Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

[BPy][OH] Immobilized Hydrotalcite Clay Catalytic System for 1,2-dihyd-roquinazolines Synthesis

Author(s): Vivek Srivastava*

Volume 11, Issue 1, 2024

Published on: 12 September, 2023

Page: [33 - 43] Pages: 11

DOI: 10.2174/2213337210666230726123919

Price: $65

conference banner
Abstract

We easily synthesized two ionic liquids, [BMIM][OH] and [BPy][OH], with high yield. We found that hydrotalcite clay, mediated by these ionic liquids, is a highly effective catalyst for synthesizing biologically active 1,2-dihydroquinazoline derivatives. Using a simple reaction protocol and easy product isolation steps, we successfully synthesized 18 different 1,2-dihydroquinazoline derivatives and were able to recycle the catalysts up to 8 times. Overall, the use of hydrotalcite and [BPy][OH] catalysts provide a more efficient and environmentally friendly method for synthesizing quinazolines compared to traditional methods that often require harsh conditions and toxic reagents.

Background: 1,2-Dihydroquinazolines are an important class of heterocyclic compounds with diverse biological activities, including anticancer, antifungal, and antibacterial properties. They also exhibit other pharmacological activities such as antihypertensive, anti-inflammatory, and antiviral effects. The synthesis of 1,2-dihydroquinazolines dates to the early 20th century when they were first synthesized by Pictet and Huber in 1911 by the condensation of anthranilic acid with aldehydes or ketones in the presence of strong acids. Since then, numerous methods have been developed for their synthesis, including the cyclization of o-aminobenzamides, the reaction of o-aminoaryl ketones with aldehydes or ketones, and the use of catalysts such as Lewis acids and transition metals. In recent years, the development of new synthetic methods for the efficient and selective synthesis of 1,2-dihydroquinazolines has been of great interest to synthetic chemists, particularly in the pharmaceutical industry. These methods include the use of microwave irradiation, ultrasound, and ionic liquids as green solvents.

Overall, the synthesis of 1,2-dihydroquinazolines has been an active area of research, and new methods continue to be developed to improve their synthesis and properties for various applications.

Methods: We easily synthesized two ionic liquids, [BMIM][OH] and [BPy][OH], with high yields. We found that hydrotalcite clay, mediated by these ionic liquids, is a highly effective catalyst for synthesizing biologically active 1,2-dihydroquinazoline derivatives.

Results: Overall, our results provide insights into the development of efficient and sustainable methods for the synthesis of 1, 2-dihydroquinazolines.

Conclusion: In summary, our studies demonstrated that the [BPy][OH] ionic liquid and hydrotalcite clay catalytic system could be used for the synthesis of various 1, 2-dihydroquinazolines using different aromatic carbonyl compounds, amino benzophenone derivatives, and heterocyclic aldehydes. The presence of electron-donating substituents in the phenyl group provided higher yields than electronwithdrawing groups, and the para position of the aldehyde group had a more significant effect than the ortho or meta position. Our catalytic system was also found to be recyclable for up to eight runs without significant loss of catalytic activity. Overall, our results provide insights into the development of efficient and sustainable methods for the synthesis of 1, 2-dihydroquinazolines.

Graphical Abstract

[1]
Haghighijoo, Z.; Zamani, L.; Moosavi, F.; Emami, S. Therapeutic potential of quinazoline derivatives for Alzheimer’s disease: A comprehensive review. Eur. J. Med. Chem., 2022, 227, 113949.
[http://dx.doi.org/10.1016/j.ejmech.2021.113949] [PMID: 34742016]
[2]
Jafari, E.; Khajouei, M.R.; Hassanzadeh, F.; Hakimelahi, G.H.; Khodarahmi, G.A. Quinazolinone and quinazoline derivatives: recent structures with potent antimicrobial and cytotoxic activities. Res. Pharm. Sci., 2016, 11(1), 1-14.
[PMID: 27051427]
[3]
Faisal, M.; Saeed, A. Chemical insights into the synthetic chemistry of quinazolines: recent advances. Front Chem., 2021, 8, 594717.
[http://dx.doi.org/10.3389/fchem.2020.594717] [PMID: 33585397]
[4]
Li, Y.; Xiao, J.; Zhang, Q.; Yu, W.; Liu, M.; Guo, Y.; He, J.; Liu, Y. The association between anti-tumor potency and structure-activity of protein-kinases inhibitors based on quinazoline molecular skeleton. Bioorg. Med. Chem., 2019, 27(3), 568-577.
[http://dx.doi.org/10.1016/j.bmc.2018.12.032] [PMID: 30600149]
[5]
Patel, H.; Shirkhedkar, A.; Bari, S.; Patil, K.; Arambhi, A.; Pardeshi, C.; Kulkarni, A.; Surana, S. Quinazolino-thiadiazoles as antimicrobial agents. Bull. Fac. Pharm. Cairo Univ., 2018, 56(1), 83-90.
[http://dx.doi.org/10.1016/j.bfopcu.2018.03.001]
[6]
Held, F.E.; Guryev, A.A.; Fröhlich, T.; Hampel, F.; Kahnt, A.; Hutterer, C.; Steingruber, M.; Bahsi, H.; Von Bojničic-Kninski, C.; Mattes, D.S; Foertsch, T.C; Nesterov-Mueller, A.; Marschall, M.; Tsogoeva, S.B Facile access to potent antiviral quinazoline heterocycles with fluorescence properties via merging metal-free domino reactions. Nature. Commun., 2017, 8(1), 1-9.
[7]
Zayed, M.F. Medicinal chemistry of quinazolines as analgesic and anti-inflammatory agents. Chem. Eng., 2022, 6, 94.
[8]
Tamatam, R.; Kim, S.H.; Shin, D. Transition-metal-catalyzed synthesis of quinazolines: A review. Front Chem., 2023, 11, 1140562.
[http://dx.doi.org/10.3389/fchem.2023.1140562] [PMID: 37007059]
[9]
Kut, M.M.; Onysko, M.Y. Synthesis of functionalized azolo(azino)quinazolines by electrophilic cyclization (microreview). Chem. Heterocycl. Compd., 2021, 57(5), 528-530.
[http://dx.doi.org/10.1007/s10593-021-02937-z]
[10]
Chen, T.; Zhang, Y.; Xu, Y. Efficient synthesis of quinazoline-2,4(1 h, 3 h)-dione via simultaneous activated co 2 and 2-aminobenzonitrile by 1-methylhydantoin anion-functionalized ionic liquid through the multiple-site cooperative interactions. ACS Sustain. Chem.& Eng., 2022, 10(32), 10699-10711.
[http://dx.doi.org/10.1021/acssuschemeng.2c03249]
[11]
Akazome, M.; Yamamoto, J.; Kondo, T.; Watanabe, Y. Palladium complex-catalyzed intermolecular reductive N-heterocyclization: novel synthesis of quinazoline derivatives from 2-nitrobenzaldehyde or 2-nitrophenyl ketones with formamide. J. Organomet. Chem., 1995, 494(1-2), 229-233.
[http://dx.doi.org/10.1016/0022-328X(95)05387-5]
[12]
Gheidari, D.; Mehrdad, M.; Maleki, S. Recent advances in synthesis of quinazoline‐2,4(1H,3H)‐diones: Versatile building blocks in N ‐heterocyclic compounds. Appl. Organomet. Chem., 2022, 36(6), e6631.
[http://dx.doi.org/10.1002/aoc.6631]
[13]
Wdowiak, P.; Matysiak, J.; Kuszta, P.; Czarnek, K.; Niezabitowska, E.; Baj, T. Quinazoline derivatives as potential therapeutic agents in urinary bladder cancer therapy. Front Chem., 2021, 9, 765552.
[http://dx.doi.org/10.3389/fchem.2021.765552] [PMID: 34805097]
[14]
Amin, K.M.; Kamel, M.M.; Anwar, M.M.; Khedr, M.; Syam, Y.M. Synthesis, biological evaluation and molecular docking of novel series of spiro [(2H,3H) quinazoline-2,1′- cyclohexan]-4(1H)- one derivatives as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2010, 45(6), 2117-2131.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.078] [PMID: 20137837]
[15]
Alesawy, M.S.; Al-Karmalawy, A.A.; Elkaeed, E.B.; Alswah, M.; Belal, A.; Taghour, M.S.; Eissa, I.H. Design and discovery of new 1,2,4‐triazolo[4,3‐ c]quinazolines as potential DNA intercalators and topoisomerase II inhibitors. Arch. Pharm. (Weinheim), 2021, 354(3), 2000237.
[http://dx.doi.org/10.1002/ardp.202000237] [PMID: 33226150]
[16]
Wang, M.; Zhang, G.; Wang, Y.; Wang, J.; Zhu, M.; Cen, S.; Wang, Y. Design, synthesis and anti-influenza A virus activity of novel 2,4-disubstituted quinazoline derivatives. Bioorg. Med. Chem. Lett., 2020, 30(11), 127143.
[http://dx.doi.org/10.1016/j.bmcl.2020.127143] [PMID: 32273213]
[17]
Modh, R.P.; De Clercq, E.; Pannecouque, C.; Chikhalia, K.H. Design, synthesis, antimicrobial activity and anti-HIV activity evaluation of novel hybrid quinazoline–triazine derivatives. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 100-108.
[http://dx.doi.org/10.3109/14756366.2012.755622] [PMID: 23327639]
[18]
Calland, N.; Dubuisson, J.; Rouillé, Y.; Séron, K.; Hepatitis, C. Hepatitis C virus and natural compounds: a new antiviral approach? Viruses, 2012, 4(10), 2197-2217.
[http://dx.doi.org/10.3390/v4102197] [PMID: 23202460]
[19]
Magyar, K.; Deres, L.; Eros, K.; Bruszt, K.; Seress, L.; Hamar, J.; Hideg, K.; Balogh, A.; Gallyas, F., Jr; Sumegi, B.; Toth, K.; Halmosi, R. A quinazoline-derivative compound with PARP inhibitory effect suppresses hypertension-induced vascular alterations in spontaneously hypertensive rats. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(7), 935-944.
[http://dx.doi.org/10.1016/j.bbadis.2014.03.008] [PMID: 24657811]
[20]
Laddha, S.S.; Bhatnagar, S.P. A new therapeutic approach in Parkinson’s disease: Some novel quinazoline derivatives as dual selective phosphodiesterase 1 inhibitors and anti-inflammatory agents. Bioorg. Med. Chem., 2009, 17(19), 6796-6802.
[http://dx.doi.org/10.1016/j.bmc.2009.08.041] [PMID: 19744861]
[21]
Mishra, S.; Das, D.; Sahu, A.; Verma, E.; Patil, S.; Agarwal, R.K.; Gajbhiye, A. Electronegativity in substituted-4(h)-quinazolinones causes anxiolysis without a sedative-hypnotic adverse reaction in female wistar rats. Cent. Nerv. Syst. Agents Med. Chem., 2020, 20(1), 26-40.
[http://dx.doi.org/10.2174/1871524920666191220112545] [PMID: 31858906]
[22]
Mohammadkhani, L.; Heravi, M.M. Microwave-assisted synthesis of quinazolines and quinazolinones: an overview. Front Chem., 2020, 8, 580086.
[http://dx.doi.org/10.3389/fchem.2020.580086] [PMID: 33282829]
[23]
Abbas, S.Y.; El-Bayouki, K.A.M.; Basyouni, W.M. Utilization of isatoic anhydride in the syntheses of various types of quinazoline and quinazolinone derivatives. Synth. Commun., 2016, 46(12), 993-1035.
[http://dx.doi.org/10.1080/00397911.2016.1177087]
[24]
Akbari, A.; Zahedifar, M. Synthesis of Quinazolin-4(3H)-ones via a novel approach. J. Saudi Chem. Soc., 2023, 27(2), 101597.
[http://dx.doi.org/10.1016/j.jscs.2023.101597]
[25]
Bhattacharyya, D.; Adhikari, P.; Deori, K.; Das, A. Ruthenium pincer complex catalyzed efficient synthesis of quinoline, 2-styrylquinoline and quinazoline derivatives via acceptorless dehydrogenative coupling reactions. Catal. Sci. Technol., 2022, 12(18), 5695-5702.
[http://dx.doi.org/10.1039/D2CY01030E]
[26]
Kirinde Arachchige, P.T.; Yi, C.S. Synthesis of quinazoline and quinazolinone derivatives via ligand-promoted ruthenium-catalyzed dehydrogenative and deaminative coupling reaction of 2-aminophenyl ketones and 2-aminobenzamides with amines. Org. Lett., 2019, 21(9), 3337-3341.
[http://dx.doi.org/10.1021/acs.orglett.9b01082] [PMID: 31002524]
[27]
Mphahlele, M.J.; Maluleka, M.M. Advances in metal-catalyzed cross-coupling reactions of halogenated quinazolinones and their quinazoline derivatives. Molecules, 2014, 19, 17435-17463.
[28]
Zaib, S.; Khan, I. Recent advances in the sustainable synthesis of quinazolines using earth-abundant first row transition metals. Curr. Org. Chem., 2020, 24(15), 1775-1792.
[http://dx.doi.org/10.2174/1385272824999200726230848]
[29]
Liang, J.; Yang, G.; Zhang, Y.; Guo, D.; Zhao, J.; Li, G.; Tang, Z. Pictet–Spengler reaction based on in situ generated α-amino iminium ions through the Heyns rearrangement. Org. Chem. Front., 2020, 7(20), 3242-3246.
[http://dx.doi.org/10.1039/D0QO00722F]
[30]
Kundu, B.; Sawant, D.; Partani, P.; Kesarwani, A.P. New application of Pictet-Spengler reaction leading to the synthesis of an unusual seven-membered heterocyclic ring system. J. Org. Chem., 2005, 70(12), 4889-4892.
[http://dx.doi.org/10.1021/jo050384h] [PMID: 15932339]
[31]
Hyland, E.E.; Kelly, P.Q.; McKillop, A.M.; Dherange, B.D.; Levin, M.D. Unified access to pyrimidines and quinazolines enabled by n–n cleaving carbon atom insertion. J. Am. Chem. Soc., 2022, 144(42), 19258-19264.
[http://dx.doi.org/10.1021/jacs.2c09616] [PMID: 36240487]
[32]
Fatehi, A.; Ghorbani-Vaghei, R.; Alavinia, S.; Mahmoodi, J. Synthesis of quinazoline derivatives catalyzed by a new efficient reusable nanomagnetic catalyst supported with functionalized piperidinium benzene‐1,3‐disulfonate ionic liquid. ChemistrySelect, 2020, 5(3), 944-951.
[http://dx.doi.org/10.1002/slct.201904679]
[33]
Singh, R.R.; Singh, T.P.; Devi, T.L.; Devi, T.J.; Singh, O.M. Synthesis of 2,4-disubstituted quinazolines promoted by deep eutectic solvent. Curr. Res. Green and Sustaina. Chem., 2021, 4, 100130.
[http://dx.doi.org/10.1016/j.crgsc.2021.100130]
[34]
Kiran, K.G.; Thandeeswaran, M.; Ayub Nawaz, K.A.; Easwaran, M.; Jayagopi, K.K.; Ebrahimi, L.; Palaniswamy, M.; Mahendran, R.; Angayarkanni, J. Quinazoline derivative from indigenous isolate, Nocardiopsis alba inhibits human telomerase enzyme. J. Appl. Microbiol., 2016, 121(6), 1637-1652.
[http://dx.doi.org/10.1111/jam.13281] [PMID: 27567126]
[35]
Hu, F.P.; Cui, X.F.; Lu, G.Q.; Huang, G.S. Base-promoted Lewis acid catalyzed synthesis of quinazoline derivatives. Org. Biomol. Chem., 2020, 18(23), 4376-4380.
[http://dx.doi.org/10.1039/D0OB00225A] [PMID: 32458847]
[36]
Luo, Y.; Wu, Y.; Wang, Y.; Sun, H.; Xie, Z.; Zhang, W.; Gao, Z. Ethanol promoted titanocene Lewis acid catalyzed synthesis of quinazoline derivatives. RSC Advances, 2016, 6(70), 66074-66077.
[http://dx.doi.org/10.1039/C6RA14583C]
[37]
Soda, A.K.; Bontha, I.R.; Chilaka, S.K.; Chellu, R.K.; Madabhushi, S. Lewis acid‐catalyzed tandem synthesis of quinazoline‐2,4‐diones by reaction of isatins with Aryl/Alkyl amines using tbhp as oxidant. Asian J. Org. Chem., 2022, 11(7), e202200193.
[http://dx.doi.org/10.1002/ajoc.202200193]
[38]
More, S.V.; Sastry, M.N.V.; Yao, C.F. Cerium (iv) ammonium nitrate (CAN) as a catalyst in tap water: A simple, proficient and green approach for the synthesis of quinoxalines. Green Chem., 2006, 8(1), 91-95.
[http://dx.doi.org/10.1039/B510677J]
[39]
Dindulkar, S.D.; Oh, J.; Arole, V.M.; Jeong, Y.T. Supported ceric ammonium nitrate: A highly efficient catalytic system for the synthesis of diversified 2,3-substituted 2,3-dihydroquinazolin-4(1H)-ones. C. R. Chim., 2014, 17(10), 971-979.
[http://dx.doi.org/10.1016/j.crci.2013.11.008]
[40]
Gajaganti, S.; Kumari, S.; Kumar, D.; Allam, B.K.; Srivastava, V.; Singh, S. An efficient, green, and solvent-free multi-component synthesis of benzimidazolo/benzothiazolo quinazolinone derivatives using Sc (OTf)3 catalyst under controlled microwave irradiation. J. Heterocycl. Chem., 2018, 55(11), 2578-2584.
[http://dx.doi.org/10.1002/jhet.3314]
[41]
Candu, N.; Ciobanu, M.; Filip, P.; Haskouri, J.E.; Guillem, C.; Amoros, P.; Beltran, D.; Coman, S.M.; Parvulescu, V.I. Efficient Sc triflate mesoporous-based catalysts for the synthesis of 4,4′-methylenedianiline from aniline and 4-aminobenzylalcohol. J. Catal., 2012, 287, 76-85.
[http://dx.doi.org/10.1016/j.jcat.2011.12.008]
[42]
Satheeshkumar, R.; Sayin, K.; Kaminsky, W.; Rajendra Prasad, K.J. Indium triflate and ionic liquid-mediated friedländer synthesis of 2-acylquinolines. J. Org. Chem., 2017, 47, 1940-1954.
[http://dx.doi.org/10.1080/00397911.2017.1357185]
[43]
Saha, M.; Mukherjee, P.; Das, A.R. A facile and versatile protocol for the one-pot PhI(OAc)2 mediated divergent synthesis of quinazolines from 2-aminobenzylamine. Tetrahedron Lett., 2017, 58(21), 2044-2049.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.036]
[44]
Buyukcakir, O.; Yuksel, R.; Jiang, Y.; Lee, S.H.; Seong, W.K.; Chen, X.; Ruoff, R.S. Synthesis of porous covalent quinazoline networks (CQNs) and their gas sorption properties. Angew. Chem. Int. Ed., 2019, 58(3), 872-876.
[http://dx.doi.org/10.1002/anie.201813075] [PMID: 30456920]
[45]
Ghosh, P.; Ganguly, B.; Das, S. C–H functionalization of quinazolinones by transition metal catalysis. Org. Biomol. Chem., 2020, 18(24), 4497-4518.
[http://dx.doi.org/10.1039/D0OB00742K] [PMID: 32469346]
[46]
Maiden, T.M.M.; Harrity, J.P.A. Recent developments in transition metal catalysis for quinazolinone synthesis. Org. Biomol. Chem., 2016, 14(34), 8014-8025.
[http://dx.doi.org/10.1039/C6OB01402J] [PMID: 27477737]
[47]
Hu, K.; Zhen, Q.; Gong, J.; Cheng, T.; Qi, L.; Shao, Y.; Chen, J. Palladium-catalyzed three-component tandem process: one-pot assembly of quinazolines. Org. Lett., 2018, 20(10), 3083-3087.
[http://dx.doi.org/10.1021/acs.orglett.8b01070] [PMID: 29741909]
[48]
Parua, S.; Sikari, R.; Sinha, S.; Chakraborty, G.; Mondal, R.; Paul, N.D. Accessing polysubstituted quinazolines via nickel catalyzed acceptorless dehydrogenative coupling. J. Org. Chem., 2018, 83(18), 11154-11166.
[http://dx.doi.org/10.1021/acs.joc.8b01479] [PMID: 30091595]
[49]
Huo, S.; Kong, S.; Zeng, G.; Feng, Q.; Hao, Z.; Han, Z.; Lin, J.; Lu, G.L. Efficient access to quinolines and quinazolines by ruthenium complexes catalyzed acceptorless dehydrogenative coupling of 2-aminoarylmethanols with ketones and nitriles. Molecular Catalysis, 2021, 514, 111773.
[http://dx.doi.org/10.1016/j.mcat.2021.111773]
[50]
Yamamoto, Y. In book: Copper in N-Heterocyclic Chemistry. Copper-Mediated Synthesis of Quinazolines and Related Benzodiazines., 2021, 2022, 289-331.
[http://dx.doi.org/10.1016/B978-0-12-821263-9.00008-4]
[51]
Wang, D.; Gao, F. Quinazoline derivatives: synthesis and bioactivities. Chem. Cent. J., 2013, 7(1), 95.
[http://dx.doi.org/10.1186/1752-153X-7-95] [PMID: 23731671]
[52]
Jin, L.; Le, Z.; Fan, Q.; Yang, J.; Zhang, C.; Li, Q.; Xie, Z. Fast quinazolinone synthesis by combining enzymatic catalysis and photocatalysis. Photochem. Photobiol. Sci., 2022, 22(3), 525-534.
[http://dx.doi.org/10.1007/s43630-022-00332-x] [PMID: 36445645]
[53]
Yavari, A. Mohammadi-Khanaposhtani, M.; Moradi, S.; Bahadorikhalili, S.; Pourbagher, R.; Jafari, N.; Faramarzi, M.A.; Zabihi, E.; Mahdavi, M.; Biglar, M.; Larijani, B.; Hamedifar, H.; Hajimiri, M.H. α-Glucosidase and α-amylase inhibition, molecular modeling and pharmacokinetic studies of new quinazolinone-1,2,3-triazole-acetamide derivatives. Med. Chem. Res., 2021, 30(3), 702-711.
[http://dx.doi.org/10.1007/s00044-020-02680-8]
[54]
Kamal, A.; Ramana, K.V.; Rao, M.V. Chemoenzymatic synthesis of pyrrolo[2,1-b]quinazolinones: lipase-catalyzed resolution of vasicinone. J. Org. Chem., 2001, 66(3), 997-1001.
[http://dx.doi.org/10.1021/jo0011484] [PMID: 11430123]
[55]
Cavani, F.; Trifirò, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today, 1991, 11(2), 173-301.
[http://dx.doi.org/10.1016/0920-5861(91)80068-K]
[56]
Ghandi, K. A Review of ionic liquids, their limits and applications. Green Sustain. Chem., 2014, 4(1), 44-53.
[http://dx.doi.org/10.4236/gsc.2014.41008]
[57]
Sowmiah, S.; Cheng, I.C.; Chu, Y-H. Ionic liquids for green organic synthesis. Curr. Org. Synth., 2012, 9, 74-95.
[http://dx.doi.org/10.2174/157017912798889116]
[58]
Li, Z.; Zhang, J.; Qu, C.; Tang, Y.; Slaný, M. Synthesis of Mg-Al hydrotalcite clay with high adsorption capacity. Materials, 2021, 14, 7231.
[59]
El Shehry, M.F.; Ghorab, M.M.; Abbas, S.Y.; Fayed, E.A.; Shedid, S.A.; Ammar, Y.A. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur. J. Med. Chem., 2018, 143, 1463-1473.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.046] [PMID: 29113746]
[60]
Patil, R.; Chavan, J.; Patel, S.; Beldar, A. Advances in polymer based Friedlander quinoline synthesis. Turk. J. Chem., 2021, 45(5), 1299-1326.
[http://dx.doi.org/10.3906/kim-2106-5] [PMID: 34849050]
[61]
Karcz, R.; Napruszewska, B.D.; Walczyk, A.; Kryściak-Czerwenka, J.; Duraczyńska, D.; Płaziński, W.; Serwicka, E.W Comparative physicochemical and catalytic study of nanocrystalline mg-al hydrotalcites precipitated with inorganic and organic bases. Nanomaterials (Basel), 2022, 12(16), 2775.
[http://dx.doi.org/10.3390/nano12162775] [PMID: 36014640]
[62]
Srivastava, V. Hydrotalcite Clay+[TBA][OH] ionic liquid combination for selective dihydroquinazolines. Curr. Organocatal., 2019, 6(1), 44-51.
[http://dx.doi.org/10.2174/2213337206666190228111913]
[63]
Bahekar, S.S.; Kotharkar, S.A.; Shinde, D.B. One-pot construction of dihydropyrimidinones in ionic liquids. Mendeleev Commun., 2004, 14(5), 210-212.
[http://dx.doi.org/10.1070/MC2004v014n05ABEH001895]
[64]
Dabholkar, V.V.; Badhe, K.S.; Kurade, S.K. One-pot solvent free synthesis of dihydropyrimidinones using calcined Mg/Fe hydrotalcite catalyst. Current Chemistry Letters, 2017, 6, 77-90.
[http://dx.doi.org/10.5267/j.ccl.2016.11.004]
[65]
Singh, J.K.; Sharma, R.K.; Ghosh, P.; Kumar, A.; Khan, M.L. Imidazolium based ionic liquids: A promising green solvent for water hyacinth biomass deconstruction. Front Chem., 2018, 6, 548.
[http://dx.doi.org/10.3389/fchem.2018.00548] [PMID: 30519555]
[66]
Finn, M.; An, N.; Voutchkova-Kostal, A. Immobilization of imidazolium ionic liquids on hydrotalcites using silane linkers: retardation of memory effect. RSC Advances, 2015, 5(17), 13016-13020.
[http://dx.doi.org/10.1039/C4RA13839B]
[67]
Ebitani, K.; Motokura, K.; Mori, K.; Mizugaki, T.; Kaneda, K. Reconstructed hydrotalcite as a highly active heterogeneous base catalyst for carbon-carbon bond formations in the presence of water. J. Org. Chem., 2006, 71(15), 5440-5447.
[http://dx.doi.org/10.1021/jo060345l] [PMID: 16839121]
[68]
Lins, L.C.; Bugatti, V.; Livi, S.; Gorrasi, G. Ionic liquid as surfactant agent of hydrotalcite: influence on the final properties of polycaprolactone matrix. Polymers, 2018, 10, 44.
[69]
Lins, L.; Bugatti, V.; Livi, S.; Gorrasi, G. Ionic liquid as surfactant agent of hydrotalcite: influence on the final properties of polycaprolactone matrix. Polymers (Basel), 2018, 10(1), 44.
[http://dx.doi.org/10.3390/polym10010044] [PMID: 30966082]
[70]
Achelle, S.; Rodríguez-López, J.; Robin-le Guen, F. Synthesis and photophysical studies of a series of quinazoline chromophores. J. Org. Chem., 2014, 79(16), 7564-7571.
[http://dx.doi.org/10.1021/jo501305h] [PMID: 25025698]
[71]
Iqbal, M.A.; Lu, L.; Mehmood, H.; Khan, D.M.; Hua, R. Quinazolinone synthesis through base-promoted sn ar reaction of ortho -fluorobenzamides with amides followed by cyclization. ACS Omega, 2019, 4(5), 8207-8213.
[http://dx.doi.org/10.1021/acsomega.9b00699] [PMID: 31459909]
[72]
Abdou, I.M.; Al-Neyadi, S.S. Synthesis of quinazolines and quinazolinones via palladium-mediated approach. Heterocycl. Commun., 2015, 21(3), 115-132.
[http://dx.doi.org/10.1515/hc-2014-0181]
[73]
Dasaradhan, C.; Nawaz Khan, F.R. Synthesis of 2, 4-disubstituted quinazolines via one-pot three-component assembly. Polycycl. Aromat. Compd., 2021, 42(6), 3821-3828.
[http://dx.doi.org/10.1080/10406638.2021.1876112]
[74]
Dabiri, M.; Bahramnejad, M.; Bashiribod, S. [Hmim]TFA catalyzed multicomponent reaction: direct, mild, and efficient procedure for the synthesis of 1,2-dihydroquinazoline derivatives. Mol. Divers., 2010, 14(3), 507-512.
[http://dx.doi.org/10.1007/s11030-009-9219-8] [PMID: 20111905]
[75]
Hsu, H.Y.; Tseng, C.C.; Matii, B.; Sun, C.M. Ionic liquid-supported synthesis of dihydroquinazolines and tetrahydroquinazolines under microwave irradiation. Mol. Divers., 2012, 16(2), 241-249.
[http://dx.doi.org/10.1007/s11030-011-9350-1] [PMID: 22179668]
[76]
Derabli, C.; Boulcina, R.; Kirsch, G.; Carboni, B.; Debache, A. A DMAP-catalyzed mild and efficient synthesis of 1,2-dihydroquinazolines via a one-pot three-component protocol. Tetrahedron Lett., 2014, 55(1), 200-204.
[http://dx.doi.org/10.1016/j.tetlet.2013.10.157]
[77]
Chen, Q.; Mao, Z.; Gao, K.; Guo, F.; Sheng, L.; Chen, Z. Synthesis of 1,2-dihydroquinazolines via rearrangement of indazolium salts. J. Org. Chem., 2018, 83(15), 8750-8758.
[http://dx.doi.org/10.1021/acs.joc.8b01044] [PMID: 30011991]
[78]
Yang, Y.; Fu, R.; Liu, Y.; Cai, J.; Zeng, X. Microwave-promoted one-pot three-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones catalyzed by heteropolyanion-based ionic liquids under solvent-free conditions. Tetrahedron, 2020, 76(27), 131312.
[http://dx.doi.org/10.1016/j.tet.2020.131312]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy