[1]
Starek, M.; Plenis, A.; Zagrobelna, M.; Dąbrowska, M. Assessment of lipophilicity descriptors of selected NSAIDS obtained at different TLC stationary phases. Pharmaceutics, 2021, 13(4), 440.
[http://dx.doi.org/10.3390/pharmaceutics13040440] [PMID: 33805056]
[http://dx.doi.org/10.3390/pharmaceutics13040440] [PMID: 33805056]
[2]
Zhang, M.; Yu, Q.; Guo, J.; Wu, B.; Kong, X. Review of thin-layer chromatography tandem with surface-enhanced raman spectroscopy for detection of analytes in mixture samples. Biosensors, 2022, 12(11), 937.
[http://dx.doi.org/10.3390/bios12110937] [PMID: 36354446]
[http://dx.doi.org/10.3390/bios12110937] [PMID: 36354446]
[3]
Srivastava, M. High-performance thin-layer chromatography (HPTLC); Springer Science & Business Media, 2010.
[4]
Sharma, B.; Islam, A.; Sharma, A. HPTLC-MS: An advance approach in herbal drugs using fingerprint spectra and mass spectroscopy. Tradit. Med. Res., 2023.
[http://dx.doi.org/10.53388/TMR20220428001]
[http://dx.doi.org/10.53388/TMR20220428001]
[5]
Alula, M.T.; Mengesha, Z.T.; Mwenesongole, E. Advances in surface-enhanced Raman spectroscopy for analysis of pharmaceuticals: A review. Vib. Spectrosc., 2018, 98, 50-63.
[http://dx.doi.org/10.1016/j.vibspec.2018.06.013]
[http://dx.doi.org/10.1016/j.vibspec.2018.06.013]
[6]
Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; Choo, J.; Cialla-May, D.; Deckert, V.; Fabris, L.; Faulds, K.; García de Abajo, F.J.; Goodacre, R.; Graham, D.; Haes, A.J.; Haynes, C.L.; Huck, C.; Itoh, T.; Käll, M.; Kneipp, J.; Kotov, N.A.; Kuang, H.; Le Ru, E.C.; Lee, H.K.; Li, J.F.; Ling, X.Y.; Maier, S.A.; Mayerhöfer, T.; Moskovits, M.; Murakoshi, K.; Nam, J.M.; Nie, S.; Ozaki, Y.; Pastoriza-Santos, I.; Perez-Juste, J.; Popp, J.; Pucci, A.; Reich, S.; Ren, B.; Schatz, G.C.; Shegai, T.; Schlücker, S.; Tay, L.L.; Thomas, K.G.; Tian, Z.Q.; Van Duyne, R.P.; Vo-Dinh, T.; Wang, Y.; Willets, K.A.; Xu, C.; Xu, H.; Xu, Y.; Yamamoto, Y.S.; Zhao, B.; Liz-Marzán, L.M. Present and future of surface-enhanced Raman scattering. ACS Nano, 2020, 14(1), 28-117.
[http://dx.doi.org/10.1021/acsnano.9b04224] [PMID: 31478375]
[http://dx.doi.org/10.1021/acsnano.9b04224] [PMID: 31478375]
[7]
Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett., 1974, 26(2), 163-166.
[http://dx.doi.org/10.1016/0009-2614(74)85388-1]
[http://dx.doi.org/10.1016/0009-2614(74)85388-1]
[8]
Albrecht, M.G.; Creighton, J.A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc., 1977, 99(15), 5215-5217.
[http://dx.doi.org/10.1021/ja00457a071]
[http://dx.doi.org/10.1021/ja00457a071]
[9]
Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev., 1999, 99(10), 2957-2976.
[http://dx.doi.org/10.1021/cr980133r] [PMID: 11749507]
[http://dx.doi.org/10.1021/cr980133r] [PMID: 11749507]
[10]
Lv, D.; Cao, Y.; Lou, Z.; Li, S.; Chen, X.; Chai, Y.; Lu, F. Rapid on-site detection of ephedrine and its analogues used as adulterants in slimming dietary supplements by TLC-SERS. Anal. Bioanal. Chem., 2015, 407(5), 1313-1325.
[http://dx.doi.org/10.1007/s00216-014-8380-9] [PMID: 25542571]
[http://dx.doi.org/10.1007/s00216-014-8380-9] [PMID: 25542571]
[11]
Freye, C.E.; Crane, N.A.; Kirchner, T.B.; Sepaniak, M.J. Surface enhanced Raman scattering imaging of developed thin-layer chromatography plates. Anal. Chem., 2013, 85(8), 3991-3998.
[http://dx.doi.org/10.1021/ac303710q] [PMID: 23521758]
[http://dx.doi.org/10.1021/ac303710q] [PMID: 23521758]
[12]
Huang, R.; Han, S.; Li, X. Detection of tobacco-related biomarkers in urine samples by surface-enhanced Raman spectroscopy coupled with thin-layer chromatography. Anal. Bioanal. Chem., 2013, 405(21), 6815-6822.
[http://dx.doi.org/10.1007/s00216-013-7107-7] [PMID: 23807309]
[http://dx.doi.org/10.1007/s00216-013-7107-7] [PMID: 23807309]
[13]
Fang, F.; Qi, Y.; Lu, F.; Yang, L. Highly sensitive on-site detection of drugs adulterated in botanical dietary supplements using thin layer chromatography combined with dynamic surface enhanced Raman spectroscopy. Talanta, 2016, 146, 351-357.
[http://dx.doi.org/10.1016/j.talanta.2015.08.067] [PMID: 26695274]
[http://dx.doi.org/10.1016/j.talanta.2015.08.067] [PMID: 26695274]
[14]
Zhang, S.; Fan, Q.; Guo, J.; Jiao, X.; Kong, X.; Yu, Q. Surface-enhanced Raman spectroscopy tandem with derivatized thin-layer chromatography for ultra-sensitive on-site detection of histamine from fish. Food Control, 2022, 138, 108987.
[http://dx.doi.org/10.1016/j.foodcont.2022.108987]
[http://dx.doi.org/10.1016/j.foodcont.2022.108987]
[15]
Li, L.; Cao, X.; Zhang, T.; Wu, Q.; Xiang, P.; Shen, C.; Zou, L.; Li, Q. Recent developments in surface-enhanced raman spectroscopy and its application in food analysis: Alcoholic beverages as an example. Foods, 2022, 11(14), 2165.
[http://dx.doi.org/10.3390/foods11142165] [PMID: 35885407]
[http://dx.doi.org/10.3390/foods11142165] [PMID: 35885407]
[16]
Shi, S.; Yu, H.; Yang, F.; Yao, W.; Xie, Y. Simultaneous determination of 14 nitroimidazoles using thin-layer chromatography combined with surface-enhanced Raman spectroscopy (TLC-SERS). Food Biosci., 2022, 48, 101755.
[http://dx.doi.org/10.1016/j.fbio.2022.101755]
[http://dx.doi.org/10.1016/j.fbio.2022.101755]
[17]
Yang, F.; Wang, C.; Yu, H.; Guo, Y.; Cheng, Y.; Yao, W.; Xie, Y. Establishment of the thin-layer chromatography-surface-enhanced Raman spectroscopy and chemometrics method for simultaneous identification of eleven illegal drugs in anti-rheumatic health food. Food Biosci., 2022, 49, 101842.
[http://dx.doi.org/10.1016/j.fbio.2022.101842]
[http://dx.doi.org/10.1016/j.fbio.2022.101842]
[18]
Sha, X.; Han, S.; Fang, G.; Li, N.; Lin, D.; Hasi, W. A novel suitable TLC-SERS assembly strategy for detection of Rhodamine B and Sudan I in chili oil. Food Control, 2022, 138, 109040.
[http://dx.doi.org/10.1016/j.foodcont.2022.109040]
[http://dx.doi.org/10.1016/j.foodcont.2022.109040]
[19]
Soares, F.L.F.; Junior, B.R.A.; Carneiro, R.L. SERS-TLC device for simultaneous determination of sulfamethoxazole and trimethoprim in milk. Chemosensors, 2022, 10(12), 528.
[http://dx.doi.org/10.3390/chemosensors10120528]
[http://dx.doi.org/10.3390/chemosensors10120528]
[20]
Hou, X.; Sivashanmugan, K.; Zhao, Y.; Zhang, B.; Wang, A.X. Multiplex sensing of complex mixtures by machine vision analysis of TLC-SERS images. Sens. Actuators B Chem., 2022, 357, 131355.
[http://dx.doi.org/10.1016/j.snb.2021.131355] [PMID: 35221529]
[http://dx.doi.org/10.1016/j.snb.2021.131355] [PMID: 35221529]
[21]
Lucotti, A.; Villa, N.S.; Serra, G.; Ossi, P.M.; Tommasini, M. Thin-layer chromatography–surface-enhanced Raman scattering. In: Molecular and Laser Spectroscopy; Elsevier, 2022; 3, p. 249-277.
[http://dx.doi.org/10.1016/B978-0-323-91249-5.00005-3]
[http://dx.doi.org/10.1016/B978-0-323-91249-5.00005-3]