. Interindividual differences in stress sensitivity: Basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress. Soc. Cogn. Affect. Neurosci., 2016, 11(4), 663-673.
[http://dx.doi.org/10.1093/scan/nsv149] [PMID: 26668010]
[50]
Vogel, S.; Klumpers, F.; Schröder, T.N.; Oplaat, K.T.; Krugers, H.J.; Oitzl, M.S.; Joëls, M.; Doeller, C.F.; Fernández, G. Stress induces a shift towards striatum-dependent stimulus-response learning via the mineralocorticoid receptor. Neuropsychopharmacology, 2017, 42(6), 1262-1271.
[http://dx.doi.org/10.1038/npp.2016.262] [PMID: 27876790]
[51]
Gavelin, H.M.; Neely, A.S.; Andersson, M.; Eskilsson, T.; Järvholm, L.S.; Boraxbekk, C.J. Neural activation in stress-related exhaustion: Cross-sectional observations and interventional effects. Psychiatry Res. Neuroimaging, 2017, 269, 17-25.
[http://dx.doi.org/10.1016/j.pscychresns.2017.08.008] [PMID: 28917154]
[52]
Kohn, N.; Hermans, E.J.; Fernández, G. Cognitive benefit and cost of acute stress is differentially modulated by individual brain state. Soc. Cogn. Affect. Neurosci., 2017, 12(7), 1179-1187.
[http://dx.doi.org/10.1093/scan/nsx043] [PMID: 28402480]
[53]
Luo, Y.; Fernández, G.; Hermans, E.; Vogel, S.; Zhang, Y.; Li, H.; Klumpers, F. How acute stress may enhance subsequent memory for threat stimuli outside the focus of attention: DLPFC-amygdala decoupling. Neuroimage, 2018, 171, 311-322.
[http://dx.doi.org/10.1016/j.neuroimage.2018.01.010] [PMID: 29329979]
[54]
Vogel, S.; Kluen, L.M.; Fernández, G.; Schwabe, L. Stress affects the neural ensemble for integrating new information and prior knowledge. Neuroimage, 2018, 173, 176-187.
[http://dx.doi.org/10.1016/j.neuroimage.2018.02.038] [PMID: 29476913]
[55]
Chang, J.; Yu, R. Hippocampal connectivity in the aftermath of acute social stress. Neurobiol. Stress, 2019, 11, 100195.
[http://dx.doi.org/10.1016/j.ynstr.2019.100195] [PMID: 31832509]
[56]
Maier, A.; Scheele, D.; Spengler, F.B.; Menba, T.; Mohr, F.; Güntürkün, O.; Stoffel-Wagner, B.; Kinfe, T.M.; Maier, W.; Khalsa, S.S.; Hurlemann, R. Oxytocin reduces a chemosensory-induced stress bias in social perception. Neuropsychopharmacology, 2019, 44(2), 281-288.
[http://dx.doi.org/10.1038/s41386-018-0063-3] [PMID: 29703998]
[57]
van Leeuwen, J.M.C.; Vink, M.; Joëls, M.; Kahn, R.S.; Hermans, E.J.; Vinkers, C.H. Increased responses of the reward circuitry to positive task feedback following acute stress in healthy controls but not in siblings of schizophrenia patients. Neuroimage, 2019, 184, 547-554.
[http://dx.doi.org/10.1016/j.neuroimage.2018.09.051] [PMID: 30243958]
[58]
Woodcock, E.A.; Greenwald, M.K.; Khatib, D.; Diwadkar, V.A.; Stanley, J.A. Pharmacological stress impairs working memory performance and attenuates dorsolateral prefrontal cortex glutamate modulation. Neuroimage, 2019, 186, 437-445.
[http://dx.doi.org/10.1016/j.neuroimage.2018.11.017] [PMID: 30458306]
[59]
Reinelt, J.; Uhlig, M.; Müller, K.; Lauckner, M.E.; Kumral, D.; Schaare, H.L.; Baczkowski, B.M.; Babayan, A.; Erbey, M.; Roebbig, J.; Reiter, A.; Bae, Y.J.; Kratzsch, J.; Thiery, J.; Hendler, T.; Villringer, A.; Gaebler, M. Acute psychosocial stress alters thalamic network centrality. Neuroimage, 2019, 199, 680-690.
[http://dx.doi.org/10.1016/j.neuroimage.2019.06.005] [PMID: 31173902]
[60]
Herrmann, L.; Vicheva, P.; Kasties, V.; Danyeli, L.V.; Szycik, G.R.; Denzel, D.; Fan, Y.; Meer, J.V.; Vester, J.C.; Eskoetter, H.; Schultz, M.; Walter, M. fMRI revealed reduced amygdala activation after Nx4 in mildly to moderately stressed healthy volunteers in a randomized, placebo-controlled, cross-over trial. Sci. Rep., 2020, 10(1), 3802.
[http://dx.doi.org/10.1038/s41598-020-60392-w] [PMID: 32123197]
[61]
Teng, J.; Massar, S.A.A.; Lim, J. Inter-relationships between changes in stress, mindfulness, and dynamic functional connectivity in response to a social stressor. Sci. Rep., 2022, 12(1), 2396.
[http://dx.doi.org/10.1038/s41598-022-06342-0] [PMID: 35165343]
[62]
Corr, R.; Glier, S.; Bizzell, J.; Pelletier-Baldelli, A.; Campbell, A.; Killian-Farrell, C.; Belger, A. Triple network functional connectivity during acute stress in adolescents and the influence of polyvictimization. Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2022, 7(9), 867-875.
[http://dx.doi.org/10.1016/j.bpsc.2022.03.003] [PMID: 35292406]
[63]
Quabs, J.; Caspers, S.; Schöne, C.; Mohlberg, H.; Bludau, S.; Dickscheid, T.; Amunts, K. Cytoarchitecture, probability maps and segregation of the human insula. Neuroimage, 2022, 260, 119453.
[http://dx.doi.org/10.1016/j.neuroimage.2022.119453] [PMID: 35809885]
[64]
Buckner, R.L.; Carroll, D.C. Self-projection and the brain. Trends Cogn. Sci., 2007, 11(2), 49-57.
[http://dx.doi.org/10.1016/j.tics.2006.11.004] [PMID: 17188554]
[65]
Bilevicius, E.; Smith, S.D.; Kornelsen, J. Resting-state network functional connectivity patterns associated with the mindful attention awareness scale. Brain Connect., 2018, 8(1), 40-48.
[http://dx.doi.org/10.1089/brain.2017.0520] [PMID: 29130326]
[66]
Doll, A.; Hölzel, B.K.; Boucard, C.C.; Wohlschläger, A.M.; Sorg, C. Mindfulness is associated with intrinsic functional connectivity between default mode and salience networks. Front. Hum. Neurosci., 2015, 9, 461.
[http://dx.doi.org/10.3389/fnhum.2015.00461] [PMID: 26379526]
[67]
Lim, J.; Teng, J.; Patanaik, A.; Tandi, J.; Massar, S.A.A. Dynamic functional connectivity markers of objective trait mindfulness. Neuroimage, 2018, 176, 193-202.
[http://dx.doi.org/10.1016/j.neuroimage.2018.04.056] [PMID: 29709625]
[68]
Cannon, W.B. The wisdom of the body; W.W. Norton & Company: New York, 1932.
[http://dx.doi.org/10.1097/00000441-193212000-00028]
[69]
Gianaros, P.J.; Derbtshire, S.W.G.; May, J.C.; Siegle, G.J.; Gamalo, M.A.; Jennings, J.R. Anterior cingulate activity correlates with blood pressure during stress. Psychophysiology, 2005, 42(6), 627-635.
[http://dx.doi.org/10.1111/j.1469-8986.2005.00366.x] [PMID: 16364058]
[70]
Pace, T.W.W.; Gaylord, R.I.; Jarvis, E.; Girotti, M.; Spencer, R.L. Differential glucocorticoid effects on stress-induced gene expression in the paraventricular nucleus of the hypothalamus and ACTH secretion in the rat. Stress, 2009, 12(5), 400-411.
[http://dx.doi.org/10.1080/10253890802530730] [PMID: 19065454]
[71]
Cunningham-Bussel, A.C.; Root, J.C.; Butler, T.; Tuescher, O.; Pan, H.; Epstein, J.; Weisholtz, D.S.; Pavony, M.; Silverman, M.E.; Goldstein, M.S.; Altemus, M.; Cloitre, M.; LeDoux, J.; McEwen, B.; Stern, E.; Silbersweig, D. Diurnal cortisol amplitude and fronto-limbic activity in response to stressful stimuli. Psychoneuroendocrinology, 2009, 34(5), 694-704.
[http://dx.doi.org/10.1016/j.psyneuen.2008.11.011] [PMID: 19135805]
[72]
Qin, C.; Li, J.; Tang, K. The paraventricular nucleus of the hypothalamus: development, function, and human diseases. Endocrinology, 2018, 159(9), 3458-3472.
[http://dx.doi.org/10.1210/en.2018-00453] [PMID: 30052854]
[73]
Ma, S.; Morilak, D.A. Norepinephrine release in medial amygdala facilitates activation of the hypothalamic-pituitary-adrenal axis in response to acute immobilisation stress. J. Neuroendocrinol., 2005, 17(1), 22-28.
[http://dx.doi.org/10.1111/j.1365-2826.2005.01279.x] [PMID: 15720472]
[74]
Aguilera, G. Regulation of the hypothalamic-pituitary-adrenal axis by neuropeptides. Horm. Mol. Biol. Clin. Investig., 2011, 7(2), 327-336.
[http://dx.doi.org/10.1515/HMBCI.2011.123] [PMID: 25961271]
[75]
LeDoux, J. The amygdala. Curr. Biol., 2007, 17(20), R868-R874.
[http://dx.doi.org/10.1016/j.cub.2007.08.005] [PMID: 17956742]
[76]
Uddin, L.Q. Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci., 2015, 16(1), 55-61.
[http://dx.doi.org/10.1038/nrn3857] [PMID: 25406711]
[77]
Sandi, C. Stress and cognition. Wiley Interdiscip. Rev. Cogn. Sci., 2013, 4(3), 245-261.
[http://dx.doi.org/10.1002/wcs.1222] [PMID: 26304203]
[78]
Engert, V.; Kok, B.E.; Papassotiriou, I.; Chrousos, G.P.; Singer, T. Specific reduction in cortisol stress reactivity after social but not attention-based mental training. Sci. Adv., 2017, 3(10), e1700495.
[http://dx.doi.org/10.1126/sciadv.1700495] [PMID: 28983508]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy