Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Phosphate Toxicity and Vascular Calcification in Chronic Kidney Disease: A Closer Look Utilizing Transmission Electron Microscopy

Author(s): Ying Yang*, Ke Yang, Yuxin Xiong, Yusong He, Yuanyuan Zhou and Melvin R. Hayden*

Volume 24, Issue 8, 2023

Published on: 15 August, 2023

Page: [621 - 639] Pages: 19

DOI: 10.2174/1389203724666230726151019

Price: $65

Abstract

Hyperphosphatemia is independently linked with vascular calcification, cardiovascular disease, bone-mineral disease, progression of renal insufficiency, and all-cause mortality in chronic kidney disease (CKD) and end-stage renal disease (ESRD). The emerging importance of fibroblast growth factor-23 (FGF-23) and its co-factor Klotho play very important roles as phosphaturic hormones; however, phosphate levels rise due to a loss of renal Klotho production and the phosphaturic effects of the FGF-23/Klotho axis. Hyperphosphatemia is also associated with calciphylaxis, acceleration of renal tubulointerstitial disease, renal osteodystrophy, and uremic cardiomyopathy. This review incorporates ultrastructural remodeling of the thoracic aorta to provide a different perspective on vascular calcification. Nine-week-old male heterozygous (mRen2) 27 (Ren2) rat models of hypertension, insulin resistance, vascular oxidative stress and albuminuria are utilized to demonstrate aortic remodeling associated with vascular calcification. Nine-week-old male Zucker obese (fa/fa) rat models are utilized to better understand nephrolith formation. Phosphate homeostasis, toxicity, multiple metabolic and uremic toxicities, renal osteodystrophy, and vascular calcification are also discussed. Additionally, the role of the endothelium, vascular smooth muscle cells, inflammatory monocytes/macrophages and mast cells, pericytes, oxidative stress, hydrogen sulfide, and extraosseous calcification in the kidney are discussed as they relate to CKD, ESRD and calciphylaxis.

Next »
Graphical Abstract

[1]
National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis., 2002, 39(2), S1-S266.
[PMID: 11904577]
[2]
Gupta, D.; Brietzke, S.; Hayden, M.R.; Kurukulasuriya, L.R.; Sowers, J.R. Phosphate metabolism in cardiorenal metabolic disease. Cardiorenal Med., 2011, 1(4), 261-270.
[http://dx.doi.org/10.1159/000332388] [PMID: 22096458]
[3]
Coresh, J.; Selvin, E.; Stevens, L.A.; Manzi, J.; Kusek, J.W.; Eggers, P.; Van, L.F.; Levey, A.S. Prevalence of chronic kidney disease in the United States. JAMA, 2007, 298(17), 2038-2047.
[http://dx.doi.org/10.1001/jama.298.17.2038] [PMID: 17986697]
[4]
Levey, A.S.; Atkins, R.; Coresh, J.; Cohen, E.P.; Collins, A.J.; Eckardt, K.U.; Nahas, M.E.; Jaber, B.L.; Jadoul, M.; Levin, A.; Powe, N.R.; Rossert, J.; Wheeler, D.C.; Lameire, N.; Eknoyan, G. Chronic kidney disease as a global public health problem: Approaches and initiatives – a position statement from Kidney Disease Improving Global Outcomes. Kidney Int., 2007, 72(3), 247-259.
[http://dx.doi.org/10.1038/sj.ki.5002343] [PMID: 17568785]
[5]
Whaley-Connell, A.; Bomback, A.S.; McFarlane, S.I.; Li, S.; Roberts, T.; Chen, S.C.; Collins, A.J.; Norris, K.; Bakris, G.L.; Sowers, J.R.; McCullough, P.A. Diabetic cardiovascular disease predicts chronic kidney disease awareness in the kidney early evaluation program. Cardiorenal Med., 2011, 1(1), 45-52.
[http://dx.doi.org/10.1159/000322862] [PMID: 22258465]
[6]
Zhang, L.; Long, J.; Jiang, W.; Shi, Y.; He, X.; Zhou, Z.; Li, Y.; Yeung, R.O.; Wang, J.; Matsushita, K.; Coresh, J.; Zhao, M.H.; Wang, H. Trends in chronic kidney disease in China. N. Engl. J. Med., 2016, 375(9), 905-906.
[http://dx.doi.org/10.1056/NEJMc1602469] [PMID: 27579659]
[7]
Deo, R.; Wassel Fyr, C.L.; Fried, L.F.; Newman, A.B.; Harris, T.B.; Angleman, S.; Green, C.; Kritchevsky, S.B.; Chertow, G.M.; Cummings, S.R.; Shlipak, M.G. Kidney dysfunction and fatal cardiovascular disease—an association independent of atherosclerotic events: Results from the Health, Aging, and Body Composition (Health ABC) study. Am. Heart J., 2008, 155(1), 62-68.
[http://dx.doi.org/10.1016/j.ahj.2007.08.012] [PMID: 18082491]
[8]
Ganesh, S.K.; Stack, A.G.; Levin, N.W.; Hulbert-Shearon, T.; Port, F.K. Association of elevated serum PO(4), Ca x PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J. Am. Soc. Nephrol., 2001, 12(10), 2131-2138.
[http://dx.doi.org/10.1681/ASN.V12102131] [PMID: 11562412]
[9]
Raggi, P.; Boulay, A.; Chasan-Taber, S.; Amin, N.; Dillon, M.; Burke, S.K.; Chertow, G.M. Cardiac calcification in adult hemodialysis patients. J. Am. Coll. Cardiol., 2002, 39(4), 695-701.
[http://dx.doi.org/10.1016/S0735-1097(01)01781-8] [PMID: 11849871]
[10]
Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med., 2004, 351(13), 1296-1305.
[http://dx.doi.org/10.1056/NEJMoa041031] [PMID: 15385656]
[11]
Block, G.A.; Klassen, P.S.; Lazarus, J.M.; Ofsthun, N.; Lowrie, E.G.; Chertow, G.M. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J. Am. Soc. Nephrol., 2004, 15(8), 2208-2218.
[http://dx.doi.org/10.1097/01.ASN.0000133041.27682.A2] [PMID: 15284307]
[12]
Stevens, L.A.; Djurdjev, O.; Cardew, S.; Cameron, E.C.; Levin, A. Calcium, phosphate, and parathyroid hormone levels in combination and as a function of dialysis duration predict mortality: Evidence for the complexity of the association between mineral metabolism and outcomes. J. Am. Soc. Nephrol., 2004, 15(3), 770-779.
[http://dx.doi.org/10.1097/01.ASN.0000113243.24155.2F] [PMID: 14978180]
[13]
Tonelli, M.; Sacks, F.; Pfeffer, M.; Gao, Z.; Curhan, G. Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation, 2005, 112(17), 2627-2633.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.553198] [PMID: 16246962]
[14]
Stubbs, J.R.; Liu, S.; Tang, W.; Zhou, J.; Wang, Y.; Yao, X.; Quarles, L.D. Role of hyperphosphatemia and 1,25-dihydroxyvitamin D in vascular calcification and mortality in fibroblastic growth factor 23 null mice. J. Am. Soc. Nephrol., 2007, 18(7), 2116-2124.
[http://dx.doi.org/10.1681/ASN.2006121385] [PMID: 17554146]
[15]
Kestenbaum, B.; Sampson, J.N.; Rudser, K.D.; Patterson, D.J.; Seliger, S.L.; Young, B.; Sherrard, D.J.; Andress, D.L. Serum phosphate levels and mortality risk among people with chronic kidney disease. J. Am. Soc. Nephrol., 2005, 16(2), 520-528.
[http://dx.doi.org/10.1681/ASN.2004070602] [PMID: 15615819]
[16]
Dhingra, R.; Sullivan, L.M.; Fox, C.S.; Wang, T.J.; D’Agostino, R.B., Sr; Gaziano, J.M.; Vasan, R.S. Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch. Intern. Med., 2007, 167(9), 879-885.
[http://dx.doi.org/10.1001/archinte.167.9.879] [PMID: 17502528]
[17]
Schiavi, S.C.; Kumar, R. The phosphatonin pathway: New insights in phosphate homeostasis. Kidney Int., 2004, 65(1), 1-14.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00355.x] [PMID: 14675031]
[18]
Shimada, T.; Kakitani, M.; Yamazaki, Y.; Hasegawa, H.; Takeuchi, Y.; Fujita, T.; Fukumoto, S.; Tomizuka, K.; Yamashita, T. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest., 2004, 113(4), 561-568.
[http://dx.doi.org/10.1172/JCI200419081] [PMID: 14966565]
[19]
Dusso, A.S.; Brown, A.J.; Slatopolsky, E.; Vitamin, D. Vitamin D. Am. J. Physiol. Renal Physiol., 2005, 289(1), F8-F28.
[http://dx.doi.org/10.1152/ajprenal.00336.2004] [PMID: 15951480]
[20]
Gutierrez, O.; Isakova, T.; Rhee, E.; Shah, A.; Holmes, J.; Collerone, G.; Jüppner, H.; Wolf, M. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J. Am. Soc. Nephrol., 2005, 16(7), 2205-2215.
[http://dx.doi.org/10.1681/ASN.2005010052] [PMID: 15917335]
[21]
Gutiérrez, O.M.; Mannstadt, M.; Isakova, T.; Rauh-Hain, J.A.; Tamez, H.; Shah, A.; Smith, K.; Lee, H.; Thadhani, R.; Jüppner, H.; Wolf, M. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med., 2008, 359(6), 584-592.
[http://dx.doi.org/10.1056/NEJMoa0706130] [PMID: 18687639]
[22]
Razzaque, M.S.; Sitara, D.; Taguchi, T.; St-Arnaud, R.; Lanske, B. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J., 2006, 20(6), 720-722.
[http://dx.doi.org/10.1096/fj.05-5432fje] [PMID: 16436465]
[23]
Engberg, H.; Oksuzyan, A.; Jeune, B.; Vaupel, J.W.; Christensen, K. Centenarians - a useful model for healthy aging? A 29-year follow-up of hospitalizations among 40 000 Danes born in 1905. Aging Cell, 2009, 8(3), 270-276.
[http://dx.doi.org/10.1111/j.1474-9726.2009.00474.x] [PMID: 19627266]
[24]
Berndt, T.; Kumar, R. Novel mechanisms in the regulation of phosphorus homeostasis. Physiology, 2009, 24(1), 17-25.
[http://dx.doi.org/10.1152/physiol.00034.2008] [PMID: 19196648]
[25]
Shimada, T.; Urakawa, I.; Isakova, T.; Yamazaki, Y.; Epstein, M.; Wesseling-Perry, K.; Wolf, M.; Salusky, I.B.; Jüppner, H. Circulating fibroblast growth factor 23 in patients with end-stage renal disease treated by peritoneal dialysis is intact and biologically active. J. Clin. Endocrinol. Metab., 2010, 95(2), 578-585.
[http://dx.doi.org/10.1210/jc.2009-1603] [PMID: 19965919]
[26]
Kurosu, H.; Ogawa, Y.; Miyoshi, M.; Yamamoto, M.; Nandi, A.; Rosenblatt, K.P.; Baum, M.G.; Schiavi, S.; Hu, M.C.; Moe, O.W.; Kuro-o, M. Regulation of fibroblast growth factor-23 signaling by klotho. J. Biol. Chem., 2006, 281(10), 6120-6123.
[http://dx.doi.org/10.1074/jbc.C500457200] [PMID: 16436388]
[27]
Liu, S.; Gupta, A.; Quarles, L.D. Emerging role of fibroblast growth factor 23 in a bone–kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization. Curr. Opin. Nephrol. Hypertens., 2007, 16(4), 329-335.
[http://dx.doi.org/10.1097/MNH.0b013e3281ca6ffd] [PMID: 17565275]
[28]
Tsujikawa, H.; Kurotaki, Y.; Fujimori, T.; Fukuda, K.; Nabeshima, Y.I. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol. Endocrinol., 2003, 17(12), 2393-2403.
[http://dx.doi.org/10.1210/me.2003-0048] [PMID: 14528024]
[29]
Hu, M.C.; Shi, M.; Zhang, J.; Pastor, J.; Nakatani, T.; Lanske, B.; Razzaque, M.S.; Rosenblatt, K.P.; Baum, M.G.; Kuro-O, M.; Moe, O.W. Klotho: A novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J., 2010, 24(9), 3438-3450.
[http://dx.doi.org/10.1096/fj.10-154765] [PMID: 20466874]
[30]
Razzaque, M.S. The FGF23–Klotho axis: Endocrine regulation of phosphate homeostasis. Nat. Rev. Endocrinol., 2009, 5(11), 611-619.
[http://dx.doi.org/10.1038/nrendo.2009.196] [PMID: 19844248]
[31]
Farrow, E.G.; Davis, S.I.; Summers, L.J.; White, K.E. Initial FGF23-mediated signaling occurs in the distal convoluted tubule. J. Am. Soc. Nephrol., 2009, 20(5), 955-960.
[http://dx.doi.org/10.1681/ASN.2008070783] [PMID: 19357251]
[32]
John, G.B.; Cheng, C.Y.; Kuro-o, M. Role of Klotho in aging, phosphate metabolism, and CKD. Am. J. Kidney Dis., 2011, 58(1), 127-134.
[http://dx.doi.org/10.1053/j.ajkd.2010.12.027] [PMID: 21496980]
[33]
Nakatani, T.; Ohnishi, M.; Shawkat, R.M. Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic ( Hyp ) mouse model. FASEB J., 2009, 23(11), 3702-3711.
[http://dx.doi.org/10.1096/fj.08-123992] [PMID: 19584304]
[34]
Ben-Dov, I.Z.; Galitzer, H.; Lavi-Moshayoff, V.; Goetz, R.; Kuro-o, M.; Mohammadi, M.; Sirkis, R.; Naveh-Many, T.; Silver, J. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest., 2007, 117(12), 4003-4008.
[http://dx.doi.org/10.1172/JCI32409] [PMID: 17992255]
[35]
Saji, F.; Shiizaki, K.; Shimada, S.; Okada, T.; Kunimoto, K.; Sakaguchi, T.; Hatamura, I.; Shigematsu, T. Regulation of fibroblast growth factor 23 production in bone in uremic rats. Nephron, Physiol., 2009, 111(4), p61-p68.
[http://dx.doi.org/10.1159/000210389] [PMID: 19339809]
[36]
Krajisnik, T.; Olauson, H.; Mirza, M.A.I.; Hellman, P.; Åkerström, G.; Westin, G.; Larsson, T.E.; Björklund, P. Parathyroid Klotho and FGF-receptor 1 expression decline with renal function in hyperparathyroid patients with chronic kidney disease and kidney transplant recipients. Kidney Int., 2010, 78(10), 1024-1032.
[http://dx.doi.org/10.1038/ki.2010.260] [PMID: 20686451]
[37]
Chen, C.D.; Podvin, S.; Gillespie, E.; Leeman, S.E.; Abraham, C.R. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc. Natl. Acad. Sci., 2007, 104(50), 19796-19801.
[http://dx.doi.org/10.1073/pnas.0709805104] [PMID: 18056631]
[38]
Mitani, H.; Ishizaka, N.; Aizawa, T.; Ohno, M.; Usui, S.; Suzuki, T.; Amaki, T.; Mori, I.; Nakamura, Y.; Sato, M.; Nangaku, M.; Hirata, Y.; Nagai, R. In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension, 2002, 39(4), 838-843.
[http://dx.doi.org/10.1161/01.HYP.0000013734.33441.EA] [PMID: 11967236]
[39]
Cha, S.K.; Hu, M.C.; Kurosu, H.; Kuro-o, M.; Moe, O.; Huang, C.L. Regulation of renal outer medullary potassium channel and renal K(+) excretion by Klotho. Mol. Pharmacol., 2009, 76(1), 38-46.
[http://dx.doi.org/10.1124/mol.109.055780] [PMID: 19349416]
[40]
Cha, S.K.; Ortega, B.; Kurosu, H.; Rosenblatt, K.P.; Kuro-o, M.; Huang, C.L. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc. Natl. Acad. Sci., 2008, 105(28), 9805-9810.
[http://dx.doi.org/10.1073/pnas.0803223105] [PMID: 18606998]
[41]
Chang, Q.; Hoefs, S.; van der Kemp, A.W.; Topala, C.N.; Bindels, R.J.; Hoenderop, J.G. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science, 2005, 310(5747), 490-493.
[http://dx.doi.org/10.1126/science.1114245] [PMID: 16239475]
[42]
Haruna, Y.; Kashihara, N.; Satoh, M.; Tomita, N.; Namikoshi, T.; Sasaki, T.; Fujimori, T.; Xie, P.; Kanwar, Y.S. Amelioration of progressive renal injury by genetic manipulation of Klotho gene. Proc. Natl. Acad. Sci., 2007, 104(7), 2331-2336.
[http://dx.doi.org/10.1073/pnas.0611079104] [PMID: 17287345]
[43]
Hu, M.C.; Shi, M.; Zhang, J.; Quiñones, H.; Griffith, C.; Kuro-o, M.; Moe, O.W. Klotho deficiency causes vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol., 2011, 22(1), 124-136.
[http://dx.doi.org/10.1681/ASN.2009121311] [PMID: 21115613]
[44]
Hu, M.C.; Shi, M.; Zhang, J.; Quiñones, H.; Kuro-o, M.; Moe, O.W. Klotho deficiency is an early biomarker of renal ischemia–reperfusion injury and its replacement is protective. Kidney Int., 2010, 78(12), 1240-1251.
[http://dx.doi.org/10.1038/ki.2010.328] [PMID: 20861825]
[45]
Razzaque, M.S. Phosphate toxicity: New insights into an old problem. Clin. Sci., 2011, 120(3), 91-97.
[http://dx.doi.org/10.1042/CS20100377] [PMID: 20958267]
[46]
Hayden, M.R.; Tyagi, S.C. Uric acid: A new look at an old risk marker for cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus: The urate redox shuttle. Nutr. Metab., 2004, 1(1), 10.
[http://dx.doi.org/10.1186/1743-7075-1-10] [PMID: 15507132]
[47]
Shuto, E.; Taketani, Y.; Tanaka, R.; Harada, N.; Isshiki, M.; Sato, M.; Nashiki, K.; Amo, K.; Yamamoto, H.; Higashi, Y.; Nakaya, Y.; Takeda, E. Dietary phosphorus acutely impairs endothelial function. J. Am. Soc. Nephrol., 2009, 20(7), 1504-1512.
[http://dx.doi.org/10.1681/ASN.2008101106] [PMID: 19406976]
[48]
Olmos, G.; Martínez-Miguel, P.; Alcalde-Estevez, E.; Medrano, D.; Sosa, P.; Rodríguez-Mañas, L.; Naves-Diaz, M.; Rodríguez-Puyol, D.; Ruiz-Torres, M.P.; López-Ongil, S. Hyperphosphatemia induces senescence in human endothelial cells by increasing endothelin-1 production. Aging Cell, 2017, 16(6), 1300-1312.
[http://dx.doi.org/10.1111/acel.12664] [PMID: 28857396]
[49]
Moe, S.; Drüeke, T.; Cunningham, J.; Goodman, W.; Martin, K.; Olgaard, K.; Ott, S.; Sprague, S.; Lameire, N.; Eknoyan, G. Definition, evaluation, and classification of renal osteodystrophy: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int., 2006, 69(11), 1945-1953.
[http://dx.doi.org/10.1038/sj.ki.5000414] [PMID: 16641930]
[50]
Malluche, H.H.; Ritz, E.; Lange, H.P.; Kutschera, J.; Hodgson, M.; Seiffert, U.; Schoeppe, W. Bone histology in incipient and advanced renal failure. Kidney Int., 1976, 9(4), 355-362.
[http://dx.doi.org/10.1038/ki.1976.42] [PMID: 940274]
[51]
Craver, L.; Marco, M.P.; Martínez, I.; Rue, M.; Borràs, M.; Martín, M.L.; Sarró, F.; Valdivielso, J.M.; Fernández, E. Mineral metabolism parameters throughout chronic kidney disease stages 1-5--achievement of K/DOQI target ranges. Nephrol. Dial. Transplant., 2007, 22(4), 1171-1176.
[http://dx.doi.org/10.1093/ndt/gfl718] [PMID: 17205962]
[52]
Slatopolsky, E.; Robson, A.M.; Elkan, I.; Bricker, N.S. Control of phosphate excretion in uremic man. J. Clin. Invest., 1968, 47(8), 1865-1874.
[http://dx.doi.org/10.1172/JCI105877] [PMID: 5666116]
[53]
Goodman, W.G.; Quarles, L.D. Development and progression of secondary hyperparathyroidism in chronic kidney disease: Lessons from molecular genetics. Kidney Int., 2008, 74(3), 276-288.
[http://dx.doi.org/10.1038/sj.ki.5002287] [PMID: 17568787]
[54]
Martin, D.R.; Ritter, C.S.; Slatopolsky, E.; Brown, A.J. Acute regulation of parathyroid hormone by dietary phosphate. Am. J. Physiol. Endocrinol. Metab., 2005, 289(4), E729-E734.
[http://dx.doi.org/10.1152/ajpendo.00065.2005] [PMID: 15914507]
[55]
Beck, G.R., Jr Inorganic phosphate as a signaling molecule in osteoblast differentiation. J. Cell. Biochem., 2003, 90(2), 234-243.
[http://dx.doi.org/10.1002/jcb.10622] [PMID: 14505340]
[56]
Block, G.A.; Port, F.K. Re-evaluation of risks associated with hyperphosphatemia and hyperparathyroidism in dialysis patients: Recommendations for a change in management. Am. J. Kidney Dis., 2000, 35(6), 1226-1237.
[http://dx.doi.org/10.1016/S0272-6386(00)70064-3] [PMID: 10845841]
[57]
Rumberger, J.A.; Simons, D.B.; Fitzpatrick, L.A.; Sheedy, P.F.; Schwartz, R.S. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation, 1995, 92(8), 2157-2162.
[http://dx.doi.org/10.1161/01.CIR.92.8.2157] [PMID: 7554196]
[58]
Sangiorgi, G.; Rumberger, J.A.; Severson, A.; Edwards, W.D.; Gregoire, J.; Fitzpatrick, L.A.; Schwartz, R.S. Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: A histologic study of 723 coronary artery segments using nondecalcifying methodology. J. Am. Coll. Cardiol., 1998, 31(1), 126-133.
[http://dx.doi.org/10.1016/S0735-1097(97)00443-9] [PMID: 9426030]
[59]
Lehto, S.; Niskanen, L.; Suhonen, M.; Rönnemaa, T.; Laakso, M. Medial artery calcification. A neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus. Arterioscler. Thromb. Vasc. Biol., 1996, 16(8), 978-983.
[http://dx.doi.org/10.1161/01.ATV.16.8.978] [PMID: 8696962]
[60]
Olson, J.C.; Edmundowicz, D.; Becker, D.J.; Kuller, L.H.; Orchard, T.J. Coronary calcium in adults with type 1 diabetes: a stronger correlate of clinical coronary artery disease in men than in women. Diabetes, 2000, 49(9), 1571-1578.
[http://dx.doi.org/10.2337/diabetes.49.9.1571] [PMID: 10969842]
[61]
Beadenkopf, W.G.; Daoud, A.S.; Love, B.M. Calcification in the coronary arteries and its relationship to arteriosclerosis and myocardial infarction. Am. J. Roentgenol. Radium Ther. Nucl. Med., 1964, 92, 865-871.
[PMID: 14215099]
[62]
Loecker, T.H.; Schwartz, R.S.; Cotta, C.W.; Hickman, J.R., Jr Fluoroscopic coronary artery calcification and associated coronary disease in asymptomatic young men. J. Am. Coll. Cardiol., 1992, 19(6), 1167-1172.
[http://dx.doi.org/10.1016/0735-1097(92)90319-I] [PMID: 1564217]
[63]
Niskanen, L.; Suhonen, M.; Siitonen, O.; Lehtinen, J.; Uusitupa, M. Aortic and lower limb artery calcification in type 2 (non-insulin-dependent) diabetic patients and non-diabetic control subjects A five year follow-up study. Atherosclerosis, 1990, 84(1), 61-71.
[http://dx.doi.org/10.1016/0021-9150(90)90009-8] [PMID: 2248622]
[64]
Fitzgerald, P.J.; Ports, T.A.; Yock, P.G. Contribution of localized calcium deposits to dissection after angioplasty. An observational study using intravascular ultrasound. Circulation, 1992, 86(1), 64-70.
[http://dx.doi.org/10.1161/01.CIR.86.1.64] [PMID: 1617791]
[65]
Burke, A.P.; Taylor, A.; Farb, A.; Malcolm, G.T.; Virmani, R. Coronary calcification: insights from sudden coronary death victims. Z. Kardiol., 2000, 89(14)(Suppl. 2), S049-S053.
[http://dx.doi.org/10.1007/s003920070099] [PMID: 10769403]
[66]
Taylor, A.J.; Burke, A.P.; O’Malley, P.G.; Farb, A.; Malcom, G.T.; Smialek, J.; Virmani, R. A comparison of the Framingham risk index, coronary artery calcification, and culprit plaque morphology in sudden cardiac death. Circulation, 2000, 101(11), 1243-1248.
[http://dx.doi.org/10.1161/01.CIR.101.11.1243] [PMID: 10725282]
[67]
Guerin, A.P.; Blacher, J.; Pannier, B.; Marchais, S.J.; Safar, M.E.; London, G.M. Impact of aortic stiffness attenuation on survival of patients in end-stage renal failure. Circulation, 2001, 103(7), 987-992.
[http://dx.doi.org/10.1161/01.CIR.103.7.987] [PMID: 11181474]
[68]
Blacher, J.; Guerin, A.P.; Pannier, B.; Marchais, S.J.; London, G.M. Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension, 2001, 38(4), 938-942.
[http://dx.doi.org/10.1161/hy1001.096358] [PMID: 11641313]
[69]
London, G.M.; Blacher, J.; Pannier, B.; Guérin, A.P.; Marchais, S.J.; Safar, M.E. Arterial wave reflections and survival in end-stage renal failure. Hypertension, 2001, 38(3), 434-438.
[http://dx.doi.org/10.1161/01.HYP.38.3.434] [PMID: 11566918]
[70]
Giachelli, C.M.; Jono, S.; Shioi, A.; Nishizawa, Y.; Mori, K.; Morii, H. Vascular calcification and inorganic phosphate. Am. J. Kidney Dis., 2001, 38(4 (Suppl. 1)), S34-S37.
[http://dx.doi.org/10.1053/ajkd.2001.27394] [PMID: 11576919]
[71]
Giachelli, C.M. Vascular Calcification. J. Am. Soc. Nephrol., 2003, 14(9 (Suppl. 4)), S300-S304.
[http://dx.doi.org/10.1097/01.ASN.0000081663.52165.66] [PMID: 12939385]
[72]
Shioi, A.; Nishizawa, Y.; Jono, S.; Koyama, H.; Hosoi, M.; Morii, H. Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 1995, 15(11), 2003-2009.
[http://dx.doi.org/10.1161/01.ATV.15.11.2003] [PMID: 7583582]
[73]
Jono, S.; McKee, M.D.; Murry, C.E.; Shioi, A.; Nishizawa, Y.; Mori, K.; Morii, H.; Giachelli, C.M. Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res., 2000, 87(7), E10-E17.
[http://dx.doi.org/10.1161/01.RES.87.7.e10] [PMID: 11009570]
[74]
Lomashvili, K.A.; Cobbs, S.; Hennigar, R.A.; Hardcastle, K.I.; O’Neill, W.C. Phosphate-induced vascular calcification: Role of pyrophosphate and osteopontin. J. Am. Soc. Nephrol., 2004, 15(6), 1392-1401.
[http://dx.doi.org/10.1097/01.ASN.0000128955.83129.9C] [PMID: 15153550]
[75]
Li, X.; Yang, H.Y.; Giachelli, C.M. Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ. Res., 2006, 98(7), 905-912.
[http://dx.doi.org/10.1161/01.RES.0000216409.20863.e7] [PMID: 16527991]
[76]
Hayden, M.R.; Tyagi, S.C. Vasa vasorum in plaque angiogenesis, metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: A malignant transformation. Cardiovasc. Diabetol., 2004, 3(1), 1.
[http://dx.doi.org/10.1186/1475-2840-3-1] [PMID: 14761253]
[77]
Amann, K. Media calcification and intima calcification are distinct entities in chronic kidney disease. Clin. J. Am. Soc. Nephrol., 2008, 3(6), 1599-1605.
[http://dx.doi.org/10.2215/CJN.02120508] [PMID: 18815240]
[78]
Hayden, M.R.; Habibi, J.; Joginpally, T.; Karuparthi, P.R.; Sowers, J.R. Ultrastructure study of transgenic Ren2 Rat Aorta – Part 1: Endothelium and intima. Cardiorenal Med., 2012, 2(1), 66-82.
[http://dx.doi.org/10.1159/000335565] [PMID: 22493605]
[79]
Hayden, M.R.; Tyagi, S.C. Intimal redox stress: Accelerated atherosclerosis in metabolic syndrome and type 2 diabetes mellitus. Atheroscleropathy. Cardiovasc. Diabetol., 2002, 1(1), 3.
[http://dx.doi.org/10.1186/1475-2840-1-3] [PMID: 12392600]
[80]
Schwartz, B.G.; Economides, C.; Mayeda, G.S.; Burstein, S.; Kloner, R.A. The endothelial cell in health and disease: Its function, dysfunction, measurement and therapy. Int. J. Impot. Res., 2010, 22(2), 77-90.
[http://dx.doi.org/10.1038/ijir.2009.59] [PMID: 20032988]
[81]
Montón, M.; López-Farré, A.; Mosquera, J.R.; Sánchez de Miguel, L.; García-Durán, M.; Sierra, M.P.; Bellver, T.; Rico, L.; Casado, S. Endogenous angiotensin II produced by endothelium regulates interleukin-1beta-stimulated nitric oxide generation in rat isolated vessels. Hypertension, 1997, 30(5), 1191-1197.
[http://dx.doi.org/10.1161/01.HYP.30.5.1191] [PMID: 9369275]
[82]
Sasaki, S.; Warita, H.; Murakami, T.; Shibata, N.; Komori, T.; Abe, K.; Kobayashi, M.; Iwata, M. Ultrastructural study of aggregates in the spinal cord of transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol., 2005, 109(3), 247-255.
[http://dx.doi.org/10.1007/s00401-004-0939-7] [PMID: 15614580]
[83]
Wei, Y.; Whaley-Connell, A.T.; Habibi, J.; Rehmer, J.; Rehmer, N.; Patel, K.; Hayden, M.; DeMarco, V.; Ferrario, C.M.; Ibdah, J.A.; Sowers, J.R. Mineralocorticoid receptor antagonism attenuates vascular apoptosis and injury via rescuing protein kinase B activation. Hypertension, 2009, 53(2), 158-165.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.121954] [PMID: 19114643]
[84]
Proudfoot, D.; Skepper, J.N.; Shanahan, C.M.; Weissberg, P.L. Calcification of human vascular cells in vitro is correlated with high levels of matrix Gla protein and low levels of osteopontin expression. Arterioscler. Thromb. Vasc. Biol., 1998, 18(3), 379-388.
[http://dx.doi.org/10.1161/01.ATV.18.3.379] [PMID: 9514406]
[85]
Giachelli, C.M. The emerging role of phosphate in vascular calcification. Kidney Int., 2009, 75(9), 890-897.
[http://dx.doi.org/10.1038/ki.2008.644] [PMID: 19145240]
[86]
Schiffrin, E.L.; Lipman, M.L.; Mann, J.F.E. Chronic kidney disease: Effects on the cardiovascular system. Circulation, 2007, 116(1), 85-97.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.678342] [PMID: 17606856]
[87]
Sowers, K.M.; Hayden, M.R. Calcific uremic arteriolopathy: Pathophysiology, reactive oxygen species and therapeutic approaches. Oxid. Med. Cell. Longev., 2010, 3(2), 109-121.
[http://dx.doi.org/10.4161/oxim.3.2.11354] [PMID: 20716935]
[88]
Hayashi, M.; Takamatsu, I.; Kanno, Y.; Yoshida, T.; Abe, T.; Sato, Y. A case-control study of calciphylaxis in Japanese end-stage renal disease patients. Nephrol. Dial. Transplant., 2012, 27(4), 1580-1584.
[http://dx.doi.org/10.1093/ndt/gfr658] [PMID: 22121234]
[89]
Inaba, M.; Okuno, S.; Imanishi, Y.; Yamada, S.; Shioi, A.; Yamakawa, T.; Ishimura, E.; Nishizawa, Y. Role of fibroblast growth factor-23 in peripheral vascular calcification in non-diabetic and diabetic hemodialysis patients. Osteoporos. Int., 2006, 17(10), 1506-1513.
[http://dx.doi.org/10.1007/s00198-006-0154-6] [PMID: 16896512]
[90]
Zavaczki, E.; Jeney, V.; Agarwal, A.; Zarjou, A.; Oros, M.; Katkó, M.; Varga, Z.; Balla, G.; Balla, J. Hydrogen sulfide inhibits the calcification and osteoblastic differentiation of vascular smooth muscle cells. Kidney Int., 2011, 80(7), 731-739.
[http://dx.doi.org/10.1038/ki.2011.212] [PMID: 21716261]
[91]
Cicone, J.S.; Petronis, J.B.; Embert, C.D.; Spector, D.A. Successful treatment of calciphylaxis with intravenous sodium thiosulfate. Am. J. Kidney Dis., 2004, 43(6), 1104-1108.
[http://dx.doi.org/10.1053/j.ajkd.2004.03.018] [PMID: 15168392]
[92]
Hayden, M.R.; Goldsmith, D.J.A. Sodium thiosulfate: New hope for the treatment of calciphylaxis. Semin. Dial., 2010, 23(3), 258-262.
[http://dx.doi.org/10.1111/j.1525-139X.2010.00738.x] [PMID: 20636917]
[93]
Hayden, M.R.; Tyagi, S.C.; Kolb, L.; Sowers, J.R.; Khanna, R. Vascular ossification – calcification in metabolic syndrome, type 2 diabetes mellitus, chronic kidney disease, and calciphylaxis – calcific uremic arteriolopathy: the emerging role of sodium thiosulfate. Cardiovasc. Diabetol., 2005, 4(1), 4.
[http://dx.doi.org/10.1186/1475-2840-4-4] [PMID: 15777477]
[94]
Jahnen-Dechent, W.; Heiss, A.; Schäfer, C.; Ketteler, M. Fetuin-A regulation of calcified matrix metabolism. Circ. Res., 2011, 108(12), 1494-1509.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.234260] [PMID: 21659653]
[95]
Yang, R.; Teng, X.; Li, H.; Xue, H.M.; Guo, Q.; Xiao, L.; Wu, Y.M. Hydrogen sulfide improves vascular calcification in rats by inhibiting endoplasmic reticulum stress. Oxid. Med. Cell. Longev., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/9095242] [PMID: 27022436]
[96]
Hayden, M.R.; Sowers, K.M.; Pulakat, L.; Joginpally, T.; Krueger, B.; Whaley-Connell, A.; Sowers, J.R. Possible mechanisms of local tissue renin-angiotensin system activation in the cardiorenal metabolic syndrome and type 2 diabetes mellitus. Cardiorenal Med., 2011, 1(3), 193-210.
[http://dx.doi.org/10.1159/000329926] [PMID: 22096455]
[97]
Holdsworth, S.R.; Summers, S.A. Role of mast cells in progressive renal diseases. J. Am. Soc. Nephrol., 2008, 19(12), 2254-2261.
[http://dx.doi.org/10.1681/ASN.2008010015] [PMID: 18776124]
[98]
Roberts, I.S.D.; Brenchley, P.E. Mast cells: The forgotten cells of renal fibrosis. J. Clin. Pathol., 2000, 53(11), 858-862.
[http://dx.doi.org/10.1136/jcp.53.11.858] [PMID: 11127270]
[99]
Seo, Y.J.; Kim, S.J.; Jung, D.; Kim, J.; Shin, Y.S.; Choi, S.; Shin, E.; Song, S.Y. Collagenous ultrastructure of the torn medial meniscus posterior root: A transmission electron microscopy study. Am. J. Sports Med., 2019, 47(13), 3221-3228.
[http://dx.doi.org/10.1177/0363546519876110] [PMID: 31603698]
[100]
Chou, Y.H.; Li, C.C.; Hsu, H.; Chang, W.C.; Liu, C.C.; Li, W.M.; Ke, H.L.; Lee, M.H.; Liu, M.E.; Pan, S.C.; Wang, H.S. Renal function in patients with urinary stones of varying compositions. Kaohsiung J. Med. Sci., 2011, 27(7), 264-267.
[http://dx.doi.org/10.1016/j.kjms.2010.11.008] [PMID: 21757143]
[101]
Habibi, J.; Hayden, M.R.; Sowers, J.R.; Pulakat, L.; Tilmon, R.D.; Manrique, C.; Lastra, G.; DeMarco, V.G.; Whaley-Connell, A. Nebivolol attenuates redox-sensitive glomerular and tubular mediated proteinuria in obese rats. Endocrinology, 2011, 152(2), 659-668.
[http://dx.doi.org/10.1210/en.2010-1038] [PMID: 21177830]
[102]
Evan, A.P.; Lingeman, J.E.; Coe, F.L.; Parks, J.H.; Bledsoe, S.B.; Shao, Y.; Sommer, A.J.; Paterson, R.F.; Kuo, R.L.; Grynpas, M. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J. Clin. Invest., 2003, 111(5), 607-616.
[http://dx.doi.org/10.1172/JCI17038] [PMID: 12618515]
[103]
Srinivasan, S.; Pragasam, V.; Jenita, X.; Kalaiselvi, P.; Muthu, V.; Varalakshmi, P. Oxidative stress in urogenital tuberculosis patients: A predisposing factor for renal stone formation—amelioration by vitamin E supplementation. Clin. Chim. Acta, 2004, 350(1-2), 57-63.
[http://dx.doi.org/10.1016/j.cccn.2004.07.001] [PMID: 15530460]
[104]
Foley, R.N. Levels of phosphorus and patient outcomes. Nat. Rev. Nephrol., 2011, 7(8), 428-430.
[http://dx.doi.org/10.1038/nrneph.2011.87] [PMID: 21712850]
[105]
Torres, P.A.U.; De Brauwere, D.P. Three feedback loops precisely regulating serum phosphate concentration. Kidney Int., 2011, 80(5), 443-445.
[http://dx.doi.org/10.1038/ki.2011.146] [PMID: 21841832]
[106]
López, I.; Rodríguez-Ortiz, M.E.; Almadén, Y.; Guerrero, F.; Oca, A.M.; Pineda, C.; Shalhoub, V.; Rodríguez, M.; Aguilera-Tejero, E. Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo. Kidney Int., 2011, 80(5), 475-482.
[http://dx.doi.org/10.1038/ki.2011.107] [PMID: 21525854]
[107]
Dhondt, A.; Vanholder, R.; Van Biesen, W.; Lameire, N. The removal of uremic toxins. Kidney Int., 2000, 58, S47-S59.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07606.x] [PMID: 10936799]
[108]
Shahab, I.; Nolph, K.D. MIA syndrome in peritoneal dialysis: Prevention and treatment. Contrib. Nephrol., 2006, 150, 135-143.
[http://dx.doi.org/10.1159/000093513] [PMID: 16721003]
[109]
Himmelfarb, J.; Stenvinkel, P.; Ikizler, T.A.; Hakim, R.M. The elephant in uremia: Oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int., 2002, 62(5), 1524-1538.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00600.x] [PMID: 12371953]
[110]
Yamada, S.; Taniguchi, M.; Tokumoto, M.; Toyonaga, J.; Fujisaki, K.; Suehiro, T.; Noguchi, H.; Iida, M.; Tsuruya, K.; Kitazono, T. The antioxidant tempol ameliorates arterial medial calcification in uremic rats: Important role of oxidative stress in the pathogenesis of vascular calcification in chronic kidney disease. J. Bone Miner. Res., 2012, 27(2), 474-485.
[http://dx.doi.org/10.1002/jbmr.539] [PMID: 21987400]
[111]
Jagadeesha, D.K.; Lindley, T.E.; DeLeon, J.; Sharma, R.V.; Miller, F.; Bhalla, R.C. Tempol therapy attenuates medial smooth muscle cell apoptosis and neointima formation after balloon catheter injury in carotid artery of diabetic rats. Am. J. Physiol. Heart Circ. Physiol., 2005, 289(3), H1047-H1053.
[http://dx.doi.org/10.1152/ajpheart.01071.2004] [PMID: 15833798]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy