Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Exploring Novel PLK1 Inhibitors based on Computational Studies of 2,4-Diarylaminopyrimidine Derivatives

Author(s): Honghao Yang, Yilan Zhao, Xiaojiao Zheng, Xiulian Ju, Fengshou Wu, Xiaogang Luo, Qi Sun* and Genyan Liu*

Volume 21, Issue 5, 2024

Published on: 16 October, 2023

Page: [979 - 990] Pages: 12

DOI: 10.2174/1570180820666230801114905

Price: $65

conference banner
Abstract

Background: Polo-like kinase 1 (PLK1) is an important target for anti-cancer drugs. A series of novel 2,4-diarylaminopyrimidine derivatives (DAPDs) as PLK1 inhibitors (PLKIs) with remarkable activities have been reported recently.

Methods: A systemically computational study was performed on these DAPDs, including threedimensional quantitative structure-activity relationship (3D-QSAR) modeling, molecular docking, and molecular dynamics (MD) simulation.

Results: The constructed 3D-QSAR models exhibited reliable predictability with satisfactory validation parameters. The dockings revealed the binding modes of DAPDs in PLK1 protein, and two key residue, Cys133 and Phe183, could interact with DAPDs by hydrogen bonds and π-π stacking, which might be significant for the activity of these PLKIs. Eight compounds with higher predicted activity than the most active DAPD-compound (16) were designed based on the 3D-QSAR models. These newly designed compounds also exhibited higher docking scores than compound 16 in the binding pocket of PLK1. The ADME predictions and MD simulations further indicated that two hit compounds with reasonable pharmacokinetics properties could stably bind with PLK1 and have the potential to become novel PLKIs.

Conclusion: Two newly designed compounds might have the potential to be novel PLKIs. These results might provide important information for the design and development of novel PLKIs.

« Previous
Graphical Abstract

[1]
Lv, X.; Yang, X.; Zhan, M.M.; Cao, P.; Zheng, S.; Peng, R.; Han, J.; Xie, Z.; Tu, Z.; Liao, C. Structure-based design and SAR development of novel selective polo-like kinase 1 inhibitors having the tetrahydropteridin scaffold. Eur. J. Med. Chem., 2019, 184111769.
[http://dx.doi.org/10.1016/j.ejmech.2019.111769] [PMID: 31629162]
[2]
Zhang, Z.; Xing, X.; Guan, P.; Song, S.; You, G.; Xia, C.; Liu, T. Recent progress in agents targeting polo-like kinases: Promising therapeutic strategies. Eur. J. Med. Chem., 2021, 217113314.
[http://dx.doi.org/10.1016/j.ejmech.2021.113314] [PMID: 33765606]
[3]
Zhang, R.; Shi, H.; Ren, F.; Liu, H.; Zhang, M.; Deng, Y.; Li, X. Misregulation of polo-like protein kinase 1, P53 and P21WAF1 in epithelial ovarian cancer suggests poor prognosis. Oncol. Rep., 2015, 33(3), 1235-1242.
[http://dx.doi.org/10.3892/or.2015.3723] [PMID: 25592872]
[4]
Ramani, P.; Nash, R.; Sowa-Avugrah, E.; Rogers, C. High levels of polo-like kinase 1 and phosphorylated translationally controlled tumor protein indicate poor prognosis in neuroblastomas. J. Neurooncol., 2015, 125(1), 103-111.
[http://dx.doi.org/10.1007/s11060-015-1900-4] [PMID: 26318737]
[5]
Yamamoto, Y.; Matsuyama, H.; Kawauchi, S.; Matsumoto, H.; Nagao, K.; Ohmi, C.; Sakano, S.; Furuya, T.; Oga, A.; Naito, K.; Sasaki, K. Overexpression of polo-like kinase 1 (PLK1) and chromosomal instability in bladder cancer. Oncology, 2006, 70(3), 231-237.
[http://dx.doi.org/10.1159/000094416] [PMID: 16837776]
[6]
Deeraksa, A.; Pan, J.; Sha, Y.; Liu, X-D.; Eissa, N.T.; Lin, S-H.; Yu-Lee, L. Plk1 is upregulated in androgen-insensitive prostate cancer cells and its inhibition leads to necroptosis. Oncogene, 2013, 32(24), 2973-2983.
[http://dx.doi.org/10.1038/onc.2012.309] [PMID: 22890325]
[7]
Li, Y.; Zhao, Z.G.; Luo, Y.; Cui, H.; Wang, H.Y.; Jia, Y.F.; Gao, Y.T. Dual targeting of Polo-like kinase 1 and baculoviral inhibitor of apoptosis repeat-containing 5 in TP53-mutated hepatocellular carcinoma. World J. Gastroenterol., 2020, 26(32), 4786-4801.
[http://dx.doi.org/10.3748/wjg.v26.i32.4786] [PMID: 32921957]
[8]
Bosetti, C.; Turati, F.; La Vecchia, C. Hepatocellular carcinoma epidemiology. Best Pract. Res. Clin. Gastroenterol., 2014, 28(5), 753-770.
[http://dx.doi.org/10.1016/j.bpg.2014.08.007] [PMID: 25260306]
[9]
Ikai, I.; Arii, S.; Okazaki, M.; Okita, K.; Omata, M.; Kojiro, M.; Takayasu, K.; Nakanuma, Y.; Makuuchi, M.; Matsuyama, Y.; Monden, M.; Kudo, M. The liver cancer study group of Japan, kyoto, Japan. report of the 17th nationwide follow-up survey of primary liver cancer in Japan. Hepatol. Res., 2007, 37(9), 676-691.
[http://dx.doi.org/10.1111/j.1872-034X.2007.00119.x] [PMID: 17617112]
[10]
Deng, Z.; Chen, G.; Liu, S.; Li, Y.; Zhong, J.; Zhang, B.; Li, L.; Huang, H.; Wang, Z.; Xu, Q.; Deng, X. Discovery of methyl 3-((2-((1-(dimethylglycyl)-5-methoxyindolin-6-yl)amino)-5-(trifluoro-methyl) pyrimidin-4-yl)amino)thiophene-2-carboxylate as a potent and selective polo-like kinase 1 (PLK1) inhibitor for combating hepatocellular carcinoma. Eur. J. Med. Chem., 2020, 206112697.
[http://dx.doi.org/10.1016/j.ejmech.2020.112697] [PMID: 32814244]
[11]
Beck, J.; Maerki, S.; Posch, M.; Metzger, T.; Persaud, A.; Scheel, H.; Hofmann, K.; Rotin, D.; Pedrioli, P.; Swedlow, J.R.; Peter, M.; Sumara, I. Ubiquitylation-dependent localization of PLK1 in mitosis. Nat. Cell Biol., 2013, 15(4), 430-439.
[http://dx.doi.org/10.1038/ncb2695] [PMID: 23455478]
[12]
Choi, M.; Kim, W.; Cheon, M.G.; Lee, C.W.; Kim, J.E. Polo-like kinase 1 inhibitor BI2536 causes mitotic catastrophe following activation of the spindle assembly checkpoint in non-small cell lung cancer cells. Cancer Lett., 2015, 357(2), 591-601.
[http://dx.doi.org/10.1016/j.canlet.2014.12.023] [PMID: 25524551]
[13]
Zhou, Q.; Chen, T. BI6727, a polo-like kinase 1 inhibitor, synergizes with gefitinib to suppress hepatocellular carcinoma cells via a G2/M arrest mechanism. Pharmazie, 2022, 77(7), 230-235.
[http://dx.doi.org/10.1691/ph.2022.2392] [PMID: 36199185]
[14]
Russo, M.A.; Kang, K.S.; Di Cristofano, A. The PLK1 inhibitor GSK461364A is effective in poorly differentiated and anaplastic thyroid carcinoma cells, independent of the nature of their driver mutations. Thyroid, 2013, 23(10), 1284-1293.
[http://dx.doi.org/10.1089/thy.2013.0037] [PMID: 23509868]
[15]
White, M.P.; Babayeva, M.; Taft, D.R.; Maniar, M. Determination of intestinal permeability of rigosertib (ON 01910.Na, Estybon): correlation with systemic exposure. J. Pharm. Pharmacol., 2013, 65(7), 960-969.
[http://dx.doi.org/10.1111/jphp.12057] [PMID: 23738723]
[16]
Zhai, N.; Wang, C.; Wu, F.; Xiong, L.; Luo, X.; Ju, X.; Liu, G. Exploration of novel xanthine oxidase inhibitors based on 1,6-Dihydropyrimidine-5-Carboxylic Acids by an integrated in silico study. Int. J. Mol. Sci., 2021, 22(15), 8122.
[http://dx.doi.org/10.3390/ijms22158122] [PMID: 34360886]
[17]
Chen, Y.; Tian, Y.; Gao, Y.; Wu, F.; Luo, X.; Ju, X.; Liu, G. In silico Design of novel HIV-1 NNRTIs based on combined modeling studies of Dihydrofuro[3,4-d]pyrimidines. Front Chem., 2020, 8, 164.
[http://dx.doi.org/10.3389/fchem.2020.00164] [PMID: 32266208]
[18]
Wang, W.; Tian, Y.; Wan, Y.; Gu, S.; Ju, X.; Luo, X.; Liu, G. Insights into the key structural features of N1-ary-benzimidazols as HIV-1 NNRTIs using molecular docking, molecular dynamics, 3D-QSAR, and pharmacophore modeling. Struct. Chem., 2019, 30(1), 385-397.
[http://dx.doi.org/10.1007/s11224-018-1204-3]
[19]
Li, Y.; Liu, S.; Wang, J.; Rui, X.; Tian, H.; Li, C.; Guo, C. In silico studies of piperidine derivatives as protein kinase B inhibitors through 3D-QSAR, molecular docking and molecular dynamics simulation. Lett. Drug Des. Discov., 2022, 19(7), 591-605.
[http://dx.doi.org/10.2174/1570180818666211207105516]
[20]
Oh, Y.; Jung, H.; Kim, H.; Baek, J.; Jun, J.; Cho, H.; Im, D.; Hah, J.M. Design and synthesis of a novel PLK1 inhibitor scaffold using a hybridized 3D-QSAR model. Int. J. Mol. Sci., 2021, 22(8), 3865.
[http://dx.doi.org/10.3390/ijms22083865] [PMID: 33917995]
[21]
Liu, G.; Wang, W.; Wan, Y.; Ju, X.; Gu, S. Application of 3D-QSAR, pharmacophore, and molecular docking in the molecular design of diarylpyrimidine derivatives as HIV-1 nonnucleoside reverse transcriptase inhibitors. Int. J. Mol. Sci., 2018, 19(5), 1436.
[http://dx.doi.org/10.3390/ijms19051436] [PMID: 29751616]
[22]
Wan, Y.; Tian, Y.; Wang, W.; Gu, S.; Ju, X.; Liu, G. In silico studies of diarylpyridine derivatives as novel HIV-1 NNRTIs using docking-based 3D-QSAR, molecular dynamics, and pharmacophore modeling approaches. RSC Advances, 2018, 8(71), 40529-40543.
[http://dx.doi.org/10.1039/C8RA06475J] [PMID: 35557880]
[23]
Hou, Y.; Zhu, L.; Li, Z.; Shen, Q.; Xu, Q.; Li, W.; Liu, Y.; Gong, P. Design, synthesis and biological evaluation of novel 7-amino-[1,2,4]triazolo[4,3-f]pteridinone, and 7-aminotetrazolo[1,5-f]pteridinone derivative as potent antitumor agents. Eur. J. Med. Chem., 2019, 163, 690-709.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.009] [PMID: 30572179]
[24]
Malik, N.; Dhiman, P.; Khatkar, A. In silico and 3D QSAR studies of natural based derivatives as xanthine oxidase inhibitors. Curr. Top. Med. Chem., 2019, 19(2), 123-138.
[http://dx.doi.org/10.2174/1568026619666190206122640] [PMID: 30727896]
[25]
Zhao, Y.; Yang, H.; Wu, F.; Luo, X.; Sun, Q.; Feng, W.; Ju, X.; Liu, G. Exploration of N-Arylsulfonyl-indole-2-carboxamide Derivatives as Novel Fructose-1,6-bisphosphatase Inhibitors by Molecular Simulation. Int. J. Mol. Sci., 2022, 23(18), 10259.
[http://dx.doi.org/10.3390/ijms231810259] [PMID: 36142164]
[26]
Zheng, X.; Wang, C.; Zhai, N.; Luo, X.; Liu, G.; Ju, X. In silico screening of novel α1-GABAA receptor PAMs towards schizophrenia based on combined modeling studies of Imidazo [1,2-a]-. Pyridines. Int. J. Mol. Sci., 2021, 22(17), 9645.
[http://dx.doi.org/10.3390/ijms22179645] [PMID: 34502550]
[27]
Wang, C.; Zhai, N.; Zhao, Y.; Wu, F.; Luo, X.; Ju, X.; Liu, G.; Liu, H. Exploration of novel Hepatitis B Virus capsid assembly modulators by integrated molecular simulations. ChemistrySelect, 2021, 6(44), 12524-12536.
[http://dx.doi.org/10.1002/slct.202102965]
[28]
Gao, Y.; Zhang, Y.; Wu, F.; Pei, J.; Luo, X.; Ju, X.; Zhao, C.; Liu, G. Exploring the interaction mechanism of Desmethyl-broflanilide in insect GABA receptors and screening potential antagonists by in silico simulations. J. Agric. Food Chem., 2020, 68(50), 14768-14780.
[http://dx.doi.org/10.1021/acs.jafc.0c05728] [PMID: 33274636]
[29]
Zhang, J.; Zhang, L.; Wang, J.; Ouyang, L.; Wang, Y. Polo-like kinase 1 inhibitors in human cancer therapy: Development and therapeutic potential. J. Med. Chem., 2022, 65(15), 10133-10160.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00614] [PMID: 35878418]
[30]
Mitragotri, S.; Anissimov, Y.G.; Bunge, A.L.; Frasch, H.F.; Guy, R.H.; Hadgraft, J.; Kasting, G.B.; Lane, M.E.; Roberts, M.S. Mathematical models of skin permeability: An overview. Int. J. Pharm., 2011, 418(1), 115-129.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.023] [PMID: 21356301]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy