Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Sensory Reinforced Corticostriatal Plasticity

Author(s): Nicolas Vautrelle, Véronique Coizet, Mariana Leriche, Lionel Dahan, Jan M. Schulz, Yan-Feng Zhang, Abdelhafid Zeghbib, Paul G. Overton, Enrico Bracci, Peter Redgrave and John N.J. Reynolds*

Volume 22, Issue 9, 2024

Published on: 29 August, 2023

Page: [1513 - 1527] Pages: 15

DOI: 10.2174/1570159X21666230801110359

Price: $65

Abstract

Background: Regional changes in corticostriatal transmission induced by phasic dopaminergic signals are an essential feature of the neural network responsible for instrumental reinforcement during discovery of an action. However, the timing of signals that are thought to contribute to the induction of corticostriatal plasticity is difficult to reconcile within the framework of behavioural reinforcement learning, because the reinforcer is normally delayed relative to the selection and execution of causally-related actions.

Objective: While recent studies have started to address the relevance of delayed reinforcement signals and their impact on corticostriatal processing, our objective was to establish a model in which a sensory reinforcer triggers appropriately delayed reinforcement signals relayed to the striatum via intact neuronal pathways and to investigate the effects on corticostriatal plasticity.

Methods: We measured corticostriatal plasticity with electrophysiological recordings using a light flash as a natural sensory reinforcer, and pharmacological manipulations were applied in an in vivo anesthetized rat model preparation.

Results: We demonstrate that the spiking of striatal neurons evoked by single-pulse stimulation of the motor cortex can be potentiated by a natural sensory reinforcer, operating through intact afferent pathways, with signal timing approximating that required for behavioural reinforcement. The pharmacological blockade of dopamine receptors attenuated the observed potentiation of corticostriatal neurotransmission.

Conclusion: This novel in vivo model of corticostriatal plasticity offers a behaviourally relevant framework to address the physiological, anatomical, cellular, and molecular bases of instrumental reinforcement learning.

Graphical Abstract

[1]
Thorndike, E.L. Animal intelligence; Macmillan: New York, 1911.
[2]
Bar-Gad, I.; Havazelet-Heimer, G.; Goldberg, J.A.; Ruppin, E.; Bergman, H. Reinforcement-driven dimensionality reduction-a model for information processing in the basal ganglia. J. Basic Clin. Physiol. Pharmacol., 2000, 11(4), 305-320.
[http://dx.doi.org/10.1515/JBCPP.2000.11.4.305] [PMID: 11248944]
[3]
Cataldi, S.; Stanley, A.T.; Miniaci, M.C.; Sulzer, D. Interpreting the role of the striatum during multiple phases of motor learning. FEBS J., 2022, 289(8), 2263-2281.
[PMID: 33977645]
[4]
Hart, G.; Leung, B.K.; Balleine, B.W. Dorsal and ventral streams: The distinct role of striatal subregions in the acquisition and performance of goal-directed actions. Neurobiol. Learn. Mem., 2014, 108, 104-118.
[http://dx.doi.org/10.1016/j.nlm.2013.11.003] [PMID: 24231424]
[5]
Redgrave, P.; Gurney, K. The short-latency dopamine signal: A role in discovering novel actions? Nat. Rev. Neurosci., 2006, 7(12), 967-975.
[http://dx.doi.org/10.1038/nrn2022] [PMID: 17115078]
[6]
Redgrave, P.; Vautrelle, N.; Reynolds, J.N.J. Functional properties of the basal ganglia’s re-entrant loop architecture: Selection and reinforcement. Neuroscience, 2011, 198, 138-151.
[http://dx.doi.org/10.1016/j.neuroscience.2011.07.060] [PMID: 21821101]
[7]
Balleine, B.W.; Delgado, M.R.; Hikosaka, O. The role of the dorsal striatum in reward and decision-making. J. Neurosci., 2007, 27(31), 8161-8165.
[http://dx.doi.org/10.1523/JNEUROSCI.1554-07.2007] [PMID: 17670959]
[8]
Graybiel, A.M. The basal ganglia: Learning new tricks and loving it. Curr. Opin. Neurobiol., 2005, 15(6), 638-644.
[http://dx.doi.org/10.1016/j.conb.2005.10.006] [PMID: 16271465]
[9]
Gurney, K.N.; Humphries, M.D.; Redgrave, P. A new framework for cortico-striatal plasticity: Behavioural theory meets in vitro data at the reinforcement-action interface. PLoS Biol., 2015, 13(1), e1002034.
[http://dx.doi.org/10.1371/journal.pbio.1002034] [PMID: 25562526]
[10]
Redgrave, P.; Gurney, K.; Reynolds, J. What is reinforced by phasic dopamine signals? Brain Res. Brain Res. Rev., 2008, 58(2), 322-339.
[http://dx.doi.org/10.1016/j.brainresrev.2007.10.007] [PMID: 18055018]
[11]
Barto, A.; Mirolli, M.; Baldassarre, G. Novelty or surprise? Front. Psychol., 2013, 4, 907.
[http://dx.doi.org/10.3389/fpsyg.2013.00907] [PMID: 24376428]
[12]
Bromberg-Martin, E.S.; Matsumoto, M.; Hikosaka, O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron, 2010, 68(5), 815-834.
[http://dx.doi.org/10.1016/j.neuron.2010.11.022] [PMID: 21144997]
[13]
Lloyd, D.R.; Gancarz, A.M.; Ashrafioun, L.; Kausch, M.A.; Richards, J.B. Habituation and the reinforcing effectiveness of visual stimuli. Behav. Processes, 2012, 91(2), 184-191.
[http://dx.doi.org/10.1016/j.beproc.2012.07.007] [PMID: 22868172]
[14]
Menegas, W.; Babayan, B.M.; Uchida, N.; Watabe-Uchida, M. Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice. eLife, 2017, 6, e21886.
[http://dx.doi.org/10.7554/eLife.21886] [PMID: 28054919]
[15]
Reynolds, J.N.J.; Hyland, B.I.; Wickens, J.R. A cellular mechanism of reward-related learning. Nature, 2001, 413(6851), 67-70.
[http://dx.doi.org/10.1038/35092560] [PMID: 11544526]
[16]
Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol., 2006, 57(1), 87-115.
[http://dx.doi.org/10.1146/annurev.psych.56.091103.070229] [PMID: 16318590]
[17]
Wickens, J.R. Synaptic plasticity in the basal ganglia. Behav. Brain Res., 2009, 199(1), 119-128.
[http://dx.doi.org/10.1016/j.bbr.2008.10.030] [PMID: 19026691]
[18]
Calabresi, P.; Picconi, B.; Tozzi, A.; Di Filippo, M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci., 2007, 30(5), 211-219.
[http://dx.doi.org/10.1016/j.tins.2007.03.001] [PMID: 17367873]
[19]
Fino, E.; Glowinski, J.; Venance, L. Bidirectional activity-dependent plasticity at corticostriatal synapses. J. Neurosci., 2005, 25(49), 11279-11287.
[http://dx.doi.org/10.1523/JNEUROSCI.4476-05.2005] [PMID: 16339023]
[20]
Fino, E.; Venance, L. Spike-timing dependent plasticity in the striatum. Front. Synaptic Neurosci., 2010, 2, 6.
[PMID: 21423492]
[21]
Pawlak, V.; Kerr, J.N.D. Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J. Neurosci., 2008, 28(10), 2435-2446.
[http://dx.doi.org/10.1523/JNEUROSCI.4402-07.2008] [PMID: 18322089]
[22]
Shen, W.; Flajolet, M.; Greengard, P.; Surmeier, D.J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science, 2008, 321(5890), 848-851.
[http://dx.doi.org/10.1126/science.1160575] [PMID: 18687967]
[23]
Dickinson, A. The 28th Bartlett Memorial Lecture Causal learning: An associative analysis. Q. J. Exp. Psychol. B, 2001, 54(1), 3-25.
[http://dx.doi.org/10.1080/02724990042000010] [PMID: 11216300]
[24]
Foncelle, A.; Mendes, A. Jędrzejewska-Szmek, J.; Valtcheva, S.; Berry, H.; Blackwell, K.T.; Venance, L. Modulation of spike-timing dependent plasticity: Towards the inclusion of a third factor in computational models. Front. Comput. Neurosci., 2018, 12, 49.
[http://dx.doi.org/10.3389/fncom.2018.00049] [PMID: 30018546]
[25]
Frémaux, N.; Gerstner, W. Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules. Front. Neural Circuits, 2016, 9, 85.
[http://dx.doi.org/10.3389/fncir.2015.00085] [PMID: 26834568]
[26]
Izhikevich, E.M. Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb. Cortex, 2007, 17(10), 2443-2452.
[http://dx.doi.org/10.1093/cercor/bhl152] [PMID: 17220510]
[27]
Cacciapaglia, F.; Saddoris, M.P.; Wightman, R.M.; Carelli, R.M. Differential dopamine release dynamics in the nucleus accumbens core and shell track distinct aspects of goal-directed behavior for sucrose. Neuropharmacology, 2012, 62(5-6), 2050-2056.
[http://dx.doi.org/10.1016/j.neuropharm.2011.12.027] [PMID: 22261383]
[28]
Howard, C.D.; Li, H.; Geddes, C.E.; Jin, X. Dynamic nigrostriatal dopamine biases action selection. Neuron, 2017, 93(6), 1436-1450.e8.
[http://dx.doi.org/10.1016/j.neuron.2017.02.029] [PMID: 28285820]
[29]
Phillips, P.E.M.; Stuber, G.D.; Heien, M.L.A.V.; Wightman, R.M.; Carelli, R.M. Subsecond dopamine release promotes cocaine seeking. Nature, 2003, 422(6932), 614-618.
[http://dx.doi.org/10.1038/nature01476] [PMID: 12687000]
[30]
Roitman, M.F.; Stuber, G.D.; Phillips, P.E.; Wightman, R.M.; Carelli, R.M. Dopamine operates as a subsecond modulator of food seeking. J. Neurosci., 2004, 24(6), 1265-1271.
[http://dx.doi.org/10.1523/JNEUROSCI.3823-03.2004] [PMID: 14960596]
[31]
Stopper, C.M.; Tse, M.T.L.; Montes, D.R.; Wiedman, C.R.; Floresco, S.B. Overriding phasic dopamine signals redirects action selection during risk/reward decision making. Neuron, 2014, 84(1), 177-189.
[http://dx.doi.org/10.1016/j.neuron.2014.08.033] [PMID: 25220811]
[32]
Stuber, G.D.; Roitman, M.F.; Phillips, P.E.M.; Carelli, R.M.; Wightman, R.M. Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology, 2005, 30(5), 853-863.
[http://dx.doi.org/10.1038/sj.npp.1300619] [PMID: 15549053]
[33]
Yagishita, S.; Hayashi-Takagi, A.; Ellis-Davies, G.C.R.; Urakubo, H.; Ishii, S.; Kasai, H. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science, 2014, 345(6204), 1616-1620.
[http://dx.doi.org/10.1126/science.1255514] [PMID: 25258080]
[34]
Fisher, S.D.; Robertson, P.B.; Black, M.J.; Redgrave, P.; Sagar, M.A.; Abraham, W.C.; Reynolds, J.N.J. Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo. Nat. Commun., 2017, 8(1), 334.
[http://dx.doi.org/10.1038/s41467-017-00394-x] [PMID: 28839128]
[35]
Schulz, J.M.; Redgrave, P.; Reynolds, J.N. Cortico-striatal spike-timing dependent plasticity after activation of subcortical pathways. Front. Synaptic Neurosci., 2010, 2, 23.
[http://dx.doi.org/10.3389/fnsyn.2010.00023] [PMID: 21423509]
[36]
Shindou, T.; Shindou, M.; Watanabe, S.; Wickens, J. A silent eligibility trace enables dopamine‐dependent synaptic plasticity for reinforcement learning in the mouse striatum. Eur. J. Neurosci., 2019, 49(5), 726-736.
[http://dx.doi.org/10.1111/ejn.13921] [PMID: 29603470]
[37]
Reynolds, J.N.J.; Avvisati, R.; Dodson, P.D.; Fisher, S.D.; Oswald, M.J.; Wickens, J.R.; Zhang, Y.F. Coincidence of cholinergic pauses, dopaminergic activation and depolarisation of spiny projection neurons drives synaptic plasticity in the striatum. Nat. Commun., 2022, 13(1), 1296.
[http://dx.doi.org/10.1038/s41467-022-28950-0] [PMID: 35277506]
[38]
Gerstner, W.; Lehmann, M.; Liakoni, V.; Corneil, D.; Brea, J. Eligibility traces and plasticity on behavioral time scales: Experimental support of neoHebbian three-Factor learning rules. Front. Neural Circuits, 2018, 12, 53.
[http://dx.doi.org/10.3389/fncir.2018.00053] [PMID: 30108488]
[39]
Reiner, A.; Jiao, Y.; Del Mar, N.; Laverghetta, A.V.; Lei, W.L. Differential morphology of pyramidal tract-type and intratelencephalically projecting-type corticostriatal neurons and their intrastriatal terminals in rats. J. Comp. Neurol., 2003, 457(4), 420-440.
[http://dx.doi.org/10.1002/cne.10541] [PMID: 12561080]
[40]
Hunnicutt, B.J.; Jongbloets, B.C.; Birdsong, W.T.; Gertz, K.J.; Zhong, H.; Mao, T. A comprehensive excitatory input map of the striatum reveals novel functional organization. eLife, 2016, 5, e19103.
[http://dx.doi.org/10.7554/eLife.19103] [PMID: 27892854]
[41]
Ding, J.B.; Guzman, J.N.; Peterson, J.D.; Goldberg, J.A.; Surmeier, D.J. Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron, 2010, 67(2), 294-307.
[http://dx.doi.org/10.1016/j.neuron.2010.06.017] [PMID: 20670836]
[42]
Matsumoto, N.; Minamimoto, T.; Graybiel, A.M.; Kimura, M. Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J. Neurophysiol., 2001, 85(2), 960-976.
[http://dx.doi.org/10.1152/jn.2001.85.2.960] [PMID: 11160526]
[43]
Schulz, J.M.; Redgrave, P.; Mehring, C.; Aertsen, A.; Clements, K.M.; Wickens, J.R.; Reynolds, J.N.J. Short-latency activation of striatal spiny neurons via subcortical visual pathways. J. Neurosci., 2009, 29(19), 6336-6347.
[http://dx.doi.org/10.1523/JNEUROSCI.4815-08.2009] [PMID: 19439610]
[44]
Dommett, E.; Coizet, V.; Blaha, C.D.; Martindale, J.; Lefebvre, V.; Walton, N.; Mayhew, J.E.W.; Overton, P.G.; Redgrave, P. How visual stimuli activate dopaminergic neurons at short latency. Science, 2005, 307(5714), 1476-1479.
[http://dx.doi.org/10.1126/science.1107026] [PMID: 15746431]
[45]
Benavidez, N.L.; Bienkowski, M.S.; Zhu, M.; Garcia, L.H.; Fayzullina, M.; Gao, L.; Bowman, I.; Gou, L.; Khanjani, N.; Cotter, K.R.; Korobkova, L.; Becerra, M.; Cao, C.; Song, M.Y.; Zhang, B.; Yamashita, S.; Tugangui, A.J.; Zingg, B.; Rose, K.; Lo, D.; Foster, N.N.; Boesen, T.; Mun, H.S.; Aquino, S.; Wickersham, I.R.; Ascoli, G.A.; Hintiryan, H.; Dong, H.W. Organization of the inputs and outputs of the mouse superior colliculus. Nat. Commun., 2021, 12(1), 4004.
[http://dx.doi.org/10.1038/s41467-021-24241-2] [PMID: 34183678]
[46]
Coizet, V.; Overton, P.G.; Redgrave, P. Collateralization of the tectonigral projection with other major output pathways of superior colliculus in the rat. J. Comp. Neurol., 2007, 500(6), 1034-1049.
[http://dx.doi.org/10.1002/cne.21202] [PMID: 17183537]
[47]
Comoli, E.; Coizet, V.; Boyes, J.; Bolam, J.P.; Canteras, N.S.; Quirk, R.H.; Overton, P.G.; Redgrave, P. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat. Neurosci., 2003, 6(9), 974-980.
[http://dx.doi.org/10.1038/nn1113] [PMID: 12925855]
[48]
Valjent, E.; Pascoli, V.; Svenningsson, P.; Paul, S.; Enslen, H.; Corvol, J.C.; Stipanovich, A.; Caboche, J.; Lombroso, P.J.; Nairn, A.C.; Greengard, P.; Hervé, D.; Girault, J.A. Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc. Natl. Acad. Sci. USA, 2005, 102(2), 491-496.
[http://dx.doi.org/10.1073/pnas.0408305102] [PMID: 15608059]
[49]
Katsuta, H.; Isa, T. Release from GABAA receptor-mediated inhibition unmasks interlaminar connection within superior colliculus in anesthetized adult rats. Neurosci. Res., 2003, 46(1), 73-83.
[http://dx.doi.org/10.1016/S0168-0102(03)00029-4] [PMID: 12725914]
[50]
Sgambato, V.; Abo, V.; Rogard, M.; Besson, M.J.; Deniau, J.M. Effect of electrical stimulation of the cerebral cortex on the expression of the fos protein in the basal ganglia. Neuroscience, 1997, 81(1), 93-112.
[http://dx.doi.org/10.1016/S0306-4522(97)00179-6] [PMID: 9300404]
[51]
Manly, B.F.J. Randomization and Monte Carlo methods in biology; Chapman and Hall: London, 1991, p. 281.
[http://dx.doi.org/10.1007/978-1-4899-2995-2]
[52]
Coizet, V.; Graham, J.H.; Moss, J.; Bolam, J.P.; Savasta, M.; McHaffie, J.G.; Redgrave, P.; Overton, P.G. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci., 2009, 29(17), 5701-5709.
[http://dx.doi.org/10.1523/JNEUROSCI.0247-09.2009] [PMID: 19403836]
[53]
Alexander, G.E.; DeLong, M.R.; Strick, P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci., 1986, 9(1), 357-381.
[http://dx.doi.org/10.1146/annurev.ne.09.030186.002041] [PMID: 3085570]
[54]
McHaffie, J.; Stanford, T.; Stein, B.; Coizet, V.; Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci., 2005, 28(8), 401-407.
[http://dx.doi.org/10.1016/j.tins.2005.06.006] [PMID: 15982753]
[55]
Wilson, C.J. Postsynaptic potentials evoked in spiny neostriatal projection neurons by stimulation of ipsilateral and contralateral neocortex. Brain Res., 1986, 367(1-2), 201-213.
[http://dx.doi.org/10.1016/0006-8993(86)91593-3] [PMID: 3008920]
[56]
Brown, J.R.; Arbuthnott, G.W. The electrophysiology of dopamine (D2) receptors: A study of the actions of dopamine on corticostriatal transmission. Neuroscience, 1983, 10(2), 349-355.
[http://dx.doi.org/10.1016/0306-4522(83)90138-0] [PMID: 6138732]
[57]
Balleine, B.W.; Liljeholm, M.; Ostlund, S.B. The integrative function of the basal ganglia in instrumental conditioning. Behav. Brain Res., 2009, 199(1), 43-52.
[http://dx.doi.org/10.1016/j.bbr.2008.10.034] [PMID: 19027797]
[58]
Peak, J.; Hart, G.; Balleine, B.W. From learning to action: The integration of dorsal striatal input and output pathways in instrumental conditioning. Eur. J. Neurosci., 2019, 49(5), 658-671.
[http://dx.doi.org/10.1111/ejn.13964] [PMID: 29791051]
[59]
Kato, S.; Fukabori, R.; Nishizawa, K.; Okada, K.; Yoshioka, N.; Sugawara, M.; Maejima, Y.; Shimomura, K.; Okamoto, M.; Eifuku, S.; Kobayashi, K. Action selection and flexible switching controlled by the intralaminar thalamic neurons. Cell Rep., 2018, 22(9), 2370-2382.
[http://dx.doi.org/10.1016/j.celrep.2018.02.016] [PMID: 29490273]
[60]
Klaus, A.; Alves da Silva, J.; Costa, R.M. What, if, and when to move: Basal ganglia circuits and self-paced action initiation. Annu. Rev. Neurosci., 2019, 42(1), 459-483.
[http://dx.doi.org/10.1146/annurev-neuro-072116-031033] [PMID: 31018098]
[61]
Mink, J.W. The basal ganglia: Focused selection and inhibition of competing motor programs. Prog. Neurobiol., 1996, 50(4), 381-425.
[http://dx.doi.org/10.1016/S0301-0082(96)00042-1] [PMID: 9004351]
[62]
Redgrave, P.; Prescott, T.J.; Gurney, K. The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 1999, 89(4), 1009-1023.
[http://dx.doi.org/10.1016/S0306-4522(98)00319-4] [PMID: 10362291]
[63]
Chevalier, G.; Deniau, J.M. Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci., 1990, 13(7), 277-280.
[http://dx.doi.org/10.1016/0166-2236(90)90109-N] [PMID: 1695403]
[64]
Humphries, M.D.; Stewart, R.D.; Gurney, K.N. A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J. Neurosci., 2006, 26(50), 12921-12942.
[http://dx.doi.org/10.1523/JNEUROSCI.3486-06.2006] [PMID: 17167083]
[65]
Prescott, T.J.; Montes González, F.M.; Gurney, K.; Humphries, M.D.; Redgrave, P. A robot model of the basal ganglia: Behavior and intrinsic processing. Neural Netw., 2006, 19(1), 31-61.
[http://dx.doi.org/10.1016/j.neunet.2005.06.049] [PMID: 16153803]
[66]
Arbuthnott, G.W.; Wickens, J. Space, time and dopamine. Trends Neurosci., 2007, 30(2), 62-69.
[http://dx.doi.org/10.1016/j.tins.2006.12.003] [PMID: 17173981]
[67]
Menegas, W.; Bergan, J.F.; Ogawa, S.K.; Isogai, Y.; Umadevi Venkataraju, K.; Osten, P.; Uchida, N.; Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife, 2015, 4, e10032.
[http://dx.doi.org/10.7554/eLife.10032] [PMID: 26322384]
[68]
Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol., 1998, 80(1), 1-27.
[http://dx.doi.org/10.1152/jn.1998.80.1.1] [PMID: 9658025]
[69]
Van der Werf, Y.D.; Witter, M.P.; Groenewegen, H.J. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Brain Res. Rev., 2002, 39(2-3), 107-140.
[http://dx.doi.org/10.1016/S0165-0173(02)00181-9] [PMID: 12423763]
[70]
Fino, E.; Deniau, J.M.; Venance, L. Brief subthreshold events can act as Hebbian signals for long-term plasticity. PLoS One, 2009, 4(8), e6557.
[http://dx.doi.org/10.1371/journal.pone.0006557] [PMID: 19675683]
[71]
Cui, Y.; Paillé, V.; Xu, H.; Genet, S.; Delord, B.; Fino, E.; Berry, H.; Venance, L. Endocannabinoids mediate bidirectional striatal spike-timing-dependent plasticity. J. Physiol., 2015, 593(13), 2833-2849.
[http://dx.doi.org/10.1113/JP270324] [PMID: 25873197]
[72]
Cui, Y.; Prokin, I.; Xu, H.; Delord, B.; Genet, S.; Venance, L.; Berry, H. Endocannabinoid dynamics gate spike-timing dependent depression and potentiation. eLife, 2016, 5, e13185.
[http://dx.doi.org/10.7554/eLife.13185] [PMID: 26920222]
[73]
Fino, E.; Deniau, J.M.; Venance, L. Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices. J. Physiol., 2008, 586(1), 265-282.
[http://dx.doi.org/10.1113/jphysiol.2007.144501] [PMID: 17974593]
[74]
Fino, E.; Paille, V.; Deniau, J.M.; Venance, L. Asymmetric spike-timing dependent plasticity of striatal nitric oxide-synthase interneurons. Neuroscience, 2009, 160(4), 744-754.
[http://dx.doi.org/10.1016/j.neuroscience.2009.03.015] [PMID: 19303912]
[75]
Peters, A.J.; Fabre, J.M.J.; Steinmetz, N.A.; Harris, K.D.; Carandini, M. Striatal activity topographically reflects cortical activity. Nature, 2021, 591(7850), 420-425.
[http://dx.doi.org/10.1038/s41586-020-03166-8] [PMID: 33473213]
[76]
Sharott, A.; Doig, N.M.; Mallet, N.; Magill, P.J. Relationships between the firing of identified striatal interneurons and spontaneous and driven cortical activities in vivo. J. Neurosci., 2012, 32(38), 13221-13236.
[http://dx.doi.org/10.1523/JNEUROSCI.2440-12.2012] [PMID: 22993438]
[77]
Sharott, A.; Moll, C.K.E.; Engler, G.; Denker, M.; Grün, S.; Engel, A.K. Different subtypes of striatal neurons are selectively modulated by cortical oscillations. J. Neurosci., 2009, 29(14), 4571-4585.
[http://dx.doi.org/10.1523/JNEUROSCI.5097-08.2009] [PMID: 19357282]
[78]
Martiros, N.; Burgess, A.A.; Graybiel, A.M. Inversely active striatal projection neurons and interneurons selectively delimit useful behavioral sequences. Curr. Biol., 2018, 28(4), 560-573.e5.
[http://dx.doi.org/10.1016/j.cub.2018.01.031] [PMID: 29429614]
[79]
Centonze, D.; Grande, C.; Saulle, E.; Martín, A.B.; Gubellini, P.; Pavón, N.; Pisani, A.; Bernardi, G.; Moratalla, R.; Calabresi, P. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J. Neurosci., 2003, 23(24), 8506-8512.
[http://dx.doi.org/10.1523/JNEUROSCI.23-24-08506.2003] [PMID: 13679419]
[80]
Kerr, J.N.D.; Wickens, J.R. Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J. Neurophysiol., 2001, 85(1), 117-124.
[http://dx.doi.org/10.1152/jn.2001.85.1.117] [PMID: 11152712]
[81]
Suzuki, T.; Miura, M.; Nishimura, K.; Aosaki, T. Dopamine-dependent synaptic plasticity in the striatal cholinergic interneurons. J. Neurosci., 2001, 21(17), 6492-6501.
[http://dx.doi.org/10.1523/JNEUROSCI.21-17-06492.2001] [PMID: 11517238]
[82]
Flajolet, M.; Wang, Z.; Futter, M.; Shen, W.; Nuangchamnong, N.; Bendor, J.; Wallach, I.; Nairn, A.C.; Surmeier, D.J.; Greengard, P. FGF acts as a co-transmitter through adenosine A2A receptor to regulate synaptic plasticity. Nat. Neurosci., 2008, 11(12), 1402-1409.
[http://dx.doi.org/10.1038/nn.2216] [PMID: 18953346]
[83]
Sciamanna, G.; Ponterio, G.; Mandolesi, G.; Bonsi, P.; Pisani, A. Optogenetic stimulation reveals distinct modulatory properties of thalamostriatal vs corticostriatal glutamatergic inputs to fast-spiking interneurons. Sci. Rep., 2015, 5(1), 16742.
[http://dx.doi.org/10.1038/srep16742] [PMID: 26572101]
[84]
Saunders, B.T.; Richard, J.M.; Margolis, E.B.; Janak, P.H. Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties. Nat. Neurosci., 2018, 21(8), 1072-1083.
[http://dx.doi.org/10.1038/s41593-018-0191-4] [PMID: 30038277]
[85]
Saunders, BT; Richard, JM; Janak, PH Contemporary approaches to neural circuit manipulation and mapping: Focus on reward and addiction. Philos Trans. R Soc. Lond B Biol. Sci., 2015, 370(1677), 20140210.
[http://dx.doi.org/10.1098/rstb.2014.0210]
[86]
Huang, M.; Li, D.; Cheng, X.; Pei, Q.; Xie, Z.; Gu, H.; Zhang, X.; Chen, Z.; Liu, A.; Wang, Y.; Sun, F.; Li, Y.; Zhang, J.; He, M.; Xie, Y.; Zhang, F.; Qi, X.; Shang, C.; Cao, P. The tectonigral pathway regulates appetitive locomotion in predatory hunting in mice. Nat. Commun., 2021, 12(1), 4409.
[http://dx.doi.org/10.1038/s41467-021-24696-3] [PMID: 34285209]
[87]
Voon, V.; Fernagut, P.O.; Wickens, J.; Baunez, C.; Rodriguez, M.; Pavon, N.; Juncos, J.L.; Obeso, J.A.; Bezard, E. Chronic dopaminergic stimulation in Parkinson’s disease: From dyskinesias to impulse control disorders. Lancet Neurol., 2009, 8(12), 1140-1149.
[http://dx.doi.org/10.1016/S1474-4422(09)70287-X] [PMID: 19909912]
[88]
Ziauddeen, H.; Murray, G.K. The relevance of reward pathways for schizophrenia. Curr. Opin. Psychiatry, 2010, 23(2), 91-96.
[http://dx.doi.org/10.1097/YCO.0b013e328336661b] [PMID: 20051858]
[89]
Sciamanna, G.; Tassone, A.; Mandolesi, G.; Puglisi, F.; Ponterio, G.; Martella, G.; Madeo, G.; Bernardi, G.; Standaert, D.G.; Bonsi, P.; Pisani, A. Cholinergic dysfunction alters synaptic integration between thalamostriatal and corticostriatal inputs in DYT1 dystonia. J. Neurosci., 2012, 32(35), 11991-12004.
[http://dx.doi.org/10.1523/JNEUROSCI.0041-12.2012] [PMID: 22933784]
[90]
Russo, S.J.; Dietz, D.M.; Dumitriu, D.; Morrison, J.H.; Malenka, R.C.; Nestler, E.J. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci., 2010, 33(6), 267-276.
[http://dx.doi.org/10.1016/j.tins.2010.02.002] [PMID: 20207024]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy