Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

PGD2/PTGDR2 Signal Affects the Viability, Invasion, Apoptosis, and Stemness of Gastric Cancer Stem Cells and Prevents the Progression of Gastric Cancer

Author(s): Qiang Zhang*, Feifan Wang, Yan Huang, Peiyao Gao, Na Wang, Hengjin Tian, Amin Chen, Yuyun Li* and Fengchao Wang*

Volume 27, Issue 6, 2024

Published on: 03 August, 2023

Page: [933 - 946] Pages: 14

DOI: 10.2174/1386207326666230731103112

Price: $65

Abstract

Background: Prostaglandin D2 (PGD2) has been shown to restrict the occurrence and development of multiple cancers; nevertheless, its underlying molecular mechanism has not been fully elucidated. The present study investigated the effect of PGD2 on the biological function of the enriched gastric cancer stem cells (GCSCs), as well as its underlying molecular mechanism, to provide a theoretical basis and potential therapeutic drugs for gastric cancer (GC) treatment.

Methods: The plasma PGD2 levels were detected by Enzyme-linked immunosorbent assay (ELISA). Silencing of lipocalin prostaglandin D synthetases (L-PTGDS) and prostaglandin D2 receptor 2 (PTGDR2) was carried out in GCSCs from SGC-7901 and HGC-27 cell lines. Cell Counting Kit-8, transwell, flow cytometry, and western blotting assays were used to determine cell viability, invasion, apoptosis, and stemness of GCSCs. In vivo xenograft models were used to assess tumor growth.

Results: Clinically, it was found that the plasma PGD2 level decreased significantly in patients with GC. PGD2 suppressed viability, invasion, and stemness and increased the apoptosis of GCSCs. Downregulating L-PTGDS and PTGDR2 promoted viability, invasion, and stemness and reduced the apoptosis of GCSCs. Moreover, the inhibition of GCSCs induced by PGD2 was eliminated by downregulating the expression of PTGDR2. The results of in vivo experiments were consistent with those of in vitro experiments.

Conclusion: Our data suggest that PGD2 may be an important marker and potential therapeutic target in the clinical management of GC. L-PTGDS/PTGDR2 may be one of the critical targets for GC therapy. The PGD2/PTGDR2 signal affects the viability, invasion, apoptosis, and stemness of GCSCs and prevents the progression of GC.

« Previous
Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Thrift, A.P.; El-Serag, H.B. Burden of gastric cancer. Clin. Gastroenterol. Hepatol., 2020, 18(3), 534-542.
[http://dx.doi.org/10.1016/j.cgh.2019.07.045] [PMID: 31362118]
[3]
Xu, G.; Shen, J.; Ou Yang, X.; Sasahara, M.; Su, X. Cancer stem cells: The ‘heartbeat’ of gastric cancer. J. Gastroenterol., 2013, 48(7), 781-797.
[http://dx.doi.org/10.1007/s00535-012-0712-y] [PMID: 23184096]
[4]
Nio, K.; Yamashita, T.; Kaneko, S. The evolving concept of liver cancer stem cells. Mol. Cancer, 2017, 16(1), 4.
[http://dx.doi.org/10.1186/s12943-016-0572-9] [PMID: 28137313]
[5]
Luo, S.; Li, Y.; Ma, R.; Liu, J.; Xu, P.; Zhang, H.; Tang, K.; Ma, J.; Liu, N.; Zhang, Y.; Sun, Y.; Ji, T.; Liang, X.; Yin, X.; Liu, Y.; Tong, W.; Niu, Y.; Wang, N.; Wang, X.; Huang, B. Downregulation of PCK2 remodels tricarboxylic acid cycle in tumor-repopulating cells of melanoma. Oncogene, 2017, 36(25), 3609-3617.
[http://dx.doi.org/10.1038/onc.2016.520] [PMID: 28166201]
[6]
Wicha, M.S. Cancer stem cells and metastasis: Lethal seeds. Clin. Cancer Res., 2006, 12(19), 5606-5607.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1537] [PMID: 17020960]
[7]
Abbaszadegan, M.R.; Bagheri, V.; Razavi, M.S.; Momtazi, A.A.; Sahebkar, A.; Gholamin, M. Isolation, identification, and characterization of cancer stem cells: A review. J. Cell. Physiol., 2017, 232(8), 2008-2018.
[http://dx.doi.org/10.1002/jcp.25759] [PMID: 28019667]
[8]
Hu, X.; Cong, Y.; Luo, H.H.; Wu, S.; Zhao, L.E.; Liu, Q.; Yang, Y. Cancer stem cells therapeutic target database: The first comprehensive database for therapeutic targets of cancer stem cells. Stem Cells Transl. Med., 2017, 6(2), 331-334.
[http://dx.doi.org/10.5966/sctm.2015-0289] [PMID: 28191780]
[9]
Barker, N.; Huch, M.; Kujala, P.; van de Wetering, M.; Snippert, H.J.; van Es, J.H.; Sato, T.; Stange, D.E.; Begthel, H.; van den Born, M.; Danenberg, E.; van den Brink, S.; Korving, J.; Abo, A.; Peters, P.J.; Wright, N.; Poulsom, R.; Clevers, H. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 2010, 6(1), 25-36.
[http://dx.doi.org/10.1016/j.stem.2009.11.013] [PMID: 20085740]
[10]
Zong, L.; Abe, M.; Seto, Y.; Ji, J. The challenge of screening for early gastric cancer in China. Lancet, 2016, 388(10060), 2606.
[http://dx.doi.org/10.1016/S0140-6736(16)32226-7] [PMID: 27894662]
[11]
Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; Campbell, L.L.; Polyak, K.; Brisken, C.; Yang, J.; Weinberg, R.A. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008, 133(4), 704-715.
[http://dx.doi.org/10.1016/j.cell.2008.03.027] [PMID: 18485877]
[12]
Wang, B.; Chen, Q.; Cao, Y.; Ma, X.; Yin, C.; Jia, Y.; Zang, A.; Fan, W. LGR5 is a gastric cancer stem cell marker associated with stemness and the EMT signature genes NANOG, NANOGP8, PRRX1, TWIST1, and BMI1. PLoS One, 2016, 11(12), e0168904.
[http://dx.doi.org/10.1371/journal.pone.0168904] [PMID: 28033430]
[13]
Zhang, L.; Xu, Z.; Xu, X.; Zhang, B.; Wu, H.; Wang, M.; Zhang, X.; Yang, T.; Cai, J.; Yan, Y.; Mao, F.; Zhu, W.; Shao, Q.; Qian, H.; Xu, W. SALL4, a novel marker for human gastric carcinogenesis and metastasis. Oncogene, 2014, 33(48), 5491-5500.
[http://dx.doi.org/10.1038/onc.2013.495] [PMID: 24276240]
[14]
Li, X.B.; Yang, G.; Zhu, L.; Tang, Y.L.; Zhang, C.; Ju, Z.; Yang, X.; Teng, Y. Gastric Lgr5+ stem cells are the cellular origin of invasive intestinal-type gastric cancer in mice. Cell Res., 2016, 26(7), 838-849.
[http://dx.doi.org/10.1038/cr.2016.47] [PMID: 27091432]
[15]
Thapa, R.; Wilson, G.D. The importance of CD44 as a stem cell biomarker and therapeutic target in cancer. Stem Cells Int., 2016, 2016, 1-15.
[http://dx.doi.org/10.1155/2016/2087204] [PMID: 27200096]
[16]
Rajakariar, R.; Hilliard, M.; Lawrence, T.; Trivedi, S.; Colville-Nash, P.; Bellingan, G.; Fitzgerald, D.; Yaqoob, M.M.; Gilroy, D.W. Hematopoietic prostaglandin D 2 synthase controls the onset and resolution of acute inflammation through PGD 2 and 15-deoxyΔ 12–14 PGJ 2. Proc. Natl. Acad. Sci., 2007, 104(52), 20979-20984.
[http://dx.doi.org/10.1073/pnas.0707394104] [PMID: 18077391]
[17]
Säfholm, J.; Abma, W.; Liu, J.; Balgoma, D.; Fauland, A.; Kolmert, J.; Wheelock, C.E.; Adner, M.; Dahlén, S.E. Prostaglandin D2 inhibits mediator release and antigen induced bronchoconstriction in the Guinea pig trachea by activation of DP1 receptors. Eur. J. Pharmacol., 2021, 907, 174282.
[http://dx.doi.org/10.1016/j.ejphar.2021.174282] [PMID: 34175307]
[18]
Scheaffer, H.L.; Borazjani, A.; Szafran, B.N.; Ross, M.K. Inactivation of CES1 blocks prostaglandin D 2 glyceryl ester catabolism in monocytes/macrophages and enhances its anti-inflammatory effects, whereas the pro-inflammatory effects of prostaglandin E 2 glyceryl ester are attenuated. ACS Omega, 2020, 5(45), 29177-29188.
[http://dx.doi.org/10.1021/acsomega.0c03961] [PMID: 33225149]
[19]
Suzuki, K.; Suzuki, S.; Ishii, Y.; Okamura, M.; Matsubara, T.; Fujita, H.; Nozawa, N.; Kobayashi, S.; Hirata, K. Plasma prostaglandin D2 synthase levels in sleep and neurological diseases. J. Neurol. Sci., 2020, 411, 116692.
[http://dx.doi.org/10.1016/j.jns.2020.116692] [PMID: 31981928]
[20]
Wu, S.; Tang, S.; Peng, H.; Jiang, Y.; Liu, Y.; Wu, Z.; Liu, Q.; Zhu, X. Effects of lentivirus-mediated CCR3 RNA interference on the function of mast cells of allergic rhinitis in mice. Int. Immunopharmacol., 2020, 78, 106011.
[http://dx.doi.org/10.1016/j.intimp.2019.106011] [PMID: 31776094]
[21]
Murata, T.; Aritake, K.; Matsumoto, S.; Kamauchi, S.; Nakagawa, T.; Hori, M.; Momotani, E.; Urade, Y.; Ozaki, H. Prostagladin D 2 is a mast cell-derived antiangiogenic factor in lung carcinoma. Proc. Natl. Acad. Sci., 2011, 108(49), 19802-19807.
[http://dx.doi.org/10.1073/pnas.1110011108] [PMID: 22106279]
[22]
Shimakura, S.; Boland, C.R. Eicosanoid production by the human gastric cancer cell line AGS and its relation to cell growth. Cancer Res., 1992, 52(7), 1744-1749.
[PMID: 1551103]
[23]
Kim, J.; Yang, P.; Suraokar, M.; Sabichi, A.L.; Llansa, N.D.; Mendoza, G.; Subbarayan, V.; Logothetis, C.J.; Newman, R.A.; Lippman, S.M.; Menter, D.G. Suppression of prostate tumor cell growth by stromal cell prostaglandin D synthase-derived products. Cancer Res., 2005, 65(14), 6189-6198.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4439] [PMID: 16024620]
[24]
Fukuoka, T.; Yashiro, M.; Kinoshita, H.; Morisaki, T.; Hasegawa, T.; Hirakawa, T.; Aomatsu, N.; Takeda, H.; Maruyama, T.; Hirakawa, K. Prostaglandin D synthase is a potential novel therapeutic agent for the treatment of gastric carcinomas expressing PPARγ. Int. J. Cancer, 2015, 137(5), 1235-1244.
[http://dx.doi.org/10.1002/ijc.29392] [PMID: 25516376]
[25]
Nakamura, M.; Tsumura, H.; Satoh, T.; Matsumoto, K.; Maruyama, H.; Majima, M.; Kitasato, H. Tumor apoptosis in prostate cancer by PGD2 and its metabolite 15d-PGJ2 in murine model. Biomed. Pharmacother., 2013, 67(1), 66-71.
[http://dx.doi.org/10.1016/j.biopha.2012.10.012] [PMID: 23206752]
[26]
Zhang, B.; Bie, Q.; Wu, P.; Zhang, J.; You, B.; Shi, H.; Qian, H.; Xu, W. PGD2/PTGDR2 signaling restricts the self-renewal and tumorigenesis of gastric cancer. Stem Cells, 2018, 36(7), 990-1003.
[http://dx.doi.org/10.1002/stem.2821] [PMID: 29604141]
[27]
Iwanaga, K.; Nakamura, T.; Maeda, S.; Aritake, K.; Hori, M.; Urade, Y.; Ozaki, H.; Murata, T. Mast cell-derived prostaglandin D2 inhibits colitis and colitis-associated colon cancer in mice. Cancer Res., 2014, 74(11), 3011-3019.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2792] [PMID: 24879565]
[28]
Hu, S.; Zhang, J.; Fang, X.; Guo, G.; Dai, J.; Sheng, Z.; Li, D.; Chen, J.; Zhang, L.; Liu, C.; Gao, Y. Identification of microRNA hsa-miR-30c-5p as an inhibitory factor in the progression of hepatocellular carcinoma and investigation of its regulatory network via comprehensive analysis. Bioengineered, 2021, 12(1), 7154-7166.
[http://dx.doi.org/10.1080/21655979.2021.1979439] [PMID: 34503377]
[29]
Wu, L.; Yu, K.; Chen, K.; Zhu, X.; Yang, Z.; Wang, Q.; Gao, J.; Wang, Y.; Cao, T.; Xu, H.; Pan, X.; Wang, L.; Xia, J.; Li, Y.; Wang, Z.P.; Ma, J. Fbxo45 facilitates pancreatic carcinoma progression by targeting USP49 for ubiquitination and degradation. Cell Death Dis., 2022, 13(3), 231.
[http://dx.doi.org/10.1038/s41419-022-04675-2] [PMID: 35279684]
[30]
Ma, J.; Cui, Y.; Cao, T.; Xu, H.; Shi, Y.; Xia, J.; Tao, Y.; Wang, Z.P. PDS5B regulates cell proliferation and motility via upregulation of Ptch2 in pancreatic cancer cells. Cancer Lett., 2019, 460, 65-74.
[http://dx.doi.org/10.1016/j.canlet.2019.06.014] [PMID: 31233836]
[31]
Ma, J.; Cao, T.; Cui, Y.; Zhang, F.; Shi, Y.; Xia, J.; Wang, Z.P. miR-223 regulates cell proliferation and invasion via targeting PDS5B in pancreatic cancer cells. Mol. Ther. Nucleic Acids, 2019, 14, 583-592.
[http://dx.doi.org/10.1016/j.omtn.2019.01.009] [PMID: 30776580]
[32]
Biddle, A.; Mackenzie, I.C. Cancer stem cells and EMT in carcinoma. Cancer Metastasis Rev., 2012, 31(1-2), 285-293.
[http://dx.doi.org/10.1007/s10555-012-9345-0] [PMID: 22302111]
[33]
Sun, J.; Sun, B.; Zhu, D.; Zhao, X.; Zhang, Y.; Dong, X.; Che, N.; Li, J.; Liu, F.; Zhao, N.; Zhang, D.; Liu, T.; Lin, X. HMGA2 regulates CD44 expression to promote gastric cancer cell motility and sphere formation. Am. J. Cancer Res., 2017, 7(2), 260-274.
[PMID: 28337375]
[34]
Ponti, D.; Costa, A.; Zaffaroni, N.; Pratesi, G.; Petrangolini, G.; Coradini, D.; Pilotti, S.; Pierotti, M.A.; Daidone, M.G. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res., 2005, 65(13), 5506-5511.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0626] [PMID: 15994920]
[35]
Alves, M.; Do Amaral, N.; Marchi, F.; Silva, F.; Da Costa, A.; Carvalho, K.; Baiocchi, G.; Soares, F.; De Brot, L.; Rocha, R. Prostaglandin D2 expression is prognostic in high‑grade serous ovarian cancer. Oncol. Rep., 2019, 41(4), 2254-2264.
[http://dx.doi.org/10.3892/or.2019.6984] [PMID: 30720106]
[36]
Hall, J.A.; Rusten, M.; Abughazaleh, R.D.; Wuertz, B.; Souksavong, V.; Escher, P.; Ondrey, F. Effects of PPAR ‐γ agonists on oral cancer cell lines: Potential horizons for chemopreventives and adjunctive therapies. Head Neck, 2020, 42(9), 2542-2554.
[http://dx.doi.org/10.1002/hed.26286] [PMID: 32519370]
[37]
DelGiorno, K.E.; Chung, C.Y.; Vavinskaya, V.; Maurer, H.C.; Novak, S.W.; Lytle, N.K.; Ma, Z.; Giraddi, R.R.; Wang, D.; Fang, L.; Naeem, R.F.; Andrade, L.R.; Ali, W.H.; Tseng, H.; Tsui, C.; Gubbala, V.B.; Ridinger-Saison, M.; Ohmoto, M.; Erikson, G.A.; O’Connor, C.; Shokhirev, M.N.; Hah, N.; Urade, Y.; Matsumoto, I.; Kaech, S.M.; Singh, P.K.; Manor, U.; Olive, K.P.; Wahl, G.M. Tuft cells inhibit pancreatic tumorigenesis in mice by producing prostaglandin D2. Gastroenterology, 2020, 159(5), 1866-1881.e8.
[http://dx.doi.org/10.1053/j.gastro.2020.07.037] [PMID: 32717220]
[38]
Ferreira, M.T.; Gomes, R.N.; Panagopoulos, A.T.; de Almeida, F.G.; Veiga, J.C.E.; Colquhoun, A. Opposing roles of PGD2 in GBM. Prostaglandins Other Lipid Mediat., 2018, 134, 66-76.
[http://dx.doi.org/10.1016/j.prostaglandins.2017.10.002] [PMID: 29042181]
[39]
Wu, L.; Lin, Q.; Ma, Z.; Chowdhury, F.A.; Mazumder, M.H.H.; Du, W. Mesenchymal PGD2 activates an ILC2-Treg axis to promote proliferation of normal and malignant HSPCs. Leukemia, 2020, 34(11), 3028-3041.
[http://dx.doi.org/10.1038/s41375-020-0843-8] [PMID: 32366935]
[40]
Lin, Y.; Cheng, J.; Huang, X. The role of prostaglandin D2 in the mice model of ulcerative colitis associated carcinogenesis. Chin. J. Gastroenterol. Hepatol., 2020, 29, 992-997.
[41]
Lu, Y.C.; Shi, J.Q.; Zhang, Z.X.; Zhou, J.Y.; Zhou, H.K.; Feng, Y.C.; Lu, Z.H.; Yang, S.Y.; Zhang, X.Y.; Liu, Y.; Li, Z.C.; Sun, Y.J.; Zheng, L.H.; Jiang, D.B.; Yang, K. Transcriptome based system biology exploration reveals homogeneous tumorigenicity of alimentary tract malignancy. Front. Oncol., 2021, 10, 580276.
[http://dx.doi.org/10.3389/fonc.2020.580276] [PMID: 33552958]
[42]
Misawa, K.; Mima, M.; Satoshi, Y.; Imai, A.; Mochizuki, D.; Ishikawa, R.; Kita, J.; Yamaguchi, Y.; Endo, S.; Misawa, Y.; Mineta, H. Prostanoid receptor genes confer poor prognosis in head and neck squamous cell carcinoma via epigenetic inactivation. J. Transl. Med., 2020, 18(1), 31.
[http://dx.doi.org/10.1186/s12967-020-02214-1] [PMID: 31969157]
[43]
Montgomery, T.A.; Xu, L.; Mason, S.; Chinnadurai, A.; Lee, C.G.; Elias, J.A.; Cantley, L.G. Breast regression protein–39/Chitinase 3–Like 1 promotes renal fibrosis after kidney injury via activation of myofibroblasts. J. Am. Soc. Nephrol., 2017, 28(11), 3218-3226.
[http://dx.doi.org/10.1681/ASN.2017010110] [PMID: 28679671]
[44]
Su, Y.; Tian, X.; Gao, R.; Guo, W.; Chen, C.; Chen, C.; Jia, D.; Li, H.; Lv, X. Colon cancer diagnosis and staging classification based on machine learning and bioinformatics analysis. Comput. Biol. Med., 2022, 145, 105409.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105409] [PMID: 35339846]
[45]
Misawa, K.; Imai, A.; Kanazawa, T.; Mima, M.; Yamada, S.; Mochizuki, D.; Yamada, T.; Shinmura, D.; Ishikawa, R.; Kita, J.; Yamaguchi, Y.; Misawa, Y.; Mineta, H. G protein-coupled receptor genes, PTGDR1, PTGDR2, and PTGIR, are candidate epigenetic biomarkers and predictors for treated patients with HPV-associated oropharyngeal cancer. Microorganisms, 2020, 8(10), 1504.
[http://dx.doi.org/10.3390/microorganisms8101504] [PMID: 33003642]
[46]
Lv, J.; Li, L. Hub genes and key pathway identification in colorectal cancer based on bioinformatic analysis. BioMed Res. Int., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/1545680] [PMID: 31781593]
[47]
He, L.P.; Chen, Y.F.; Yang, J. [Investigation on the role and mechanism of prostagland in D2 synthase in non-small cell lung cancer]. Zhonghua Yi Xue Za Zhi, 2017, 97(38), 3022-3027.
[http://dx.doi.org/10.3760/cma.j.issn.0376-2491.2017.38.016] [PMID: 29061012]
[48]
Bie, Q.; Li, X.; Liu, S.; Yang, X.; Qian, Z.; Zhao, R.; Zhang, X.; Zhang, B. YAP promotes self-renewal of gastric cancer cells by inhibiting expression of L-PTGDS and PTGDR2. Int. J. Clin. Oncol., 2020, 25(12), 2055-2065.
[http://dx.doi.org/10.1007/s10147-020-01771-1] [PMID: 32851567]
[49]
de Sousa e Melo. F.; Kurtova, A.V.; Harnoss, J.M.; Kljavin, N.; Hoeck, J.D.; Hung, J.; Anderson, J.E.; Storm, E.E.; Modrusan, Z.; Koeppen, H.; Dijkgraaf, G.J.P.; Piskol, R.; de Sauvage, F.J. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature, 2017, 543(7647), 676-680.
[http://dx.doi.org/10.1038/nature21713] [PMID: 28358093]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy