Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

The Protective Effect of Sanggenol L Against DMBA-induced Hamster Buccal Pouch Carcinogenesis Induces Apoptosis and Inhibits Cell Proliferative Signalling Pathway

Author(s): Qing Fu, Fangming Zhang* and Annamalai Vijayalakshmi

Volume 27, Issue 6, 2024

Published on: 29 August, 2023

Page: [885 - 893] Pages: 9

DOI: 10.2174/1386207326666230726140706

Price: $65

Abstract

Background: Oral squamous cell carcinoma (OSCC) has a poor prognosis when treated with surgery and chemotherapy. Therefore, a new therapy and preventative strategy for OSCC and its underlying mechanisms are desperately needed. The purpose of this study was to examine the chemopreventive effects of sanggenol L on oral squamous cell carcinoma (OSCC). The research focused on molecular signalling pathways in 7,12-dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis.

Aim: The purpose of this study was to look at the biochemical and chemopreventive effects of sanggenol L on 7,12-dimethylbenz(a)anthracene (DMBA)-induced HBP (hamster buccal pouch) carcinogenesis via cell proliferation and the apoptotic pathway.

Methods: After developing squamous cell carcinoma, oral tumours continued to progress leftward into the pouch 3 times per week for 10 weeks while being exposed to 0.5 % reactive DMBA three times per week. Tumour growth was caused by biochemical abnormalities that induced inflammation, increased cell proliferation, and decreased apoptosis.

Results: Oral sanggenol L (10 mg/kg bw) supplementation with cancer-induced model DMBApainted hamsters prevented tumour occurrences, improved biochemistry, inhibited inflammatory markers, decreased cell proliferation marker expression of tumour necrosis factor-alpha (TNF- α), nuclear factor (NF-κB), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and induced apoptosis.

Conclusion: Sanggenol L could be developed into a new medicine for the treatment of oral carcinogenesis.

Graphical Abstract

[1]
Singh, R.K. Key heterocyclic cores for smart anticancer drug–design Part II. 2022.
[http://dx.doi.org/10.2174/97898150400741220101]
[2]
Ram, H.; Sarkar, J.; Kumar, H.; Konwar, R.; Bhatt, M.L.B.; Mohammad, S. Oral cancer: Risk factors and molecular pathogenesis. J. Maxillofac. Oral Surg., 2011, 10(2), 132-137.
[http://dx.doi.org/10.1007/s12663-011-0195-z] [PMID: 22654364]
[3]
Jiang, X.; Wu, J.; Wang, J.; Huang, R. Tobacco and oral squamous cell carcinoma: A review of carcinogenic pathways. Tob. Induc. Dis., 2019, 17(1), 29.
[http://dx.doi.org/10.18332/tid/111652] [PMID: 31582940]
[4]
Al-Jaber, A.; Al-Nasser, L.; El-Metwally, A. Epidemiology of oral cancer in Arab countries. Saudi Med. J., 2016, 37(3), 249-255.
[http://dx.doi.org/10.15537/smj.2016.3.11388] [PMID: 26905345]
[5]
Tandon, P.; Dadhich, A.; Saluja, H.; Bawane, S.; Sachdeva, S. The prevalence of squamous cell carcinoma in different sites of oral cavity at our rural health care centre in loni, maharashtra: A retrospective 10-year study. Contemp. Oncol., 2017, 2(2), 178-183.
[http://dx.doi.org/10.5114/wo.2017.68628] [PMID: 28947890]
[6]
Graham, S.; Dayal, H.; Rohrer, T.; Swanson, M.; Sultz, H.; Shedd, D.; Fischman, S. Dentition, diet, tobacco, and alcohol in the epidemiology of oral cancer. J. Natl. Cancer Inst., 1977, 59(6), 1611-1618.
[http://dx.doi.org/10.1093/jnci/59.6.1611] [PMID: 926184]
[7]
Dhiman, A.; Sharma, R.; Singh, R.K. Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018–2021). Acta Pharm. Sin. B, 2022, 12(7), 3006-3027.
[http://dx.doi.org/10.1016/j.apsb.2022.03.021] [PMID: 35865090]
[8]
Fogarty, C.E.; Diwanji, N.; Lindblad, J.L.; Tare, M.; Amcheslavsky, A.; Makhijani, K.; Brückner, K.; Fan, Y.; Bergmann, A. Extracellular reactive oxygen species drive apoptosis-induced proliferation via drosophila macrophages. Curr. Biol., 2016, 26(5), 575-584.
[http://dx.doi.org/10.1016/j.cub.2015.12.064] [PMID: 26898463]
[9]
Oeckinghaus, A.; Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol., 2009, 1(4), a000034.
[http://dx.doi.org/10.1101/cshperspect.a000034] [PMID: 20066092]
[10]
Liu, B.; Qu, L.; Yan, S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int., 2015, 15(1), 106.
[http://dx.doi.org/10.1186/s12935-015-0260-7] [PMID: 26549987]
[11]
Kyriakopoulos, A.M.; Nagl, M.; Baliou, S.; Zoumpourlis, V. Alleviating promotion of inflammation and cancer induced by nonsteroidal anti-inflammatory drugs. Int. J. Inflamm., 2017, 2017, 1-17.
[http://dx.doi.org/10.1155/2017/9632018] [PMID: 28573063]
[12]
Olmos, G.; Lladó, J. Tumor necrosis factor alpha: A link between neuroinflammation and excitotoxicity. Mediators Inflamm., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/861231] [PMID: 24966471]
[13]
Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal., 2014, 20(7), 1126-1167.
[http://dx.doi.org/10.1089/ars.2012.5149] [PMID: 23991888]
[14]
Xia, Y. Shen, S.; Verma, I.M. NF-κB, an active player in human cancers. Cancer Immunol. Res., 2014, 2(9), 823-830.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0112] [PMID: 25187272]
[15]
Zhu, K.; Wu, Y.; He, P.; Fan, Y.; Zhong, X.; Zheng, H.; Luo, T. PI3K/AKT/mTOR-targeted therapy for breast cancer. Cells, 2022, 11(16), 2508.
[http://dx.doi.org/10.3390/cells11162508] [PMID: 36010585]
[16]
Wang, Y.Y.; Chen, Y.K.; Lo, S.; Chi, T.C.; Chen, Y.H.; Hu, S.C.S.; Chen, Y.W.; Jiang, S.S.; Tsai, F.Y.; Liu, W.; Li, R.N.; Hsieh, Y.C.; Huang, C.J.; Yuan, S.S.F. MRE11 promotes oral cancer progression through RUNX2/CXCR4/AKT/FOXA2 signaling in a nuclease-independent manner. Oncogene, 2021, 40(20), 3510-3532.
[http://dx.doi.org/10.1038/s41388-021-01698-5] [PMID: 33927349]
[17]
Vairaktaris, E.; Spyridonidou, S.; Papakosta, V.; Vylliotis, A.; Lazaris, A.; Perrea, D.; Yapijakis, C.; Patsouris, E. The hamster model of sequential oral oncogenesis. Oral Oncol., 2008, 44(4), 315-324.
[http://dx.doi.org/10.1016/j.oraloncology.2007.08.015] [PMID: 18061531]
[18]
Nagini, S.; Letchoumy, P.V. A, T.; Cr, R. Of humans and hamsters: A comparative evaluation of carcinogen activation, DNA damage, cell proliferation, apoptosis, invasion, and angiogenesis in oral cancer patients and hamster buccal pouch carcinomas. Oral Oncol., 2009, 45(6), e31-e37.
[http://dx.doi.org/10.1016/j.oraloncology.2009.01.006] [PMID: 19250857]
[19]
Mehta, S.; Sharma, A.K.; Singh, R.K. Advances in ethnobotany, synthetic phytochemistry and pharmacology of endangered herb Picrorhiza kurroa (Kutki): A comprehensive review (2010-2020). Mini Rev. Med. Chem., 2021, 21(19), 2976-2995.
[http://dx.doi.org/10.2174/1389557521666210401090028] [PMID: 33797375]
[20]
Mehta, S.; Sharma, A.K.; Singh, R.K. Therapeutic journey of Andrographis paniculata (Burm.f.) nees from natural to synthetic and nanoformulations. Mini Rev. Med. Chem., 2021, 21(12), 1556-1577.
[http://dx.doi.org/10.2174/1389557521666210315162354] [PMID: 33719961]
[21]
Greenwell, M.; Rahman, P.K. Medicinal plants: Their use in anticancer treatment. Int. J. Pharm. Sci. Res., 2015, 6(11), 4103-4112.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.6(10).4103-12] [PMID: 26594645]
[22]
Desai, A.; Qazi, G.; Ganju, R.; El-Tamer, M.; Singh, J.; Saxena, A.; Bedi, Y.; Taneja, S.; Bhat, H. Medicinal plants and cancer chemoprevention. Curr. Drug Metab., 2008, 9(7), 581-591.
[http://dx.doi.org/10.2174/138920008785821657] [PMID: 18781909]
[23]
Nam, M.S.; Jung, D.B.; Seo, K.H.; Kim, B.I.; Kim, J.H.; Kim, J.H.; Kim, B.; Baek, N.I.; Kim, S.H. Apoptotic Effect of Sanggenol L via caspase activation and inhibition of NF-κB signaling in ovarian cancer cells. Phytother. Res., 2016, 30(1), 90-96.
[http://dx.doi.org/10.1002/ptr.5505] [PMID: 26555861]
[24]
Won, Y.S.; Seo, K.I.; Sanggenol, L. Sanggenol L induces apoptosis and cell cycle arrest via activation of p53 and suppression of PI3K/Akt/mTOR signaling in human prostate cancer cells. Nutrients, 2020, 12(2), 488.
[http://dx.doi.org/10.3390/nu12020488] [PMID: 32075054]
[25]
Mandel, I.D.; Shklar, G. Development of experimental oral carcinogenesis and its impact on current oral cancer research. J. Dent. Res., 1999, 78(12), 1768-1772.
[http://dx.doi.org/10.1177/00220345990780120101] [PMID: 10598904]
[26]
Kakkar, P.; Das, B.; Viswanathan, P.N. A modified spectrophotometric assay of superoxide dismutase. Indian J. Biochem. Biophys., 1984, 21(2), 130-132.
[PMID: 6490072]
[27]
Sinha, A.K. Colorimetric assay of catalase. Anal. Biochem., 1972, 47(2), 389-394.
[http://dx.doi.org/10.1016/0003-2697(72)90132-7] [PMID: 4556490]
[28]
Beutler, E.; Duron, O.; Kelly, B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med., 1963, 61, 882-888.
[PMID: 13967893]
[29]
Desai, I.D. Vitamin E analysis methods for animal tissues. Methods Enzymol., 1984, 105, 138-147.
[http://dx.doi.org/10.1016/S0076-6879(84)05019-9] [PMID: 6727662]
[30]
Palan, P.R.; Mikhail, M.S.; Basu, J.; Romney, S.L. Plasma levels of antioxidant β ‐carotene and α‐tocopherol in uterine cervix dysplasias and cancer. Nutr. Cancer, 1991, 15(1), 13-20.
[http://dx.doi.org/10.1080/01635589109514106] [PMID: 2017395]
[31]
Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science, 1973, 179(4073), 588-590.
[http://dx.doi.org/10.1126/science.179.4073.588] [PMID: 4686466]
[32]
Singh, R.K.; Kumar, S.; Prasad, D.N.; Bhardwaj, T.R. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives. Eur. J. Med. Chem., 2018, 151, 401-433.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.001] [PMID: 29649739]
[33]
Liu, L.; Chen, J.; Cai, X.; Yao, Z.; Huang, J. Progress in targeted therapeutic drugs for oral squamous cell carcinoma. Surg. Oncol., 2019, 31, 90-97.
[http://dx.doi.org/10.1016/j.suronc.2019.09.001] [PMID: 31550560]
[34]
Mehta, S.; Sharma, A.K.; Singh, R.K. Pharmacological activities and molecular mechanisms of pure and crude extract of andrographis paniculata: An update. Phytomedicine Plus, 2021, 1(4), 100085.
[35]
Ijaz, S.; Akhtar, N.; Khan, M.S.; Hameed, A.; Irfan, M.; Arshad, M.A.; Ali, S.; Asrar, M. Plant derived anticancer agents: A green approach towards skin cancers. Biomed. Pharmacother., 2018, 103, 1643-1651.
[http://dx.doi.org/10.1016/j.biopha.2018.04.113] [PMID: 29864953]
[36]
Mehta, S; Sharma, AK; Singh, RK Ethnobotany, pharmacological activities and bioavailability studies on “King of Bitters” (Kalmegh): A Review (2010-2020). Comb. Chem. High Throughput Screen., 2022, 25(5), 788-807.
[http://dx.doi.org/10.2174/1386207324666210310140611]
[37]
Koirala, P.; Seong, S.; Zhou, Y.; Shrestha, S.; Jung, H.; Choi, J. structure–activity relationship of the tyrosinase inhibitors kuwanon g, Mulberrofuran G, and Albanol B from morus species: A kinetics and molecular docking study. Molecules, 2018, 23(6), 1413.
[http://dx.doi.org/10.3390/molecules23061413] [PMID: 29891812]
[38]
Zhao, P.; Inoue, K.; Kouno, I.; Yamamoto, H. Characterization of leachianone G 2”-dimethylallyltransferase, a novel prenyl side-chain elongation enzyme for the formation of the lavandulyl group of sophoraflavanone G in Sophora flavescens Ait. cell suspension cultures. Plant Physiol., 2003, 133(3), 1306-1313.
[http://dx.doi.org/10.1104/pp.103.025213] [PMID: 14551337]
[39]
Zeisel, S.H. Antioxidants suppress apoptosis. J. Nutr., 2004, 134(11), 3179S-3180S.
[http://dx.doi.org/10.1093/jn/134.11.3179S] [PMID: 15514296]
[40]
Møller, P.; Loft, S. Dietary antioxidants and beneficial effect on oxidatively damaged DNA. Free Radic. Biol. Med., 2006, 41(3), 388-415.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.04.001] [PMID: 16843820]
[41]
Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med., 2017, 104, 144-164.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.004] [PMID: 28088622]
[42]
Parrish, A.B.; Freel, C.D.; Kornbluth, S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb. Perspect. Biol., 2013, 5(6), a008672.
[http://dx.doi.org/10.1101/cshperspect.a008672] [PMID: 23732469]
[43]
Roberti, A. Chaffey, L.E.; Greaves, D.R. NF-κB signaling and inflammation—drug repurposing to treat inflammatory disorders? Biology, 2022, 11(3), 372.
[http://dx.doi.org/10.3390/biology11030372] [PMID: 35336746]
[44]
Liu, T. Zhang, L; Joo, D; Sun, SC NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2, 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23]
[45]
Tak, P.P. Firestein, G.S. NF-κB: A key role in inflammatory diseases. J. Clin. Invest., 2001, 107(1), 7-11.
[http://dx.doi.org/10.1172/JCI11830] [PMID: 11134171]
[46]
Sehajpal, S.; Prasad, D.N.; Singh, R.K. Novel ketoprofen–antioxidants mutual codrugs as safer nonsteroidal anti‐inflammatory drugs: Synthesis, kinetic and pharmacological evaluation. Arch. Pharm., 2019, 352(7), 1800339.
[http://dx.doi.org/10.1002/ardp.201800339] [PMID: 31231875]
[47]
Balakrishnan, V.; Ganapathy, S.; Veerasamy, V.; Duraisamy, R.; Sathiavakoo, V.A.; Krishnamoorthy, V.; Lakshmanan, V. Anticancer and antioxidant profiling effects of Nerolidol against DMBA induced oral experimental carcinogenesis. J. Biochem. Mol. Toxicol., 2022, 36(6), e23029.
[http://dx.doi.org/10.1002/jbt.23029] [PMID: 35243731]
[48]
Gurpinar, E.; Grizzle, W.E.; Piazza, G.A. COX-independent mechanisms of cancer chemoprevention by anti-inflammatory drugs. Front. Oncol., 2013, 3, 181.
[http://dx.doi.org/10.3389/fonc.2013.00181] [PMID: 23875171]
[49]
Greenhough, A.; Smartt, H.J.M.; Moore, A.E.; Roberts, H.R.; Williams, A.C.; Paraskeva, C.; Kaidi, A. The COX-2/PGE2 pathway: Key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 2009, 30(3), 377-386.
[http://dx.doi.org/10.1093/carcin/bgp014] [PMID: 19136477]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy