Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Impact of Molecular Building Blocks on Dynamic Nature of Novel Biomimetic Drug Delivery Systems as Ufasomes and Ufosomes: Modification in Structure and Surface Charge

Author(s): Lovepreet Singh, Lakhvir Kaur*, Gurjeet Singh, Manjeet Kaur, R.K. Dhawan, Navdeep Kaur, Nitish Khajuria and Sarvpreet Singh

Volume 13, Issue 2, 2023

Published on: 01 August, 2023

Page: [91 - 101] Pages: 11

DOI: 10.2174/2468187313666230726114911

Price: $65

Abstract

This review is focused on the self-assembly of different molecular building blocks at various levels of complexity. In this perspective, we present the basic concept and recent research on the self-assembly of fatty acids and their derivatives, surfactants, and cholesterol. In addition, we discuss the conditions for designing and stabilizing novel vesicular drug delivery systems and how the flux changes due to the molecular structure of building blocks. Furthermore, the article provides a brief discussion on fatty acid and oleate self-assembly, which is becoming an emerging nanotechnology because of its ability to alter the dynamic nature of the skin. These structures have been shown to enhance the skin permeability of drugs and other active compounds, making them potential candidates for transdermal drug delivery. In conclusion, the self-assembly of various molecular building blocks at different levels of complexity has significant implications in the fields of drug delivery, cosmetics, and nanotechnology. The ability to control and manipulate the self-assembly process offers a wide range of possibilities for the design of novel and efficient drug delivery systems.

Graphical Abstract

[1]
Dhanasekaran S, Chopra S. Getting a handle on smart drug delivery systems - A comprehensive view of therapeutic targeting strategies. Smart Drug Delivery System. InTech 2016; pp. 32-62.
[http://dx.doi.org/10.5772/61388]
[2]
Jhawat V, Pandit A, Chandrasekar B, Rooney PR, Kot N, Kamboj S. Vesicular drug delivery systems: A novel approach for drug targeting. Int J Drug Deliv 2013; 5(2): 121-30.
[3]
Poste G, Kirsh R, Koestler T. The challenge of liposome targeting in vivo. Liposome Technology 1985; 3: 1-28.
[4]
Arundhasree RR. R R, R A, Kumar AR, Kumar SS, Nair SC. Ufasomes: Unsaturated fatty acid based vesicular drug delivery system. Int J Appl Pharm 2021; 13(2): 76-83.
[http://dx.doi.org/10.22159/ijap.2021v13i2.39526]
[5]
Mujoriya R, Bodla RB, Dhamande K, Patle L, Singh D. Niosomal drug delivery system: The magic bullet. J Appl Pharm Sci 2011; 1(9): 20-3.
[6]
Lombardo D, Kiselev MA, Magazù S, Calandra P. Amphiphiles self-assembly: Basic concepts and future perspectives of supramolecular approaches. Adv Condens Matter Phys 2015; 2015
[7]
Guo L, Yang J, Guo X, Xia Y. Self-assembled vesicles of sodium oleate and chitosan quaternary ammonium salt in acidic or alkaline aqueous solutions. Colloid Polym Sci 2019; 297(11-12): 1455-63.
[http://dx.doi.org/10.1007/s00396-019-04571-w]
[8]
Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13(1): 238-IN27.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[9]
Bhargavi S, Padmavati S, Visvavidyalayam M. Vesicular drug delivery system-An over view. Res J Pharm Biol Chem Sci 2013; 4(3): 462-74.
[10]
Saraf S, Rathi R, Deep Kaur C, Saraf S. Colloidosomes an advanced vesicular system in drug delivery. Asian J Sci Res 2010; 4(1): 1-15.
[http://dx.doi.org/10.3923/ajsr.2011.1.15]
[11]
Gebicki JM, Hicks M. Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature 1973; 243(5404): 232-4.
[http://dx.doi.org/10.1038/243232a0] [PMID: 4706295]
[12]
Gebicki JM, Hicks M. Preparation and properties of vesicles enclosed by fatty acid membranes. Chem Phys Lipids 1976; 16(2): 142-60.
[http://dx.doi.org/10.1016/0009-3084(76)90006-2] [PMID: 1269068]
[13]
Hicks M, Gebicki JM. A quantitative relationship between permeability and the degree of peroxidation in ufasome membranes. Biochem Biophys Res Commun 1978; 80(4): 704-8.
[http://dx.doi.org/10.1016/0006-291X(78)91301-3] [PMID: 416824]
[14]
Csongradi C, du Plessis J, Aucamp ME, Gerber M. Topical delivery of roxithromycin solid-state forms entrapped in vesicles. Eur J Pharm Biopharm 2017; 114: 96-107.
[http://dx.doi.org/10.1016/j.ejpb.2017.01.006] [PMID: 28119103]
[15]
Teo YY, Misran M, Low KH, Zain SM. Effect of unsaturation on the stability of C18 polyunsaturated fatty acids vesicles suspension in aqueous solution. Bull Korean Chem Soc 2011; 32(1): 59-64.
[http://dx.doi.org/10.5012/bkcs.2011.32.1.59]
[16]
Li S, Zhou T, Li C, et al. High metastaticgastric and breast cancer cells consume oleic acid in an AMPK dependent manner. PLoS One 2014; 9(5)e97330
[http://dx.doi.org/10.1371/journal.pone.0097330] [PMID: 24823908]
[17]
Morigaki K, Walde P. Fatty acid vesicles. Curr Opin Colloid Interface Sci 2007; 12(2): 75-80.
[http://dx.doi.org/10.1016/j.cocis.2007.05.005]
[18]
Verma S, Bhardwaj A, Vij M, Bajpai P, Goutam N, Kumar L. Oleic acid vesicles: A new approach for topical delivery of antifungal agent. Artif Cells Nanomed Biotechnol 2014; 42(2): 95-101.
[http://dx.doi.org/10.3109/21691401.2013.794351] [PMID: 23656670]
[19]
Bolla PK, Meraz CA, Rodriguez VA, et al. Clotrimazole loaded ufosomes for topical delivery: Formulation development and in-vitro studies. Molecules 2019; 24(17): 3139.
[http://dx.doi.org/10.3390/molecules24173139] [PMID: 31470517]
[20]
Cristiano MC, Mancuso A, Fresta M, et al. Topical unsaturated fatty acid vesicles improve antioxidant activity of ammonium glycyrrhizinate. Pharmaceutics 2021; 13(4): 548.
[http://dx.doi.org/10.3390/pharmaceutics13040548] [PMID: 33919824]
[21]
Skotland T, Sagini K, Sandvig K, Llorente A. An emerging focus on lipids in extracellular vesicles. Adv Drug Deliv Rev 2020; 159: 308-21.
[http://dx.doi.org/10.1016/j.addr.2020.03.002] [PMID: 32151658]
[22]
Martin N, Douliez JP. Fatty acid vesicles and coacervates as model prebiotic protocells. ChemSystemsChem 2021; 3(6)
[http://dx.doi.org/10.1002/syst.202100024]
[23]
Todd ZR, Cohen ZR, Catling DC, Keller SL, Black RA. Growth of prebiotically plausible fatty acid vesicles proceeds in the presence of prebiotic amino acids, dipeptides, sugars, and nucleic acid components. Langmuir 2022; 38(49): 15106-12.
[http://dx.doi.org/10.1021/acs.langmuir.2c02118] [PMID: 36445982]
[24]
Dhiman N, Awasthi R, Sharma B, Kharkwal H, Kulkarni GT. Lipid nanoparticles as carriers for bioactive delivery. Front Chem 2021; 9.
[25]
Fan Y, Fang Y, Ma L. The self-crosslinked ufasome of conjugated linoleic acid: Investigation of morphology, bilayer membrane and stability. Colloids Surf B Biointerfaces 2014; 123: 8-14.
[http://dx.doi.org/10.1016/j.colsurfb.2014.08.028] [PMID: 25217809]
[26]
Kaur L, Kaur M, Singh G, Singh L, Kaur A, Dhawan RK. Recent advancements in biomimetic drug delivery system of single- chain fatty acids as ufasomes and ufosomes: A comprehensive review. Curr Nanosci 2023; 19(3): 362-71.
[http://dx.doi.org/10.2174/1573413718666220919113148]
[27]
Bode JC, Kuntsche J, Funari SS, Bunjes H. Interaction of dispersed cubic phases with blood components. Int J Pharm 2013; 448(1): 87-95.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.016] [PMID: 23524124]
[28]
Gagliardi A, Cosco D, Udongo BP, Dini L, Viglietto G, Paolino D. Design and characterization of glyceryl monooleate-nanostructures containing doxorubicin hydrochloride. Pharmaceutics 2020; 12(11): 1017.
[http://dx.doi.org/10.3390/pharmaceutics12111017] [PMID: 33114287]
[29]
Matschke C, Isele U, van Hoogevest P, Fahr A. Sustained-release injectables formed in situ and their potential use for veterinary products. J Control Release 2002; 85(1-3): 1-15.
[http://dx.doi.org/10.1016/S0168-3659(02)00266-3] [PMID: 12480306]
[30]
Bhattacharya S. Preparation and characterizations of glyceryl oleate ufasomes of terbinafine hydrochloride: A novel approach to trigger Candida albicans fungal infection. Futur J Pharm Sci 2021; 7: 3.
[http://dx.doi.org/10.1186/s43094-020-00143-w]
[31]
Estracanholli ÉA, Praça FSG, Cintra AB, Pierre MBR, Lara MG. Liquid crystalline systems for transdermal delivery of celecoxib: In vitro drug release and skin permeation studies. AAPS PharmSciTech 2014; 15(6): 1468-75.
[http://dx.doi.org/10.1208/s12249-014-0171-2] [PMID: 24980082]
[32]
Xu X, Yu Z, Zhu Y, Wang B. Effect of sodium oleate adsorption on the colloidal stability and zeta potential of detonation synthesized diamond particles in aqueous solutions. Diamond Related Materials 2005; 14(2): 206-12.
[http://dx.doi.org/10.1016/j.diamond.2004.11.004]
[33]
Jack-Hays MG, Xie Z, Wang Y, Huang WH, Askari A. Activation of Na +/K + -ATPase by fatty acids, acylglycerols, and related amphiphiles: structure-activity relationship. Biochim Biophys Acta Biomembr 1996; 1279(1): 43-8.
[http://dx.doi.org/10.1016/0005-2736(95)00245-6] [PMID: 8624359]
[34]
Hildebrand A, Garidel P, Neubert R, Blume A. Thermodynamics of demicellization of mixed micelles composed of sodium oleate and bile salts. Langmuir 2004; 20(2): 320-8.
[http://dx.doi.org/10.1021/la035526m] [PMID: 15743073]
[35]
Bakshi MS, Crisantino R, De Lisi R, Milioto S. Volume and heat capacity of sodium dodecyl sulfate-dodecyldimethylamine oxide mixed micelles. J Phys Chem 1993; 97(26): 6914-9.
[http://dx.doi.org/10.1021/j100128a028]
[36]
Koehler RD, Raghavan SR, Kaler EW. Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants. J Phys Chem B 2000; 104(47): 11035-44.
[http://dx.doi.org/10.1021/jp0018899]
[37]
Hoffmann H, Rauscher A, Gradzielski M, Schulz SF. Influence of ionic surfactants on the viscoelastic properties of zwitterionic surfactant solutions. Langmuir 1992; 8(9): 2140-6.
[http://dx.doi.org/10.1021/la00045a013]
[38]
Bergström M, Eriksson JC. A theoretical analysis of synergistic effects in mixed surfactant systems. Langmuir 2000; 16(18): 7173-81.
[http://dx.doi.org/10.1021/la000397k]
[39]
Antunes FE, Coppola L, Gaudio D, Nicotera I, Oliviero C. Shear rheology and phase behaviour of sodium oleate/water mixtures. Colloids Surf A Physicochem Eng Asp 2007; 297(1-3): 95-104.
[http://dx.doi.org/10.1016/j.colsurfa.2006.10.030]
[40]
Walde P, Ichikawa S. Lipid vesicles and other polymolecular aggregates-from basic studies of polar lipids to innovative applications. Appl Sci 2021; 11(21): 10345.
[http://dx.doi.org/10.3390/app112110345]
[41]
da Silva JDF, da Silva YP, Piatnicki CMS, Böckel WJ, Mendonça CRB. Microemulsions: Components, characteristics, potential in food chemistry and other applications. Quim Nova 2015; 38(9): 1196-206.
[42]
Chabanon M, Rangamani P. Solubilization kinetics determines the pulsatory dynamics of lipid vesicles exposed to surfactant. Biochim Biophys Acta Biomembr 2018; 1860(10): 2032-41.
[http://dx.doi.org/10.1016/j.bbamem.2018.03.016] [PMID: 29572034]
[43]
Junyaprasert VB, Singhsa P, Suksiriworapong J, Chantasart D. Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid. Int J Pharm 2012; 423(2): 303-11.
[http://dx.doi.org/10.1016/j.ijpharm.2011.11.032] [PMID: 22155414]
[44]
Kaur G, Mehta SK. Developments of Polysorbate (Tween) based microemulsions: Preclinical drug delivery, toxicity and antimicrobial applications. Int J Pharm 2017; 529(1-2): 134-60.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.059] [PMID: 28642203]
[45]
Alomrani AH, Al-Agamy MH, Badran MM. In vitro skin penetration and antimycotic activity of itraconazole loaded niosomes: Various non-ionic surfactants. J Drug Deliv Sci Technol 2015; 28: 37-45.
[http://dx.doi.org/10.1016/j.jddst.2015.04.009]
[46]
Raval A, Bahadur P, Raval A. Effect of nonionic surfactants in release media on accelerated in-vitro release profile of sirolimus eluting stents with biodegradable polymeric coating. J Pharm Anal 2018; 8(1): 45-54.
[http://dx.doi.org/10.1016/j.jpha.2017.06.002] [PMID: 29568667]
[47]
Wang X, Gao Y. Effects of length and unsaturation of the alkyl chain on the hydrophobic binding of curcumin with Tween micelles. Food Chem 2018; 246: 242-8.
[http://dx.doi.org/10.1016/j.foodchem.2017.11.024] [PMID: 29291845]
[48]
Bnyan R, Khan I, Ehtezazi T, et al. Surfactant effects on lipid-based vesicles properties. J Pharm Sci 2018; 107(5): 1237-46.
[http://dx.doi.org/10.1016/j.xphs.2018.01.005] [PMID: 29336980]
[49]
Marquardt D. Kučerka N, Wassall SR, Harroun TA, Katsaras J. Cholesterol’s location in lipid bilayers. Chem Phys Lipids 2016; 199: 17-25.
[http://dx.doi.org/10.1016/j.chemphyslip.2016.04.001] [PMID: 27056099]
[50]
Somjid S, Krongsuk S, Johns JR. Cholesterol concentration effect on the bilayer properties and phase formation of niosome bilayers: A molecular dynamics simulation study. J Mol Liq 2018; 256: 591-8.
[http://dx.doi.org/10.1016/j.molliq.2018.02.077]
[51]
Kaddah S, Khreich N, Kaddah F, Charcosset C, Greige-Gerges H. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem Toxicol 2018; 113: 40-8.
[http://dx.doi.org/10.1016/j.fct.2018.01.017] [PMID: 29337230]
[52]
Arriaga LR, Rodríguez-García R, Moleiro LH, et al. Dissipative dynamics of fluid lipid membranes enriched in cholesterol. Adv Colloid Interface Sci 2017; 247: 514-20.
[http://dx.doi.org/10.1016/j.cis.2017.07.007] [PMID: 28755780]
[53]
Kuo AT, Tu CL, Yang YM, Chang CH. Enhanced physical stability of positively charged catanionic vesicles: Role of cholesterol-adjusted molecular packing. J Taiwan Inst Chem Eng 2018; 92: 29-35.
[http://dx.doi.org/10.1016/j.jtice.2018.02.013]
[54]
Ibarguren M, Bomans PHH, Ruiz-Mirazo K, Frederik PM, Alonso A, Goñi FM. Thermally-induced aggregation and fusion of protein-free lipid vesicles. Colloids Surf B Biointerfaces 2015; 136: 545-52.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.047] [PMID: 26454544]
[55]
Ravaghi M, Razavi SH, Mousavi SM, Sinico C, Fadda AM. Stabilization of natural canthaxanthin produced by Dietzia natronolimnaea HS-1 by encapsulation in niosomes. Lebensm Wiss Technol 2016; 73: 498-504.
[http://dx.doi.org/10.1016/j.lwt.2016.06.027]
[56]
Gunes A, Guler E, Un RN, et al. Niosomes of Nerium oleander extracts: In vitro assessment of bioactive nanovesicular structures. J Drug Deliv Sci Technol 2017; 37: 158-65.
[http://dx.doi.org/10.1016/j.jddst.2016.12.013]
[57]
Hargreaves WR, Deamer DW. Liposomes from ionic, single-chain amphiphiles. Biochemistry 1978; 17(18): 3759-68.
[http://dx.doi.org/10.1021/bi00611a014] [PMID: 698196]
[58]
Namani T, Ishikawa T, Morigaki K, Walde P. Vesicles from docosahexaenoic acid. Colloids Surf B Biointerfaces 2007; 54(1): 118-23.
[http://dx.doi.org/10.1016/j.colsurfb.2006.05.022] [PMID: 16829059]
[59]
Rogerson ML, Robinson BH, Bucak S, Walde P. Kinetic studies of the interaction of fatty acids with phosphatidylcholine vesicles (liposomes). Colloids Surf B Biointerfaces 2006; 48(1): 24-34.
[http://dx.doi.org/10.1016/j.colsurfb.2006.01.001] [PMID: 16466910]
[60]
Namani T, Walde P. From decanoate micelles to decanoic acid/dodecylbenzenesulfonate vesicles. Langmuir 2005; 21(14): 6210-9.
[http://dx.doi.org/10.1021/la047028z] [PMID: 15982022]
[61]
Zakir F, Vaidya B, Goyal AK, Malik B, Vyas SP. Development and characterization of oleic acid vesicles for the topical delivery of fluconazole. Drug Deliv 2010; 17(4): 238-48.
[http://dx.doi.org/10.3109/10717541003680981] [PMID: 20235758]
[62]
Sharma A, Arora S. Formulation and in vitro evaluation of ufasomes for dermal administration of methotrexate. ISRN Pharm 2012; 2012: 1-8.
[http://dx.doi.org/10.5402/2012/873653] [PMID: 22745918]
[63]
Mittal R, Sharma A, Arora S. Ufasomes mediated cutaneous delivery of dexamethasone: Formulation and evaluation of anti-inflammatory activity by carrageenin-induced rat paw edema model. J Pharm 2013; 2013: 1-12.
[http://dx.doi.org/10.1155/2013/680580] [PMID: 26555990]
[64]
Salama AH, Aburahma MH. Ufasomes nano-vesicles-based lyophilized platforms for intranasal delivery of cinnarizine: preparation, optimization, ex-vivo histopathological safety assessment and mucosal confocal imaging. Pharm Dev Technol 2016; 21(6): 706-15.
[PMID: 25996631]
[65]
Kumar P, Singh S, Handa V, Kathuria H. Oleic acid nanovesicles of minoxidil for enhanced follicular delivery. Medicines 2018; 5(3): 103.
[http://dx.doi.org/10.3390/medicines5030103] [PMID: 30223446]
[66]
Cristiano MC, Froiio F, Mancuso A, et al. Oleuropein-loaded ufasomes improve the nutraceutical efficacy. Nanomaterials 2021; 11(1): 105.
[http://dx.doi.org/10.3390/nano11010105] [PMID: 33406805]
[67]
Lakshmi Sv, Manohar DR, Mathan S, Dharan SS. Formulation and evaluation of ufasomal topical gel containing selected non steroidal anti inflammatory drug (NSAIDs). J Pharm Sci 2021; 13(1): 38-48.
[68]
Deaguero IG, Huda MN, Rodriguez V, et al. Nano-vesicle based anti-fungal formulation shows higher stability, skin diffusion, biosafety and anti- fungal efficacy in vitro. Pharmaceutics 2020; 12(6): 516.
[http://dx.doi.org/10.3390/pharmaceutics12060516] [PMID: 32517047]
[69]
Aungst BJ, Rogers NJ, Shefter E. Enhancement of naloxone penetration through human skin in vitro using fatty acids, fatty alcohols, surfactants, sulfoxides and amides. Int J Pharm 1986; 33: 225-34.
[http://dx.doi.org/10.1016/0378-5173(86)90057-8]
[70]
Blackett PM, Buckton G. A microcalorimetric investigation of the interaction of surfactants with crystalline and partially crystalline salbutamol sulphate in a model inhalation aerosol system. Pharm Res 1995; 12(11): 1689-93.
[http://dx.doi.org/10.1023/A:1016257504115] [PMID: 8592671]
[71]
Shende M, Bodele S, Ghode S, Shende C, Baravkar A, Nalawade N. Ufasomes: An emerging vesicular system for futuristic drug delivery applications. World J Pharm Med Res 2021; 7(11): 217-23.
[72]
Saboorian-Jooybari H, Chen Z. Surface charging parameters of charged particles in symmetrical electrolyte solutions. Phys Chem Chem Phys 2020; 22(35): 20123-42.
[http://dx.doi.org/10.1039/D0CP02725A] [PMID: 32936146]
[73]
Abbas Z, Labbez C, Nordholm S, Ahlberg E. Size-dependent surface charging of nanoparticles. J Phys Chem C 2008; 112(15): 5715-23.
[http://dx.doi.org/10.1021/jp709667u]
[74]
Nakatuka Y, Yoshida H, Fukui K, Matuzawa M. The effect of particle size distribution on effective zeta-potential by use of the sedimentation method. Adv Powder Technol 2015; 26(2): 650-6.
[http://dx.doi.org/10.1016/j.apt.2015.01.017]
[75]
Storrs RW, Tropper FD, Li HY, et al. Paramagnetic polymerized liposomes: Synthesis, characterization, and applications for magnetic resonance imaging. J Am Chem Soc 1995; 117(28): 7301-6.
[http://dx.doi.org/10.1021/ja00133a001]
[76]
Hashemi FS, Farzadnia F, Aghajani A. Ahmadzadeh NobariAzar F, Pezeshki A. Conjugated linoleic acid loaded nanostructured lipid carrier as a potential antioxidant nanocarrier for food applications. Food Sci Nutr 2020; 8(8): 4185-95.
[http://dx.doi.org/10.1002/fsn3.1712] [PMID: 32884699]
[77]
Lee JH, Danino D, Raghavan SR. Polymerizable vesicles based on a single-tailed fatty acid surfactant: A simple route to robust nanocontainers. Langmuir 2009; 25(3): 1566-71.
[http://dx.doi.org/10.1021/la802373j] [PMID: 19138066]
[78]
Chen IA, Szostak JW. A kinetic study of the growth of fatty acid vesicles. Biophys J 2004; 87(2): 988-98.
[http://dx.doi.org/10.1529/biophysj.104.039875] [PMID: 15298905]
[79]
Chacko IA, Ghate VM, Dsouza L, Lewis SA. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications. Colloids Surf B Biointerfaces 2020; 195111262
[http://dx.doi.org/10.1016/j.colsurfb.2020.111262] [PMID: 32736123]
[80]
Gillet A, Compère P, Lecomte F, et al. Liposome surface charge influence on skin penetration behaviour. Int J Pharm 2011; 411(1-2): 223-31.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.049] [PMID: 21458550]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy