Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Pre-clinical Evidence-based Neuroprotective Potential of Naringin against Alzheimer’s Disease-like Pathology: A Comprehensive Review

Author(s): Ashini Singh and Niraj Kumar Singh*

Volume 25, Issue 9, 2024

Published on: 10 August, 2023

Page: [1112 - 1123] Pages: 12

DOI: 10.2174/1389201024666230801095526

Price: $65

conference banner
Abstract

Neurodegenerative disorders (NDs) are a group of progressive, chronic, and disabling disorders that are highly prevalent and the incidence is on a constant rise globally. Alzheimer’s disease (AD), one of the most common neurodegenerative disorders is hallmarked by cognitive impairment, amyloid-β (Aβ) deposition, hyperphosphorylation of tau protein, cholinergic dysfunction, mitochondrial toxicity, and neurodegeneration. Available therapeutic agents only provide symptomatic relief and their use are limited due to serious side effects. Recent research has recognized flavonoids as potential multi-target biomolecules that can reduce the pathogenesis of AD. Naringin, a natural citrus flavonoid has been traditionally used to treat various NDs including AD, and has gained special attention because exhibits a neuroprotective effect by affecting numerous signaling pathways with minimum adverse effects. Naringin reduces deposition of Aβ, hyperphosphorylation of tau protein, cholinergic dysfunction, oxidative stress burden, mitochondrial toxicity, the activity of glutamate receptors, and apoptosis of the neuronal cells. Additionally, it reduces the expression of phosphorylated-P38/P38 and the NF-κB signaling pathway, showing that a wide range of molecular targets is involved in naringin's neuroprotective action. The present study describes the possible pharmacological targets, signaling pathways, and molecular mechanisms of naringin involved in neuroprotection against AD-like pathology. Based on the above pre-clinical reports it can be concluded that naringin could be an alternative therapeutic agent for the management of AD-like manifestation. Thus, there is a strong recommendation to perform more preclinical and clinical studies to develop naringin as a novel molecule that could be a multi-target drug to counteract AD.

Graphical Abstract

[1]
Barthélemy, N.R.; Li, Y.; Joseph-Mathurin, N.; Gordon, B.A.; Hassenstab, J.; Benzinger, T.L.S.; Buckles, V.; Fagan, A.M.; Perrin, R.J.; Goate, A.M.; Morris, J.C.; Karch, C.M.; Xiong, C.; Allegri, R.; Mendez, P.C.; Berman, S.B.; Ikeuchi, T.; Mori, H.; Shimada, H.; Shoji, M.; Suzuki, K.; Noble, J.; Farlow, M.; Chhatwal, J.; Graff-Radford, N.R.; Salloway, S.; Schofield, P.R.; Masters, C.L.; Martins, R.N.; O’Connor, A.; Fox, N.C.; Levin, J.; Jucker, M.; Gabelle, A.; Lehmann, S.; Sato, C.; Bateman, R.J.; McDade, E. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease. Nat. Med., 2020, 26(3), 398-407.
[http://dx.doi.org/10.1038/s41591-020-0781-z ] [PMID: 32161412]
[2]
Goyal, A.; Verma, A.; Agrawal, N. Dietary phytoestrogens: Neuroprotective role in Parkinson’s disease. Curr. Neurovasc. Res., 2021, 18(2), 254-267.
[http://dx.doi.org/10.2174/1567202618666210604121233 ] [PMID: 34086550]
[3]
Singh, N.K.; Garabadu, D. Quercetin exhibits α7nAChR/Nrf2/HO-1-mediated neuroprotection against STZ-induced mitochondrial toxicity and cognitive impairments in experimental rodents. Neurotox. Res., 2021, 39(6), 1859-1879.
[http://dx.doi.org/10.1007/s12640-021-00410-5 ] [PMID: 34554409]
[4]
Ballatore, C.; Lee, V.M.Y.; Trojanowski, J.Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci., 2007, 8(9), 663-672.
[http://dx.doi.org/10.1038/nrn2194 ] [PMID: 17684513]
[5]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726 ] [PMID: 26813123]
[6]
Medina, M. Recent developments in tau-based therapeutics for neurodegenerative diseases. Recent Patents CNS Drug Discov., 2011, 6(1), 20-30.
[http://dx.doi.org/10.2174/157488911794079091 ] [PMID: 21118095]
[7]
Sharma, A.; Bhardwaj, P.; Arya, S.K. Naringin: A potential natural product in the field of biomedical applications. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100068.
[http://dx.doi.org/10.1016/j.carpta.2021.100068]
[8]
Guzior, N.; Wieckowska, A.; Panek, D.; Malawska, B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr. Med. Chem., 2015, 22(3), 373-404.
[http://dx.doi.org/10.2174/0929867321666141106122628 ] [PMID: 25386820]
[9]
Yang, Z.; Kuboyama, T.; Tohda, C. A systematic strategy for discovering a therapeutic drug for Alzheimer’s disease and its target molecule. Front. Pharmacol., 2017, 8, 340.
[http://dx.doi.org/10.3389/fphar.2017.00340 ] [PMID: 28674493]
[10]
Yang, W.; Zhou, K.; Zhou, Y.; An, Y.; Hu, T.; Lu, J.; Huang, S.; Pei, G. Naringin dihydrochalcone ameliorates cognitive deficits and neuropathology in APP/PS1 transgenic mice. Front. Aging Neurosci., 2018, 10, 169.
[http://dx.doi.org/10.3389/fnagi.2018.00169 ] [PMID: 29922152]
[11]
Kuşi, M.; Becer, E.; Vatansever, H.S.; Yücecan, S. Neuroprotective effects of hesperidin and naringin in SK-N-AS cell as an in vitro model for Alzheimer's Disease. J. Am. Nutr. Assoc., 2022, 1-9.
[http://dx.doi.org/10.1080/07315724.2022.2062488]
[12]
Qi, Z.; Xu, Y.; Liang, Z.; Li, S.; Wang, J.; Wei, Y.; Dong, B. Naringin ameliorates cognitive deficits via oxidative stress, proinflammatory factors and the PPARγ signaling pathway in a type 2 diabetic rat model. Mol. Med. Rep., 2015, 12(5), 7093-7101.
[http://dx.doi.org/10.3892/mmr.2015.4232 ] [PMID: 26300349]
[13]
Han, Y.; Su, J.; Liu, X.; Zhao, Y.; Wang, C.; Li, X. Naringin alleviates early brain injury after experimental subarachnoid hemorrhage by reducing oxidative stress and inhibiting apoptosis. Brain Res. Bull., 2017, 133, 42-50.
[http://dx.doi.org/10.1016/j.brainresbull.2016.12.008 ] [PMID: 28011192]
[14]
Meng, X.; Fu, M.; Wang, S.; Chen, W.; Wang, J.; Zhang, N. Naringin ameliorates memory deficits and exerts neuroprotective effects in a mouse model of Alzheimer’s disease by regulating multiple metabolic pathways. Mol. Med. Rep., 2021, 23(5), 332.
[http://dx.doi.org/10.3892/mmr.2021.11971 ] [PMID: 33760152]
[15]
Ross, J.A.; Kasum, C.M. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr., 2002, 22(1), 19-34.
[http://dx.doi.org/10.1146/annurev.nutr.22.111401.144957 ] [PMID: 12055336]
[16]
Chen, R.; Qi, Q.L.; Wang, M.T.; Li, Q.Y. Therapeutic potential of naringin: An overview. Pharm. Biol., 2016, 54(12), 3203-3210.
[http://dx.doi.org/10.1080/13880209.2016.1216131 ] [PMID: 27564838]
[17]
Xu, Z.L.; Xu, M.Y.; Wang, H.T.; Xu, Q.X.; Liu, M.Y.; Jia, C.P.; Geng, F.; Zhang, N. Pharmacokinetics of eight flavonoids in rats assayed by UPLC-MS/MS after oral administration of Drynariae rhizoma extract. J. Anal. Methods Chem., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/4789196 ] [PMID: 30662789]
[18]
Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int., 2020, 132, 109114.
[http://dx.doi.org/10.1016/j.foodres.2020.109114 ] [PMID: 32331689]
[19]
Ho, P.C.; Saville, D.J.; Coville, P.F.; Wanwimolruk, S. Content of CYP3A4 inhibitors, naringin, naringenin and bergapten in grapefruit and grapefruit juice products. Pharm. Acta Helv., 2000, 74(4), 379-385.
[http://dx.doi.org/10.1016/S0031-6865(99)00062-X ] [PMID: 10812937]
[20]
Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid composition of Citrus juices. Molecules, 2007, 12(8), 1641-1673.
[http://dx.doi.org/10.3390/12081641 ] [PMID: 17960080]
[21]
Vallverdú-Queralt, A.; Odriozola-Serrano, I.; Oms-Oliu, G.; Lamuela-Raventós, R.M.; Elez-Martínez, P.; Martín-Belloso, O. Changes in the polyphenol profile of tomato juices processed by pulsed electric fields. J. Agric. Food Chem., 2012, 60(38), 9667-9672.
[http://dx.doi.org/10.1021/jf302791k ] [PMID: 22957841]
[22]
Sánchez-Rabaneda, F.; Jáuregui, O.; Casals, I.; Andrés-Lacueva, C.; Izquierdo-Pulido, M.; Lamuela-Raventós, R.M. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J. Mass Spectrom., 2003, 38(1), 35-42.
[http://dx.doi.org/10.1002/jms.395 ] [PMID: 12526004]
[23]
Alam, F.; Badruddeen, ; Kharya, A.K.; Juber, A.; Khan, M.I. Naringin: Sources, chemistry, toxicity, pharmacokinetics, pharmacological evidences, molecular docking and cell line study. Res. J. Pharm. Technol., 2020, 13(5), 2507.
[http://dx.doi.org/10.5958/0974-360X.2020.00447.3]
[24]
Chen, Z.; Zheng, S.; Li, L.; Jiang, H. Metabolism of flavonoids in human: a comprehensive review. Curr. Drug Metab., 2014, 15(1), 48-61.
[http://dx.doi.org/10.2174/138920021501140218125020 ] [PMID: 24588554]
[25]
Chen, T.; Su, W.; Yan, Z.; Wu, H.; Zeng, X.; Peng, W.; Gan, L.; Zhang, Y.; Yao, H. Identification of naringin metabolites mediated by human intestinal microbes with stable isotope-labeling method and UFLC-Q-TOF-MS/MS. J. Pharm. Biomed. Anal., 2018, 161, 262-272.
[http://dx.doi.org/10.1016/j.jpba.2018.08.039 ] [PMID: 30172881]
[26]
Zeng, X.; Su, W.; Zheng, Y.; He, Y.; He, Y.; Rao, H.; Peng, W.; Yao, H. Pharmacokinetics, tissue distribution, metabolism, and excretion of naringin in aged rats. Front. Pharmacol., 2019, 10, 34.
[http://dx.doi.org/10.3389/fphar.2019.00034 ] [PMID: 30761003]
[27]
Zou, W.; Yang, C.; Liu, M.; Su, W. Tissue distribution study of naringin in rats by liquid chromatography-tandem mass spectrometry. Arzneimittelforschung, 2012, 62(4), 181-186.
[http://dx.doi.org/10.1055/s-0031-1299746 ] [PMID: 22270844]
[28]
Tsai, Y.J.; Tsai, T.H. Mesenteric lymphatic absorption and the pharmacokinetics of naringin and naringenin in the rat. J. Agric. Food Chem., 2012, 60(51), 12435-12442.
[http://dx.doi.org/10.1021/jf301962g ] [PMID: 23210543]
[29]
Liu, M.; Zou, W.; Yang, C.; Peng, W.; Su, W. Metabolism and excretion studies of oral administered naringin, a putative antitussive, in rats and dogs. Biopharm. Drug Dispos., 2012, 33(3), 123-134.
[http://dx.doi.org/10.1002/bdd.1775 ] [PMID: 22374702]
[30]
Surampalli, G.; K Nanjwade, B.; Patil, P.A. Corroboration of naringin effects on the intestinal absorption and pharmacokinetic behavior of candesartan cilexetil solid dispersions using in-situ rat models. Drug Dev. Ind. Pharm., 2015, 41(7), 1057-1065.
[http://dx.doi.org/10.3109/03639045.2014.925918 ] [PMID: 24918161]
[31]
Li, P.; Wang, S.; Guan, X.; Cen, X.; Hu, C.; Peng, W.; Wang, Y.; Su, W. Six months chronic toxicological evaluation of naringin in Sprague–Dawley rats. Food Chem. Toxicol., 2014, 66, 65-75.
[http://dx.doi.org/10.1016/j.fct.2014.01.023 ] [PMID: 24462649]
[32]
Gao, Y.; Li, C.; Yin, J.; Shen, J.; Wang, H.; Wu, Y.; Jin, H. Fucoidan, a sulfated polysaccharide from brown algae, improves cognitive impairment induced by infusion of Aβ peptide in rats. Environ. Toxicol. Pharmacol., 2012, 33(2), 304-311.
[http://dx.doi.org/10.1016/j.etap.2011.12.022 ] [PMID: 22301160]
[33]
Rajmohan, R.; Reddy, P.H. Amyloid-beta and phosphorylated Tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J. Alzheimers Dis., 2017, 57(4), 975-999.
[http://dx.doi.org/10.3233/JAD-160612 ] [PMID: 27567878]
[34]
Kimura, A.; Hata, S.; Suzuki, T. Alternative selection of β-Site APP-Cleaving Enzyme 1 (BACE1) cleavage sites in amyloid β-Protein Precursor (APP) harboring protective and pathogenic mutations within the Aβ sequence. J. Biol. Chem., 2016, 291(46), 24041-24053.
[http://dx.doi.org/10.1074/jbc.M116.744722 ] [PMID: 27687728]
[35]
Holtzman, D.M.; Morris, J.C.; Goate, A.M. Alzheimer’s disease: the challenge of the second century. Sci. Transl. Med., 2011, 3(77), 77sr1.
[http://dx.doi.org/10.1126/scitranslmed.3002369 ] [PMID: 21471435]
[36]
Jahanshahi, M.; Khalili, M.; Margedari, A. Naringin chelates excessive iron and prevents the formation of amyloid-beta plaques in the hippocampus of iron-overloaded mice. Front. Pharmacol., 2021, 12, 651156.
[http://dx.doi.org/10.3389/fphar.2021.651156 ] [PMID: 34276359]
[37]
Wang, D.; Gao, K.; Li, X.; Shen, X.; Zhang, X.; Ma, C.; Qin, C.; Zhang, L. Long-term naringin consumption reverses a glucose uptake defect and improves cognitive deficits in a mouse model of Alzheimer’s disease. Pharmacol. Biochem. Behav., 2012, 102(1), 13-20.
[http://dx.doi.org/10.1016/j.pbb.2012.03.013 ] [PMID: 22741174]
[38]
Kaur, G.; Prakash, A. Involvement of the nitric oxide signaling in modulation of naringin against intranasal manganese and intracerbroventricular β-amyloid induced neurotoxicity in rats. J. Nutr. Biochem., 2020, 76, 108255.
[http://dx.doi.org/10.1016/j.jnutbio.2019.108255 ] [PMID: 31759198]
[39]
Varshney, V.; Garabadu, D. Naringin exhibits mas receptor–mediated neuroprotection against amyloid beta–induced cognitive deficits and mitochondrial toxicity in rat brain. Neurotox. Res., 2021, 39(4), 1023-1043.
[http://dx.doi.org/10.1007/s12640-021-00336-y ] [PMID: 33534126]
[40]
Medeiros, R.; Baglietto-Vargas, D.; LaFerla, F.M. The role of tau in Alzheimer’s disease and related disorders. CNS Neurosci. Ther., 2011, 17(5), 514-524.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00177.x ] [PMID: 20553310]
[41]
Saito, T.; Oba, T.; Shimizu, S.; Asada, A.; Iijima, K.M.; Ando, K. Cdk5 increases MARK4 activity and augments pathological tau accumulation and toxicity through tau phosphorylation at Ser262. Hum. Mol. Genet., 2019, 28(18), 3062-3071.
[http://dx.doi.org/10.1093/hmg/ddz120 ] [PMID: 31174206]
[42]
Sachdeva, A.K.; Chopra, K. Naringin mitigate okadaic acid-induced cognitive impairment in an experimental paradigm of Alzheimer’s disease. J. Funct. Foods, 2015, 19, 110-125.
[http://dx.doi.org/10.1016/j.jff.2015.08.024]
[43]
Hassan, H.M.; Elnagar, M.R.; Abdelrazik, E.; Mahdi, M.R.; Hamza, E.; Elattar, E.M.; ElNashar, E.M.; Alghamdi, M.A.; Al-Qahtani, Z.; Al-Khater, K.M.; Aldahhan, R.A.; ELdesoqui, M. Neuroprotective effect of naringin against cerebellar changes in Alzheimer’s disease through modulation of autophagy, oxidative stress and tau expression: An experimental study. Front. Neuroanat., 2022, 16, 1012422.
[http://dx.doi.org/10.3389/fnana.2022.1012422 ] [PMID: 36312298]
[44]
Zambrano, P.; Suwalsky, M.; Jemiola-Rzeminska, M.; Strzalka, K.; Sepúlveda, B.; Gallardo, M.J.; Aguilar, L.F. The acetylcholinesterase (AChE) inhibitor and anti-Alzheimer drug donepezil interacts with human erythrocytes. Biochim. Biophys. Acta Biomembr., 2019, 1861(6), 1078-1085.
[http://dx.doi.org/10.1016/j.bbamem.2019.03.014 ] [PMID: 30904408]
[45]
Oladapo, O.M.; Ben-Azu, B.; Ajayi, A.M.; Emokpae, O.; Eneni, A.E.O.; Omogbiya, I.A.; Iwalewa, E.O. Naringin confers protection against psychosocial defeat stress-induced neurobehavioral deficits in mice: Involvement of glutamic acid decarboxylase isoform-67, oxido-nitrergic stress, and neuroinflammatory mechanisms. J. Mol. Neurosci., 2021, 71(3), 431-445.
[http://dx.doi.org/10.1007/s12031-020-01664-y ] [PMID: 32767187]
[46]
Kumar, A.; Prakash, A.; Dogra, S. Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by d-galactose in mice. Food Chem. Toxicol., 2010, 48(2), 626-632.
[http://dx.doi.org/10.1016/j.fct.2009.11.043 ] [PMID: 19941926]
[47]
Prakash, A.; Shur, B.; Kumar, A. Naringin protects memory impairment and mitochondrial oxidative damage against aluminum-induced neurotoxicity in rats. Int. J. Neurosci., 2013, 123(9), 636-645.
[http://dx.doi.org/10.3109/00207454.2013.785542 ] [PMID: 23510099]
[48]
Sachdeva, A.K.; Kuhad, A.; Chopra, K. Naringin ameliorates memory deficits in experimental paradigm of Alzheimer’s disease by attenuating mitochondrial dysfunction. Pharmacol. Biochem. Behav., 2014, 127, 101-110.
[http://dx.doi.org/10.1016/j.pbb.2014.11.002 ] [PMID: 25449356]
[49]
Liu, M.Y.; Zeng, F.; Shen, Y.; Wang, Y.Y.; Zhang, N.; Geng, F. Bioguided isolation and structure identification of acetylcholinesterase enzyme inhibitors from drynariae rhizome. J. Anal. Methods Chem., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/2971841 ] [PMID: 32185082]
[50]
Kumar, A.; Dogra, S.; Prakash, A. Protective effect of naringin, a citrus flavonoid, against colchicine-induced cognitive dysfunction and oxidative damage in rats. J. Med. Food, 2010, 13(4), 976-984.
[http://dx.doi.org/10.1089/jmf.2009.1251 ] [PMID: 20673063]
[51]
Wang, D.; Yan, J.; Chen, J.; Wu, W.; Zhu, X.; Wang, Y. Naringin improves neuronal insulin signaling, brain mitochondrial function, and cognitive function in high-fat diet-induced obese mice. Cell. Mol. Neurobiol., 2015, 35(7), 1061-1071.
[http://dx.doi.org/10.1007/s10571-015-0201-y ] [PMID: 25939427]
[52]
Bharti, S.; Rani, N.; Krishnamurthy, B.; Arya, D. Preclinical evidence for the pharmacological actions of naringin: A review. Planta Med., 2014, 80(6), 437-451.
[http://dx.doi.org/10.1055/s-0034-1368351 ] [PMID: 24710903]
[53]
Jeong, K.H.; Jung, U.J.; Kim, S.R. Naringin attenuates autophagic stress and neuroinflammation in kainic acid-treated hippocampus in vivo. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/354326 ] [PMID: 26124853]
[54]
Maratha, S.R.; Mahadevan, N. Memory enhancing activity of naringin in unstressed and stressed mice: Possible cholinergic and nitriergic modulation. Neurochem. Res., 2012, 37(10), 2206-2212.
[http://dx.doi.org/10.1007/s11064-012-0844-8 ] [PMID: 22821418]
[55]
Snow, W.M.; Albensi, B.C. Neuronal gene targets of NF-κB and their dysregulation in Alzheimer’s Disease. Front. Mol. Neurosci., 2016, 9, 118.
[http://dx.doi.org/10.3389/fnmol.2016.00118 ] [PMID: 27881951]
[56]
Bronzuoli, M.R.; Iacomino, A.; Steardo, L.; Scuderi, C. Targeting neuroinflammation in Alzheimer’s disease. J. Inflamm. Res., 2016, 9, 199-208.
[http://dx.doi.org/10.2147/JIR.S86958 ] [PMID: 27843334]
[57]
Wang, R.; Chen, S.; Liu, Y.; Diao, S.; Xue, Y.; You, X.; Park, E.A.; Liao, F.F. All-trans-retinoic acid reduces BACE1 expression under inflammatory conditions via modulation of nuclear factor κB (NFκB) signaling. J. Biol. Chem., 2015, 290(37), 22532-22542.
[http://dx.doi.org/10.1074/jbc.M115.662908 ] [PMID: 26240147]
[58]
Wang, W.Y.; Tan, M.S.; Yu, J.T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med., 2015, 3(10), 136.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2015.03.49 ] [PMID: 26207229]
[59]
Jha, N.K.; Jha, S.K.; Kar, R.; Nand, P.; Swati, K.; Goswami, V.K. Nuclear factor kappa β as a therapeutic target for Alzheimer’s disease. J. Neurochem., 2019, 150(2), 113-137.
[http://dx.doi.org/10.1111/jnc.14687 ] [PMID: 30802950]
[60]
Fan, S.; Xian, X.; Li, L.; Yao, X.; Hu, Y.; Zhang, M.; Li, W. Ceftriaxone improves cognitive function and upregulates GLT-1-related glutamate-glutamine cycle in APP/PS1 mice. J. Alzheimers Dis., 2018, 66(4), 1731-1743.
[http://dx.doi.org/10.3233/JAD-180708 ] [PMID: 30452416]
[61]
Ashpole, N.M.; Hudmon, A. Excitotoxic neuroprotection and vulnerability with CaMKII inhibition. Mol. Cell. Neurosci., 2011, 46(4), 720-730.
[http://dx.doi.org/10.1016/j.mcn.2011.02.003 ] [PMID: 21316454]
[62]
Caricasole, A.; Copani, A.; Caraci, F.; Aronica, E.; Rozemuller, A.J.; Caruso, A.; Storto, M.; Gaviraghi, G.; Terstappen, G.C.; Nicoletti, F. Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer’s brain. J. Neurosci., 2004, 24(26), 6021-6027.
[http://dx.doi.org/10.1523/JNEUROSCI.1381-04.2004 ] [PMID: 15229249]
[63]
Wang, D.M.; Yang, Y.J.; Zhang, L.; Zhang, X.; Guan, F.F.; Zhang, L.F. Naringin enhances CaMKII activity and improves long-term memory in a mouse model of Alzheimer’s Disease. Int. J. Mol. Sci., 2013, 14(3), 5576-5586.
[http://dx.doi.org/10.3390/ijms14035576 ] [PMID: 23478434]
[64]
Long, J.; Chen, J.; Liao, Y.; Zhou, Y.; Liang, B.; Zhou, Y. Naringin provides neuroprotection in CCL2-induced cognition impairment by attenuating neuronal apoptosis in the hippocampus. Behav. Brain Funct., 2020, 16(1), 4.
[http://dx.doi.org/10.1186/s12993-020-00166-6 ] [PMID: 32103758]
[65]
Ramakrishnan, A.; Vijayakumar, N.; Renuka, M. Naringin regulates glutamate-nitric oxide cGMP pathway in ammonium chloride induced neurotoxicity. Biomed. Pharmacother., 2016, 84, 1717-1726.
[http://dx.doi.org/10.1016/j.biopha.2016.10.080 ] [PMID: 27836465]
[66]
Qin, H.; Roberts, K.L.; Niyongere, S.A.; Cong, Y.; Elson, C.O.; Benveniste, E.N. Molecular mechanism of lipopolysaccharide-induced SOCS-3 gene expression in macrophages and microglia. J. Immunol., 2007, 179(9), 5966-5976.
[http://dx.doi.org/10.4049/jimmunol.179.9.5966 ] [PMID: 17947670]
[67]
Ahshin-Majd, S.; Zamani, S.; Kiamari, T.; Kiasalari, Z.; Baluchnejadmojarad, T.; Roghani, M. Carnosine ameliorates cognitive deficits in streptozotocin-induced diabetic rats: Possible involved mechanisms. Peptides, 2016, 86, 102-111.
[http://dx.doi.org/10.1016/j.peptides.2016.10.008 ] [PMID: 27777064]
[68]
Tejera, D.; Heneka, M.T. Microglia in neurodegenerative disorders. Methods Mol. Biol., 2019, 2034, 57-67.
[http://dx.doi.org/10.1007/978-1-4939-9658-2_5 ] [PMID: 31392677]
[69]
Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology, 2018, 154(2), 204-219.
[http://dx.doi.org/10.1111/imm.12922 ] [PMID: 29513402]
[70]
Wang, H. Microglia heterogeneity in Alzheimer’s Disease: Insights from single-cell technologies. Front. Synaptic Neurosci., 2021, 13, 773590.
[http://dx.doi.org/10.3389/fnsyn.2021.773590 ] [PMID: 35002670]
[71]
Li, L.; Liu, R.; He, J.; Li, J.; Guo, J.; Chen, Y.; Ji, K. Naringin regulates microglia BV-2 activation and inflammation via the JAK/STAT3 pathway. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/3492058 ] [PMID: 35646153]
[72]
Vinayagam, M.M.; Sadiq, M.A. Flavonoid naringin inhibits microglial activation and exerts neuroprotection against deltamethrin induced neurotoxicity through Nrf2/ARE signaling in the cortex and hippocampus of rats. World J. Pharm. Sci, 2015, 3(12), 2410-2426.
[73]
Wharton, W.; Gleason, C.E.; Lorenze, K.R.; Markgraf, T.S.; Ries, M.L.; Carlsson, C.M.; Asthana, S. Potential role of estrogen in the pathobiology and prevention of Alzheimer’s disease. Am. J. Transl. Res., 2009, 1(2), 131-147.
[PMID: 19956426]
[74]
Sahab-Negah, S.; Hajali, V.; Moradi, H.R.; Gorji, A. The Impact of estradiol on neurogenesis and functions in Alzheimer’s diseases. Cell. Mol. Neurobiol., 2020, 40(3), 283-299.
[http://dx.doi.org/10.1007/s10571-019-00733-0 ] [PMID: 31502112]
[75]
Bagit, A.; Hayward, G.C.; MacPherson, R.E.K. Exercise and estrogen: common pathways in Alzheimer’s disease pathology. Am. J. Physiol. Endocrinol. Metab., 2021, 321(1), E164-E168.
[http://dx.doi.org/10.1152/ajpendo.00008.2021 ] [PMID: 34056921]
[76]
Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H.Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; Holtzman, D.M.; Nathan, D.M. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat. Rev. Neurol., 2018, 14(3), 168-181.
[http://dx.doi.org/10.1038/nrneurol.2017.185 ] [PMID: 29377010]
[77]
de la Monte, S.M.; Tong, M.; Daiello, L.A.; Ott, B.R. Early-stage Alzheimer’s disease is associated with simultaneous systemic and central nervous system dysregulation of insulin-linked metabolic pathways. J. Alzheimers Dis., 2019, 68(2), 657-668.
[http://dx.doi.org/10.3233/JAD-180906 ] [PMID: 30775986]
[78]
Variya, B.C.; Bakrania, A.K.; Patel, S.S. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine, 2020, 73, 152906.
[http://dx.doi.org/10.1016/j.phymed.2019.152906 ] [PMID: 31064680]
[79]
Feng, X.; Gao, X.; Jia, Y.; Zhang, H.; Pan, Q.; Yao, Z.; Yang, N.; Liu, J.; Xu, Y.; Wang, G.; Yang, X. PPAR- α agonist fenofibrate decreased serum irisin levels in type 2 diabetes patients with hypertriglyceridemia. PPAR Res., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/924131 ] [PMID: 26693220]
[80]
Liu, L.; Yan, T.; Jiang, L.; Hu, W.; Hu, M.; Wang, C.; Zhang, Q.; Long, Y.; Wang, J.; Li, Y.; Hu, M.; Hong, H. Pioglitazone ameliorates memory deficits in streptozotocin-induced diabetic mice by reducing brain β-amyloid through PPARγ activation. Acta Pharmacol. Sin., 2013, 34(4), 455-463.
[http://dx.doi.org/10.1038/aps.2013.11 ] [PMID: 23524568]
[81]
Liu, X.; Liu, M.; Mo, Y.; Peng, H.; Gong, J.; Li, Z.; Chen, J.; Xie, J. Naringin ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Iran. J. Basic Med. Sci., 2016, 19(4), 417-422.
[PMID: 27279986]
[82]
Okuyama, S.; Nakashima, T.; Nakamura, K.; Shinoka, W.; Kotani, M.; Sawamoto, A.; Nakajima, M.; Furukawa, Y. Inhibitory effects of auraptene and naringin on astroglial activation, Tau hyperphosphorylation, and suppression of neurogenesis in the hippocampus of streptozotocin-induced hyperglycemic mice. Antioxidants, 2018, 7(8), 109.
[http://dx.doi.org/10.3390/antiox7080109 ] [PMID: 30126250]
[83]
Goyal, A.; Verma, A.; Dubey, N.; Raghav, J.; Agrawal, A. Naringenin: A prospective therapeutic agent for Alzheimer’s and Parkinson’s disease. J. Food Biochem., 2022, 46(12), e14415.
[http://dx.doi.org/10.1111/jfbc.14415 ] [PMID: 36106706]
[84]
Luo, Y.L.; Zhang, C.C.; Li, P.B.; Nie, Y.C.; Wu, H.; Shen, J.G.; Su, W.W. Naringin attenuates enhanced cough, airway hyperresponsiveness and airway inflammation in a guinea pig model of chronic bronchitis induced by cigarette smoke. Int. Immunopharmacol., 2012, 13(3), 301-307.
[http://dx.doi.org/10.1016/j.intimp.2012.04.019 ] [PMID: 22575871]
[85]
Habauzit, V.; Sacco, S.M.; Gil-Izquierdo, A.; Trzeciakiewicz, A.; Morand, C.; Barron, D.; Pinaud, S.; Offord, E.; Horcajada, M.N. Differential effects of two citrus flavanones on bone quality in senescent male rats in relation to their bioavailability and metabolism. Bone, 2011, 49(5), 1108-1116.
[http://dx.doi.org/10.1016/j.bone.2011.07.030 ] [PMID: 21820093]
[86]
Liu, Y.; Wu, H.; Nie, Y.; Chen, J.; Su, W.; Li, P. Naringin attenuates acute lung injury in LPS-treated mice by inhibiting NF-κB pathway. Int. Immunopharmacol., 2011, 11(10), 1606-1612.
[http://dx.doi.org/10.1016/j.intimp.2011.05.022 ] [PMID: 21640201]
[87]
Gopinath, K.; Sudhandiran, G. Naringin modulates oxidative stress and inflammation in 3-nitropropionic acid-induced neurodegeneration through the activation of nuclear factor-erythroid 2-related factor-2 signalling pathway. Neuroscience, 2012, 227, 134-143.
[http://dx.doi.org/10.1016/j.neuroscience.2012.07.060 ] [PMID: 22871521]
[88]
Chen, F.; Zhang, N.; Ma, X.; Huang, T.; Shao, Y.; Wu, C.; Wang, Q. Naringin alleviates diabetic kidney disease through inhibiting oxidative stress and inflammatory reaction. PLoS One, 2015, 10(11), e0143868.
[http://dx.doi.org/10.1371/journal.pone.0143868 ] [PMID: 26619044]
[89]
Golechha, M.; Sarangal, V.; Bhatia, J.; Chaudhry, U.; Saluja, D.; Arya, D.S. Naringin ameliorates pentylenetetrazol-induced seizures and associated oxidative stress, inflammation, and cognitive impairment in rats: Possible mechanisms of neuroprotection. Epilepsy Behav., 2014, 41, 98-102.
[http://dx.doi.org/10.1016/j.yebeh.2014.09.058 ] [PMID: 25461197]
[90]
Mahmoud, A.M.; Ashour, M.B.; Abdel-Moneim, A.; Ahmed, O.M. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J. Diabetes Complications, 2012, 26(6), 483-490.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.06.001 ] [PMID: 22809898]
[91]
Hassaan, Y.; Handoussa, H.; El-Khatib, A.H.; Linscheid, M.W.; El Sayed, N.; Ayoub, N. Evaluation of plant phenolic metabolites as a source of Alzheimer’s drug leads. BioMed Res. Int., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/843263 ] [PMID: 24999480]
[92]
Mokarrami, S.; Jahanshahi, M.; Elyasi, L.; Badelisarkala, H.; Khalili, M. Naringin prevents the reduction of the number of neurons and the volume of CA1 in a scopolamine-induced animal model of Alzheimer’s disease (AD): A stereological study. Int. J. Neurosci., 2022, 1-8.
[http://dx.doi.org/10.1080/00207454.2022.2102981 ] [PMID: 35861379]
[93]
Nandakumar, K.; Ramalingayya, G.V.; Nampoothiri, M.; Nayak, P.G.; Kishore, A.; Shenoy, R.R.; Rao, C.M. Naringin and rutin alleviates episodic memory deficits in two differentially challenged object recognition tasks. Pharmacogn. Mag., 2016, 12(45)(Suppl. 1), 63.
[http://dx.doi.org/10.4103/0973-1296.176104 ] [PMID: 27041861]
[94]
Si-Si, W.; Liao, L.; Ling, Z.; Yun-Xia, Y. Inhibition of TNF-α/IFN-γ induced RANTES expression in HaCaT cell by naringin. Pharm. Biol., 2011, 49(8), 810-814.
[http://dx.doi.org/10.3109/13880209.2010.550054 ] [PMID: 21500970]
[95]
Dhanya, R.; Arun, K.B.; Nisha, V.M.; Syama, H.P.; Nisha, P.; Santhosh Kumar, T.R.; Jayamurthy, P. Preconditioning L6 muscle cells with naringin ameliorates oxidative stress and increases glucose uptake. PLoS One, 2015, 10(7), e0132429.
[http://dx.doi.org/10.1371/journal.pone.0132429 ] [PMID: 26147673]
[96]
Guo, L.X.; Sun, B. N,N'-1,10-Bis(Naringin) triethylenetetraamine, synthesis and as a Cu(II) Chelator for Alzheimer’s Disease therapy. Biol. Pharm. Bull., 2021, 44(1), 51-56.
[http://dx.doi.org/10.1248/bpb.b20-00574 ] [PMID: 33162492]
[97]
Feng, G.; Wang, W.; Qian, Y.; Jin, H. Anti-Aβ antibodies induced by Aβ-HBc virus-like particles prevent Aβ aggregation and protect PC12 cells against toxicity of Aβ1–40. J. Neurosci. Methods, 2013, 218(1), 48-54.
[http://dx.doi.org/10.1016/j.jneumeth.2013.05.006 ] [PMID: 23701997]
[98]
Choi, G.Y.; Kim, H.B.; Hwang, E.S.; Park, H.S.; Cho, J.M.; Ham, Y.K.; Kim, J.H.; Mun, M.K.; Maeng, S.; Park, J.H. Naringin enhances long-term potentiation and recovers learning and memory deficits of amyloid-beta induced Alzheimer’s disease-like behavioral rat model. Neurotoxicology, 2023, 95, 35-45.
[http://dx.doi.org/10.1016/j.neuro.2022.12.007 ] [PMID: 36549596]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy