Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

MicroRNA Profiles in Critically Ill Patients

In Press, (this is not the final "Version of Record"). Available online 10 August, 2023
Author(s): Babak Alikiaii, Mohammad Bagherniya*, Gholamreza Askari, Rajkumar Rajendram and Amirhossein Sahebkar*
Published on: 10 August, 2023

DOI: 10.2174/0929867331666230726095222

Price: $95

Abstract

The use of biomarkers to expedite diagnosis, prognostication, and treatment could significantly improve patient outcomes. The early diagnosis and treatment of critical illnesses can greatly reduce mortality and morbidity. Therefore, there is great interest in the discovery of biomarkers for critical illnesses. Micro-ribonucleic acids (miRNAs) are a highly conserved group of non-coding RNA molecules. They regulate the expression of genes involved in several developmental, physiological, and pathological processes. The characteristics of miRNAs suggest that they could be versatile biomarkers. Assay panels to measure the expression of several miRNAs could facilitate clinical decision-- making for a range of diseases. We have, in this paper, reviewed the current understanding of the role of miRNAs as biomarkers in critically ill patients.

[1]
Sakr, Y.; Jaschinski, U.; Wittebole, X.; Szakmany, T.; Lipman, J.; Ñamendys-Silva, S.A.; Martin-Loeches, I.; Leone, M.; Lupu, M.N.; Vincent, J.L. Sepsis in intensive care unit patients: Worldwide data from the intensive care over nations audit. Open Forum Infect. Dis., 2018, 5(12), ofy313.
[http://dx.doi.org/10.1093/ofid/ofy313] [PMID: 30555852]
[2]
Honore, P.M.; Jacobs, R.; Hendrickx, I.; De Waele, E.; Van Gorp, V.; Joannes-Boyau, O.; De Regt, J.; Boer, W.; Spapen, H.D. Biomarkers in critical illness: Have we made progress? Int. J. Nephrol. Renovasc. Dis., 2016, 9, 253-256.
[http://dx.doi.org/10.2147/IJNRD.S113219] [PMID: 27799811]
[3]
Biomarkers of infection: Are they useful in the ICU? Semin. Respir. Crit. Care Med., 2019, 40(4), 465-475.
[http://dx.doi.org/10.1055/s-0039-1696689.] [PMID: 31585473]
[4]
Rello, J; Blanch, L; Preiser, J-C; De Waele, JJ How to improve research on management of critically ill patients: Lessons learned from negative randomised clinical trials in the intensive care unit. Anaesth. Crit. Care Pain Med., 2020, 39(2), 173-174.
[http://dx.doi.org/10.1016/j.accpm.2020.02.001] [PMID: 32058127]
[5]
Ware, L.B. Biomarkers in critical illness: New insights and challenges for the future. Am. J. Respir. Crit. Care Med., 2017, 196(8), 944-945.
[http://dx.doi.org/10.1164/rccm.201704-0831ED] [PMID: 28475361]
[6]
Conway, S.R.; Wong, H.R. Biomarker panels in critical care. Crit. Care Clin., 2020, 36(1), 89-104.
[http://dx.doi.org/10.1016/j.ccc.2019.08.007] [PMID: 31733684]
[7]
Heffernan, A.J.; Denny, K.J. Host diagnostic biomarkers of infection in the ICU: Where are we and where are we going? Curr. Infect. Dis. Rep., 2021, 23(4), 4.
[http://dx.doi.org/10.1007/s11908-021-00747-0] [PMID: 33613126]
[8]
Kabekkodu, S.P.; Shukla, V.; Varghese, V.K.; Adiga, D.; Vethil Jishnu, P.; Chakrabarty, S.; Satyamoorthy, K. Cluster miRNAs and cancer: Diagnostic, prognostic and therapeutic opportunities. Wiley Interdiscip. Rev. RNA, 2020, 11(2), e1563.
[http://dx.doi.org/10.1002/wrna.1563] [PMID: 31436881]
[9]
Tabaei, S.; Tabaee, S.S. Implications for MicroRNA involvement in the prognosis and treatment of atherosclerosis. Mol. Cell. Biochem., 2021, 476(3), 1327-1336.
[http://dx.doi.org/10.1007/s11010-020-03992-4] [PMID: 33389489]
[10]
Chen, W.; Sinha, B.; Li, Y.; Benowitz, L.; Chen, Q.; Zhang, Z.; Patel, N.J.; Aziz-Sultan, A.M.; Chiocca, A.E.; Wang, X. Monogenic, polygenic, and MicroRNA markers for ischemic stroke. Mol. Neurobiol., 2019, 56(2), 1330-1343.
[http://dx.doi.org/10.1007/s12035-018-1055-3] [PMID: 29948938]
[11]
Peplow, P.V.; Martinez, B. Blood microRNAs as potential diagnostic markers for hemorrhagic stroke. Neural Regen. Res., 2017, 12(1), 13-18.
[http://dx.doi.org/10.4103/1673-5374.198965] [PMID: 28250731]
[12]
Sun C.; Liu J.; Duan F.; Cong L.; Qi X.; The role of the microRNA regulatory network in Alzheimer's disease: A bioinformatics analysis. Arch. Med. Sci., 2021, 18(1), 206-222.
[http://dx.doi.org/10.5114/aoms/80619] [PMID: 35154541] [PMCID: PMC8826944]
[13]
Zhang, X; Huang, F; Yang, D; Peng, T; Lu, G. Identification of miRNA-mRNA crosstalk in respiratory syncytial virus- (RSV-) Associated pediatric pneumonia through integrated mirnaome and transcriptome analysis. Mediators Inflamm., 2020, 2020, 8919534.
[http://dx.doi.org/10.1155/2020/8919534] [PMID: 32410870]
[14]
Galván-Román, JM; Lancho-Sánchez, Á; Luquero-Bueno, S; Vega-Piris, L; Curbelo, J; Manzaneque-Pradales, M; Gómez, M; de la Fuente, H; Ortega-Gómez, M; Aspa, J Usefulness of circulating microRNAs miR-146a and miR-16-5p as prognostic biomarkers in community-acquired pneumonia. PLoS One, 2020, 15(10), e0240926.
[http://dx.doi.org/10.1371/journal.pone.0240926] [PMID: 33095833]
[15]
Ebrahimi, S.; Hashemy, S.I.; Sahebkar, A.; Aghaee Bakhtiari, S.H. Microrna regulation of androgen receptor in castration-resistant prostate cancer: Premises, promises, and potentials. Curr. Mol. Pharmacol., 2021, 14(4), 559-569.
[http://dx.doi.org/10.2174/1874467213666201223121850] [PMID: 33357209]
[16]
Gorabi, AM; Kiaie, N; Sathyapalan, T; Al-Rasadi, K; Jamialahmadi, T; Sahebkar, A The role of MicroRNAs in regulating cytokines and growth factors in coronary artery disease: The ins and outs. J. Immunol. Res., 2020, 2020, 5193036.
[http://dx.doi.org/10.1155/2020/5193036.] [PMID: 32775466]
[17]
Fathullahzadeh, S.; Mirzaei, H.; Honardoost, M. A.; Sahebkar, A.; & Salehi, M.; Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia. Cancer Gene. Ther., 2016, 23(10), 327-332.
[http://dx.doi.org/10.1038/cgt.2016.34]
[18]
Mirzaei, H.; Sahebkar, A.; Mohammadi, M.; Yari, R.; Salehi, H.; Jafari, M.; Namdar, A.; Khabazian, E.; Jaafari, M.; Mirzaei, H. Circulating micrornas in hepatocellular carcinoma: Potential diagnostic and prognostic biomarkers. Curr. Pharm. Des., 2016, 22(34), 5257-5269.
[http://dx.doi.org/10.2174/1381612822666160303110838] [PMID: 26935703]
[19]
Inns, J.; James, V. Circulating microRNAs for the prediction of metastasis in breast cancer patients diagnosed with early stage disease. Breast, 2015, 24(4), 364-369.
[http://dx.doi.org/10.1016/j.breast.2015.04.001] [PMID: 25957467]
[20]
Li, G.; Morris-Blanco, K.C.; Lopez, M.S.; Yang, T.; Zhao, H.; Vemuganti, R.; Luo, Y. Impact of microRNAs on ischemic stroke: From pre- to post-disease. Prog. Neurobiol., 2018, 163-164, 59-78.
[http://dx.doi.org/10.1016/j.pneurobio.2017.08.002] [PMID: 28842356]
[21]
Gorabi, A.M.; Ghanbari, M.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Implications of microRNAs in the pathogenesis of atherosclerosis and prospects for therapy. Curr. Drug Targets, 2021, 22(15), 1738-1749.
[http://dx.doi.org/10.2174/1389450122666210120143450] [PMID: 33494668]
[22]
Mahmoudi, A.; Butler, A.E.; Jamialahmadi, T.; Sahebkar, A. The role of exosomal miRNA in nonalcoholic fatty liver disease. J. Cell. Physiol., 2022, 237(4), 2078-2094.
[http://dx.doi.org/10.1002/jcp.30699] [PMID: 35137416]
[23]
Tavasolian, F.; Abdollahi, E.; Rezaei, R.; Momtazi-borojeni, A.A.; Henrotin, Y.; Sahebkar, A. Altered expression of MicroRNAs in rheumatoid arthritis. J. Cell. Biochem., 2018, 119(1), 478-487.
[http://dx.doi.org/10.1002/jcb.26205] [PMID: 28598026]
[24]
Liu, N.K.; Xu, X.M. MicroRNA in central nervous system trauma and degenerative disorders. Physiol. Genomics, 2011, 43(10), 571-580.
[http://dx.doi.org/10.1152/physiolgenomics.00168.2010] [PMID: 21385946]
[25]
Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells, 2020, 9(2), 276.
[http://dx.doi.org/10.3390/cells9020276] [PMID: 31979244]
[26]
Morris, N.L.; Hammer, A.M.; Cannon, A.R.; Gagnon, R.C.; Li, X.; Choudhry, M.A. Dysregulation of microRNA biogenesis in the small intestine after ethanol and burn injury. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(10), 2645-2653.
[http://dx.doi.org/10.1016/j.bbadis.2017.03.025] [PMID: 28404517]
[27]
Szilágyi, B.; Fejes, Z.; Pócsi, M.; Kappelmayer, J.; Nagy, B., Jr Role of sepsis modulated circulating microRNAs. EJIFCC, 2019, 30(2), 128-145.
[PMID: 31263389]
[28]
Bedreag, O.H.; Rogobete, A.F.; Dumache, R.; Sarandan, M.; Cradigati, A.C.; Papurica, M.; Craciunescu, M.C.; Popa, D.M.; Luca, L.; Nartita, R.; Sandesc, D. Use of circulating microRNAs as biomarkers in critically ill polytrauma patients. Biomark. Genom. Med., 2015, 7(4), 131-138.
[http://dx.doi.org/10.1016/j.bgm.2015.11.002]
[29]
Shukla, S.K.; Sharma, A.K.; Bharti, R.; Kulshrestha, V.; Kalonia, A.; Shaw, P. Can miRNAs serve as potential markers in thermal burn injury: An in silico approach. J. Burn Care Res., 2020, 41(1), 57-64.
[http://dx.doi.org/10.1093/jbcr/irz183] [PMID: 31701154]
[30]
Lan, H; Lu, H; Wang, X; Jin, H. MicroRNAs as potential biomarkers in cancer: opportunities and challenges. Biomed. Res. Int., 2015, 2015, 125094.
[http://dx.doi.org/10.1155/2015/125094] [PMID: 25874201]
[31]
Kreth, S.; Hübner, M.; Hinske, L.C. MicroRNAs as clinical biomarkers and therapeutic tools in perioperative medicine. Anesth. Analg., 2018, 126(2), 670-681.
[http://dx.doi.org/10.1213/ANE.0000000000002444] [PMID: 28922229]
[32]
Terrinoni, A.; Calabrese, C.; Basso, D.; Aita, A.; Caporali, S.; Plebani, M.; Bernardini, S. The circulating miRNAs as diagnostic and prognostic markers. Clin. Chem. Lab. Med., 2019, 57(7), 932-953.
[http://dx.doi.org/10.1515/cclm-2018-0838] [PMID: 30838832]
[33]
Kadir, R.R.A.; Alwjwaj, M.; Bayraktutan, U. MicroRNA: An emerging predictive, diagnostic, prognostic and therapeutic strategy in ischaemic stroke. Cell. Mol. Neurobiol., 2020, 42(5), 1301-1319.
[PMID: 33368054]
[34]
Giza, D.E.; Fuentes-Mattei, E.; Bullock, M.D.; Tudor, S.; Goblirsch, M.J.; Fabbri, M.; Lupu, F.; Yeung, S.C.J.; Vasilescu, C.; Calin, G.A. Cellular and viral microRNAs in sepsis: Mechanisms of action and clinical applications. Cell Death Differ., 2016, 23(12), 1906-1918.
[http://dx.doi.org/10.1038/cdd.2016.94] [PMID: 27740627]
[35]
Dumache, R.; Rogobete, A.F.; Bedreag, O.H.; Sarandan, M.; Cradigati, A.C.; Papurica, M.; Dumbuleu, C.M.; Nartita, R.; Sandesc, D. Use of miRNAs as biomarkers in sepsis. Anal. Cell Pathol., 2015, 2015, 186716.
[http://dx.doi.org/10.1155/2015/186716] [PMID: 26221578]
[36]
Abd-El-Fattah, A.A.; Sadik, N.A.H.; Shaker, O.G.; Aboulftouh, M.L. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochem. Biophys., 2013, 67(3), 875-884.
[http://dx.doi.org/10.1007/s12013-013-9575-y] [PMID: 23559272]
[37]
Wang, J.; Chen, J.; Sen, S. MicroRNA as biomarkers and diagnostics. J. Cell. Physiol., 2016, 231(1), 25-30.
[http://dx.doi.org/10.1002/jcp.25056] [PMID: 26031493]
[38]
Wiemer, E.A.C. Prognostic circulating MicroRNA biomarkers in early-stage non-small cell lung cancer: A role for miR-150. Clin. Pharmacol. Ther., 2018, 103(6), 968-970.
[http://dx.doi.org/10.1002/cpt.972] [PMID: 29285749]
[39]
Wang, H.; Peng, R.; Wang, J.; Qin, Z.; Xue, L. Circulating microRNAs as potential cancer biomarkers: The advantage and disadvantage. Clin. Epigenetics, 2018, 10(1), 59.
[http://dx.doi.org/10.1186/s13148-018-0492-1] [PMID: 29713393]
[40]
Saliminejad, K.; Khorram Khorshid, H.R.; Ghaffari, S.H. Why have microRNA biomarkers not been translated from bench to clinic?. Future Oncol., 2019, 15(8), 801-803.
[http://dx.doi.org/10.2217/fon-2018-0812] [PMID: 30652506]
[41]
Benz, F.; Roy, S.; Trautwein, C.; Roderburg, C.; Luedde, T. Circulating MicroRNAs as biomarkers for sepsis. Int. J. Mol. Sci., 2016, 17(1), 78.
[http://dx.doi.org/10.3390/ijms17010078] [PMID: 26761003]
[42]
Darden, D.B.; Stortz, J.A.; Hollen, M.K.; Cox, M.C.; Apple, C.G.; Hawkins, R.B.; Rincon, J.C.; Lopez, M.C.; Wang, Z.; Navarro, E.; Hagen, J.E.; Parvataneni, H.K.; Brusko, M.A.; Kladde, M.; Bacher, R.; Brumback, B.A.; Brakenridge, S.C.; Baker, H.V.; Cogle, C.R.; Mohr, A.M.; Efron, P.A. Identification of unique mRNA and miRNA expression patterns in bone marrow hematopoietic stem and progenitor cells after trauma in older adults. Front. Immunol., 2020, 11, 1289.
[http://dx.doi.org/10.3389/fimmu.2020.01289] [PMID: 32670283]
[43]
Papurica, M.; Rogobete, A.F.; Sandesc, D.; Cradigati, C.A.; Sarandan, M.; Crisan, D.C.; Horhat, F.G.; Boruga, O.; Dumache, R.; Nilima, K.R.; Nitu, R.; Stanca, H.; Bedreag, O.H. The expression of nuclear transcription factor kappa B (NF-κB) in the case of critically Ill polytrauma patients with sepsis and its interactions with microRNAs. Biochem. Genet., 2016, 54(4), 337-347.
[http://dx.doi.org/10.1007/s10528-016-9727-z] [PMID: 27003424]
[44]
Zhu, J.; Chen, Z.; Meng, Z.; Ju, M.; Zhang, M.; Wu, G.; Guo, H.; Tian, Z. Electroacupuncture alleviates surgical trauma-induced hypothalamus pituitary adrenal axis hyperactivity via microRNA-142. Front. Mol. Neurosci., 2017, 10, 308.
[http://dx.doi.org/10.3389/fnmol.2017.00308] [PMID: 29021740]
[45]
Bratu, L.; Rogobete, A.; Papurica, M.; Sandesc, D.; Cradigati, C.; Sarandan, M.; Dumache, R.; Popovici, S.; Crisan, D.; Stanca, H.; Tanasescu, S.; Bedreag, O. Literature research regarding miRNAs’ expression in the assessment and evaluation of the critically Ill polytrauma patient with traumatic brain and spinal cord injury. Clin. Lab., 2016, 62(10/2016), 2019-2024.
[http://dx.doi.org/10.7754/Clin.Lab.2016.160327] [PMID: 28164531]
[46]
Strickland, E.R.; Woller, S.A.; Hook, M.A.; Grau, J.W.; Miranda, R.C. The association between spinal cord trauma-sensitive miRNAs and pain sensitivity, and their regulation by morphine. Neurochem. Int., 2014, 77, 40-49.
[http://dx.doi.org/10.1016/j.neuint.2014.05.005] [PMID: 24867772]
[47]
Song, J.; Li, N.; Xia, Y.; Gao, Z.; Zou, S.F.; Yan, Y.H.; Li, S.H.; Wang, Y.; Meng, Y.K.; Yang, J.X.; Kang, T.G. Arctigenin confers neuroprotection against mechanical trauma injury in human neuroblastoma SH-SY5Y cells by regulating miRNA-16 and miRNA-199a expression to alleviate inflammation. J. Mol. Neurosci., 2016, 60(1), 115-129.
[http://dx.doi.org/10.1007/s12031-016-0784-x] [PMID: 27389368]
[48]
Wu, J.; Li, J.; Chen, W.K.; Liu, S.; Liu, J.H.; Zhang, J.S.; Fang, K.W. MicroRNA-214 affects fibroblast differentiation of adipose-derived mesenchymal stem cells by targeting mitofusin-2 during pelvic floor dysfunction in SD rats with birth trauma. Cell. Physiol. Biochem., 2017, 42(5), 1870-1887.
[http://dx.doi.org/10.1159/000479570] [PMID: 28772265]
[49]
Simeoli, R.; Montague, K.; Jones, H.R.; Castaldi, L.; Chambers, D.; Kelleher, J.H.; Vacca, V.; Pitcher, T.; Grist, J.; Al-Ahdal, H.; Wong, L.F.; Perretti, M.; Lai, J.; Mouritzen, P.; Heppenstall, P.; Malcangio, M. Exosomal cargo including microRNA regulates sensory neuron to macrophage communication after nerve trauma. Nat. Commun., 2017, 8(1), 1778.
[http://dx.doi.org/10.1038/s41467-017-01841-5] [PMID: 29176651]
[50]
Wang, W.; Tang, S.; Li, H.; Liu, R.; Su, Y.; Shen, L.; Sun, M.; Ning, B. MicroRNA-21a-5p promotes fibrosis in spinal fibroblasts after mechanical trauma. Exp. Cell Res., 2018, 370(1), 24-30.
[http://dx.doi.org/10.1016/j.yexcr.2018.06.002] [PMID: 29883711]
[51]
Chen, L.; Dong, R.; Lu, Y.; Zhou, Y.; Li, K.; Zhang, Z.; Peng, M. MicroRNA-146a protects against cognitive decline induced by surgical trauma by suppressing hippocampal neuroinflammation in mice. Brain Behav. Immun., 2019, 78, 188-201.
[http://dx.doi.org/10.1016/j.bbi.2019.01.020] [PMID: 30685530]
[52]
Luís, A.; Hackl, M.; Jafarmadar, M.; Keibl, C.; Jilge, J.M.; Grillari, J.; Bahrami, S.; Kozlov, A.V. Circulating miRNAs associated with ER stress and organ damage in a preclinical model of trauma hemorrhagic shock. Front. Med., 2020, 7, 568096.
[http://dx.doi.org/10.3389/fmed.2020.568096] [PMID: 33072784]
[53]
Chen, LJ; Yang, L; Cheng, X; Xue, YK; Chen, LB Overexpression of miR-24 is involved in the formation of hypocoagulation state after severe trauma by inhibiting the synthesis of coagulation factor X. Dis. Markers, 2017, 2017, 3649693.
[http://dx.doi.org/10.1155/2017/3649693.] [PMID: 28694557]
[54]
Li, Z.; Ni, J. Role of microRNA-26a in the diagnosis of lower extremity deep vein thrombosis in patients with bone trauma. Exp. Ther. Med., 2017, 14(5), 5069-5074.
[http://dx.doi.org/10.3892/etm.2017.5183] [PMID: 29201216]
[55]
Zhu, J.; Chen, Z.; Tian, J.; Meng, Z.; Ju, M.; Wu, G.; Tian, Z. miR-34b attenuates trauma-induced anxiety-like behavior by targeting CRHR1. Int. J. Mol. Med., 2017, 40(1), 90-100.
[http://dx.doi.org/10.3892/ijmm.2017.2981] [PMID: 28498394]
[56]
Patel, M.; Cai, Q.; Ding, D.; Salvi, R.; Hu, Z.; Hu, B.H. The miR-183/Taok1 target pair is implicated in cochlear responses to acoustic trauma. PLoS One, 2013, 8(3), e58471.
[http://dx.doi.org/10.1371/journal.pone.0058471] [PMID: 23472202]
[57]
Strickland, E.R.; Hook, M.A.; Balaraman, S.; Huie, J.R.; Grau, J.W.; Miranda, R.C. MicroRNA dysregulation following spinal cord contusion: Implications for neural plasticity and repair. Neuroscience, 2011, 186, 146-160.
[http://dx.doi.org/10.1016/j.neuroscience.2011.03.063] [PMID: 21513774]
[58]
Chen, Y.; Sun, J.; Chen, W.; Wu, G.; Wang, Y.; Zhu, K.; Wang, J. miR-124/VAMP3 is a novel therapeutic target for mitigation of surgical trauma-induced microglial activation. Signal Transduct. Target. Ther., 2019, 4(1), 27.
[http://dx.doi.org/10.1038/s41392-019-0061-x] [PMID: 31637007]
[59]
Liang, P.; Lv, C.; Jiang, B.; Long, X.; Zhang, P.; Zhang, M.; Xie, T.; Huang, X. MicroRNA profiling in denatured dermis of deep burn patients. Burns, 2012, 38(4), 534-540.
[http://dx.doi.org/10.1016/j.burns.2011.10.014] [PMID: 22360957]
[60]
Song, J.; Saeman, M.R.; Baer, L.A.; Cai, A.R.; Wade, C.E.; Wolf, S.E. Exercise altered the skeletal muscle MicroRNAs and gene expression profiles in burn rats with hindlimb unloading. J. Burn Care Res., 2017, 38(1), 11-19.
[http://dx.doi.org/10.1097/BCR.0000000000000444] [PMID: 27753701]
[61]
Hu, D.; Yu, Y.; Wang, C.; Li, D.; Tai, Y.; Fang, L. microRNA-98 mediated microvascular hyperpermeability during burn shock phase via inhibiting FIH-1. Eur. J. Med. Res., 2015, 20(1), 51.
[http://dx.doi.org/10.1186/s40001-015-0141-5] [PMID: 25903459]
[62]
Haijun, Z.; Yonghui, Y.; Jiake, C.; Hongjie, D. Detection of the microRNA expression profile in skeletal muscles of burn trauma at the early stage in rats. Ulus. Travma Acil Cerrahi Derg., 2015, 21(4), 241-247.
[PMID: 26374409]
[63]
Yu, Y.; Li, X.; Liu, L.; Chai, J.; Haijun, Z.; Chu, W.; Yin, H.; Ma, L.; Duan, H.; Xiao, M. miR-628 promotes burn-induced skeletal muscle atrophy via targeting IRS1. Int. J. Biol. Sci., 2016, 12(10), 1213-1224.
[http://dx.doi.org/10.7150/ijbs.15496] [PMID: 27766036]
[64]
Zhou, J.; Lian, H.; Zhao, T.; Xu, G. MicroRNA-451 increases vascular permeability and suppresses angiogenesis in pulmonary burn injury in a rat model. Adv. Clin. Exp. Med., 2020, 29(11), 1241-1248.
[http://dx.doi.org/10.17219/acem/126299] [PMID: 33269809]
[65]
Liu, J.S.; Du, J.; Cheng, X.; Zhang, X.Z.; Li, Y.; Chen, X.L. Exosomal miR-451 from human umbilical cord mesenchymal stem cells attenuates burn-induced acute lung injury. J. Chin. Med. Assoc., 2019, 82(12), 895-901.
[http://dx.doi.org/10.1097/JCMA.0000000000000189] [PMID: 31800531]
[66]
Li, X.; Liu, L.; Yang, J.; Yu, Y.; Chai, J.; Wang, L.; Ma, L.; Yin, H. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBioMedicine, 2016, 8, 72-82.
[http://dx.doi.org/10.1016/j.ebiom.2016.04.030] [PMID: 27428420]
[67]
Ke, J.; Bian, X.; Liu, H.; Li, B.; Huo, R. Edaravone reduces oxidative stress and intestinal cell apoptosis after burn through up-regulating miR-320 expression. Mol. Med., 2019, 25(1), 54.
[http://dx.doi.org/10.1186/s10020-019-0122-1] [PMID: 31829167]
[68]
Jiang, B.; Tang, Y.; Wang, H.; Chen, C.; Yu, W.; Sun, H.; Duan, M.; Lin, X.; Liang, P. Down-regulation of long non-coding RNA HOTAIR promotes angiogenesis via regulating miR-126/SCEL pathways in burn wound healing. Cell Death Dis., 2020, 11(1), 61.
[http://dx.doi.org/10.1038/s41419-020-2247-0] [PMID: 31974341]
[69]
Yu, Y.; Chai, J.; Zhang, H.; Chu, W.; Liu, L.; Ma, L.; Duan, H.; Li, B.; Li, D. miR-194 Promotes burn-induced hyperglycemia via attenuating IGF-IR expression. Shock, 2014, 42(6), 578-584.
[http://dx.doi.org/10.1097/SHK.0000000000000258] [PMID: 25186839]
[70]
Zhou, J.; Zhang, X.; Liang, P.; Ren, L.; Zeng, J.; Zhang, M.; Zhang, P.; Huang, X. Protective role of microRNA-29a in denatured dermis and skin fibroblast cells after thermal injury. Biol. Open, 2016, 5(3), 211-219.
[http://dx.doi.org/10.1242/bio.014910] [PMID: 26794609]
[71]
Yan, Y.; Wu, R.; Bo, Y.; Zhang, M.; Chen, Y.; Wang, X.; Huang, M.; Liu, B.; Zhang, L. Induced pluripotent stem cells-derived microvesicles accelerate deep second-degree burn wound healing in mice through miR-16-5p-mediated promotion of keratinocytes migration. Theranostics, 2020, 10(22), 9970-9983.
[http://dx.doi.org/10.7150/thno.46639] [PMID: 32929328]
[72]
Luo, J.; Zhan, J.; You, H.; Cheng, X. MicroRNA-146a/Toll-like receptor 4 signaling protects against severe burn-induced remote acute lung injury in rats via anti-inflammation. Mol. Med. Rep., 2018, 17(6), 8377-8384.
[http://dx.doi.org/10.3892/mmr.2018.8877] [PMID: 29658581]
[73]
Liu, L.; Yin, H.; Hao, X.; Song, H.; Chai, J.; Duan, H.; Chang, Y.; Yang, L.; Wu, Y.; Han, S.; Wang, X.; Yue, X.; Chi, Y.; Liu, W.; Wang, Q.; Wang, H.; Bai, H.; Shi, X.; Li, S. Down-Regulation of miR-301a-3p reduces burn-induced vascular endothelial apoptosis by potentiating hMSC-secreted IGF-1 and PI3K/Akt/FOXO3a pathway. iScience, 2020, 23(8), 101383.
[http://dx.doi.org/10.1016/j.isci.2020.101383] [PMID: 32745988]
[74]
Yu, Y.; Yang, L.; Han, S.; Wu, Y.; Liu, L.; Chang, Y.; Wang, X.; Chai, J. MIR-190B Alleviates cell autophagy and burn-induced Skeletal muscle wasting via modulating PHLPP1/Akt/FoxO3A signaling pathway. Shock, 2019, 52(5), 513-521.
[http://dx.doi.org/10.1097/SHK.0000000000001284] [PMID: 30407372]
[75]
Shi, M.; Zong, X.; Chen, L.; Guo, X.; Ding, X. MiR-506-3p regulates autophagy and proliferation in post-burn skin fibroblasts through post-transcriptionally suppressing Beclin-1 expression. In Vitro Cell. Dev. Biol. Anim., 2020, 56(7), 522-532.
[http://dx.doi.org/10.1007/s11626-020-00472-3] [PMID: 32754856]
[76]
Cao, W.; Feng, Y. LncRNA XIST promotes extracellular matrix synthesis, proliferation and migration by targeting miR-29b-3p/COL1A1 in human skin fibroblasts after thermal injury. Biol. Res., 2019, 52(1), 52.
[http://dx.doi.org/10.1186/s40659-019-0260-5] [PMID: 31540582]
[77]
Podsiad, A.; Standiford, T.J.; Ballinger, M.N.; Eakin, R.; Park, P.; Kunkel, S.L.; Moore, B.B.; Bhan, U. MicroRNA-155 regulates host immune response to postviral bacterial pneumonia via IL-23/IL-17 pathway. Am. J. Physiol. Lung Cell. Mol. Physiol., 2016, 310(5), L465-L475.
[http://dx.doi.org/10.1152/ajplung.00224.2015] [PMID: 26589478]
[78]
Wu, X; Wu, C; Gu, W; Ji, H; Zhu, L. Serum exosomal micrornas predict acute respiratory distress syndrome events in patients with severe community-acquired pneumonia. Biomed. Res. Int., 2019, 2019, 3612020.
[http://dx.doi.org/10.1155/2019/3612020] [PMID: 31467883]
[79]
Huang, S.; Feng, C.; Zhai, Y.Z.; Zhou, X.; Li, B.; Wang, L.L.; Chen, W.; Lv, F.Q.; Li, T.S. Identification of miRNA biomarkers of pneumonia using RNA-sequencing and bioinformatics analysis. Exp. Ther. Med., 2017, 13(4), 1235-1244.
[http://dx.doi.org/10.3892/etm.2017.4151] [PMID: 28413462]
[80]
Liu, Z.; Yu, H.; Guo, Q. MicroRNA-20a promotes inflammation via the nuclear factor-κB signaling pathway in pediatric pneumonia. Mol. Med. Rep., 2018, 17(1), 612-617.
[PMID: 29115456]
[81]
Huang, F; Zhang, J; Yang, D; Zhang, Y; Huang, J; Yuan, Y; Li, X; Lu, G MicroRNA expression profile of whole blood is altered in adenovirus-infected pneumonia children. Mediators Inflamm., 2018, 2018, 2320640.
[http://dx.doi.org/10.1155/2018/2320640] [PMID: 30405317]
[82]
Huang, F.; Bai, J.; Zhang, J.; Yang, D.; Fan, H.; Huang, L.; Shi, T.; Lu, G. Identification of potential diagnostic biomarkers for pneumonia caused by adenovirus infection in children by screening serum exosomal microRNAs. Mol. Med. Rep., 2019, 19(5), 4306-4314.
[http://dx.doi.org/10.3892/mmr.2019.10107] [PMID: 30942467]
[83]
Hermann, S.; Brandes, F.; Kirchner, B.; Buschmann, D.; Borrmann, M.; Klein, M.; Kotschote, S.; Bonin, M.; Reithmair, M.; Kaufmann, I.; Schelling, G.; Pfaffl, M.W. Diagnostic potential of circulating cell-free microRNAs for community-acquired pneumonia and pneumonia-related sepsis. J. Cell. Mol. Med., 2020, 24(20), 12054-12064.
[http://dx.doi.org/10.1111/jcmm.15837] [PMID: 32916773]
[84]
Wang, Y.; Li, H.; Shi, Y.; Wang, S.; Xu, Y.; Li, H.; Liu, D. miR-143-3p impacts on pulmonary inflammatory factors and cell apoptosis in mice with mycoplasmal pneumonia by regulating TLR4/MyD88/NF-κB pathway. Biosci. Rep., 2020, 40(7), BSR20193419.
[http://dx.doi.org/10.1042/BSR20193419]
[85]
Zhang, L.; Yan, H.; Wang, H.; Wang, L.; Bai, B.; Ma, Y.; Tie, Y.; Xi, Z. MicroRNA (miR)-429 promotes inflammatory injury by targeting kruppel-like factor 4 (KLF4) in neonatal pneumonia. Curr. Neurovasc. Res., 2020, 17(1), 102-109.
[http://dx.doi.org/10.2174/1567202617666200128143634] [PMID: 32003671]
[86]
Chu, C.; Lei, X.; Li, Y.; Luo, Y.; Ding, Y.; Zhou, W.; Ji, W. High expression of miR-222-3p in children with Mycoplasma pneumoniae pneumonia. Ital. J. Pediatr., 2019, 45(1), 163.
[http://dx.doi.org/10.1186/s13052-019-0750-7] [PMID: 31842954]
[87]
Fei, S.; Cao, L.; Pan, L. microRNA-3941 targets IGF2 to control LPS-induced acute pneumonia in A549 cells. Mol. Med. Rep., 2018, 17(3), 4019-4026.
[PMID: 29328418]
[88]
Gao, W.; Yang, H. MicroRNA-124-3p attenuates severe community-acquired pneumonia progression in macrophages by targeting tumor necrosis factor receptor-associated factor 6. Int. J. Mol. Med., 2019, 43(2), 1003-1010.
[PMID: 30535475]
[89]
Chen, C.; Lin, S.; Zhou, L.; Wang, J.; Chen, J.; Yu, R.; Luo, H.; Lu, J.; Xue, Z.; Chen, M. MicroRNA-127-5p attenuates severe pneumonia via tumor necrosis factor receptor-associated factor 1. Exp. Ther. Med., 2020, 20(3), 2856-2862.
[http://dx.doi.org/10.3892/etm.2020.8997] [PMID: 32765782]
[90]
Guo, L.; Wang, Q.; Zhang, D. MicroRNA-4485 ameliorates severe influenza pneumonia via inhibition of the STAT3/PI3K/AKT signaling pathway. Oncol. Lett., 2020, 20(5), 1.
[http://dx.doi.org/10.3892/ol.2020.12078] [PMID: 32963621]
[91]
Zhang, J.; Mao, F.; Zhao, G.; Wang, H.; Yan, X.; Zhang, Q. Long non-coding RNA SNHG16 promotes lipopolysaccharides-induced acute pneumonia in A549 cells via targeting miR-370-3p/IGF2 axis. Int. Immunopharmacol., 2020, 78, 106065.
[http://dx.doi.org/10.1016/j.intimp.2019.106065] [PMID: 31841752]
[92]
Yin, L.; Ma, Y.; Wang, W.; Zhu, Y. The critical function of miR-1323/Il6 axis in children with Mycoplasma pneumoniae pneumonia. J. Pediatr., 2020, 97(5), 552-558.
[PMID: 33347836]
[93]
Li, S.; Cui, W.; Song, Q.; Zhou, Y.; Li, J. miRNA-302e attenuates inflammation in infantile pneumonia though the RelA/BRD4/NF-κB signaling pathway. Int. J. Mol. Med., 2019, 44(1), 47-56.
[http://dx.doi.org/10.3892/ijmm.2019.4194] [PMID: 31115487]
[94]
Ruiz-Castilla, M.; Roca, O.; Masclans, J.R.; Barret, J.P. Recent advances in biomarkers in severe burns. Shock: Injury, Inflammation, and Sepsis. Lab. Clin. Approaches., 2016, 45(2), 117-125.
[95]
Kaddoura, I.; Abu-Sittah, G.; Ibrahim, A.; Karamanoukian, R.; Papazian, N. Burn injury: Review of pathophysiology and therapeutic modalities in major burns. Ann. Burns Fire Disasters, 2017, 30(2), 95-102.
[PMID: 29021720]
[96]
Sonkoly, E.; Wei, T.; Janson, P.C.J.; Sääf, A.; Lundeberg, L.; Tengvall-Linder, M.; Norstedt, G.; Alenius, H.; Homey, B.; Scheynius, A.; Ståhle, M.; Pivarcsi, A. MicroRNAs: Novel regulators involved in the pathogenesis of psoriasis? PLoS One, 2007, 2(7), e610.
[http://dx.doi.org/10.1371/journal.pone.0000610] [PMID: 17622355]
[97]
Pan, J.; Ye, Z.; Zhang, N.; Lou, T.; Cao, Z. MicroRNA-217 regulates interstitial pneumonia via IL-6. Biotechnol. Biotechnol. Equip., 2018, 32(6), 1541-1547.
[http://dx.doi.org/10.1080/13102818.2018.1519379]
[98]
Kingsley, S.M.K.; Bhat, B.V. Role of microRNAs in sepsis. Inflamm. Res., 2017, 66(7), 553-569.
[http://dx.doi.org/10.1007/s00011-017-1031-9] [PMID: 28258291]
[99]
Van Looveren, K.; Van Wyngene, L.; Libert, C. An extracellular microRNA can rescue lives in sepsis. EMBO Rep., 2020, 21(1), e49193.
[http://dx.doi.org/10.15252/embr.201949193] [PMID: 31724800]
[100]
Shankar-Hari, M.; Lord, G.M. How might a diagnostic microRNA signature be used to speed up the diagnosis of sepsis? Expert Rev. Mol. Diagn., 2014, 14(3), 249-251.
[http://dx.doi.org/10.1586/14737159.2014.899151] [PMID: 24649814]
[101]
Søndergaard, E.S.; Alamili, M.; Coskun, M.; Gögenur, I. MicroRNA’s are novel biomarkers in sepsis – A systematic review. Trends Anaesth. Crit. Care., 2015, 5(5), 151-156.
[http://dx.doi.org/10.1016/j.tacc.2015.08.001]
[102]
Zhang, W.; Jia, J.; Liu, Z.; Si, D.; Ma, L.; Zhang, G. Circulating microRNAs as biomarkers for Sepsis secondary to pneumonia diagnosed via Sepsis 3.0. BMC Pulm. Med., 2019, 19(1), 93.
[http://dx.doi.org/10.1186/s12890-019-0836-4] [PMID: 31088429]
[103]
Xu, R.; Shao, Z.; Cao, Q. MicroRNA-144-3p enhances LPS induced septic acute lung injury in mice through downregulating Caveolin-2. Immunol. Lett., 2021, 231, 18-25.
[http://dx.doi.org/10.1016/j.imlet.2020.12.015] [PMID: 33418009]
[104]
Liu, D.; Wang, Z.; Wang, H.; Ren, F.; Li, Y.; Zou, S.; Xu, J.; Xie, L. The protective role of miR-223 in sepsis-induced mortality. Sci. Rep., 2020, 10(1), 17691.
[http://dx.doi.org/10.1038/s41598-020-74965-2] [PMID: 33077816]
[105]
Dang, CP; Leelahavanichkul, A Over-expression of miR-223 induces M2 macrophage through glycolysis alteration and attenuates LPS-induced sepsis mouse model, the cell-based therapy in sepsis. PLoS One, 2020, 15(7), e0236038.
[http://dx.doi.org/10.1371/journal.pone.0236038] [PMID: 32658933]
[106]
Wang, X.; Gu, H.; Qin, D.; Yang, L.; Huang, W.; Essandoh, K.; Wang, Y.; Caldwell, C.C.; Peng, T.; Zingarelli, B.; Fan, G.C. Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis. Sci. Rep., 2015, 5(1), 13721.
[http://dx.doi.org/10.1038/srep13721] [PMID: 26348153]
[107]
Tong, L.; Tang, C.; Cai, C.; Guan, X. Upregulation of the microRNA rno-miR-146b-5p may be involved in the development of intestinal injury through inhibition of Kruppel- like factor 4 in intestinal sepsis. Bioengineered, 2020, 11(1), 1334-1349.
[http://dx.doi.org/10.1080/21655979.2020.1851476] [PMID: 33200654]
[108]
Jiang, L.; Ni, J.; Shen, G.; Xia, Z.; Zhang, L.; Xia, S.; Pan, S.; Qu, H.; Li, X. Upregulation of endothelial cell-derived exosomal microRNA-125b-5p protects from sepsis-induced acute lung injury by inhibiting topoisomerase II alpha. Inflamm. Res., 2021, 70(2), 205-216.
[http://dx.doi.org/10.1007/s00011-020-01415-0] [PMID: 33386874]
[109]
Zhu, H.C.; Song, W.W.; Zhao, M.L.; Zhang, R.M.; Tian, X. Effect of miR-132 on lung injury in sepsis rats via regulating Sirt1 expression. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(2), 1042-1049.
[PMID: 33577060]
[110]
An, R; Feng, J; Xi, C; Xu, J; Sun, L. MiR-146a attenuates sepsis-induced myocardial dysfunction by suppressing IRAK1 and TRAF6 via targeting ErbB4 expression. Oxid. Med. Cell Longev., 2018, 2018, 7163057.
[http://dx.doi.org/10.1155/2018/7163057] [PMID: 30224945]
[111]
Gao, M.; Wang, X.; Zhang, X.; Ha, T.; Ma, H.; Liu, L.; Kalbfleisch, J.H.; Gao, X.; Kao, R.L.; Williams, D.L.; Li, C. Attenuation of cardiac dysfunction in polymicrobial sepsis by MicroRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. J. Immunol., 2015, 195(2), 672-682.
[http://dx.doi.org/10.4049/jimmunol.1403155] [PMID: 26048146]
[112]
Funahashi, Y.; Kato, N.; Masuda, T.; Nishio, F.; Kitai, H.; Ishimoto, T.; Kosugi, T.; Tsuboi, N.; Matsuda, N.; Maruyama, S.; Kadomatsu, K. miR-146a targeted to splenic macrophages prevents sepsis-induced multiple organ injury. Lab. Invest., 2019, 99(8), 1130-1142.
[http://dx.doi.org/10.1038/s41374-019-0190-4] [PMID: 30700845]
[113]
Song, Y.; Dou, H.; Li, X.; Zhao, X.; Li, Y.; Liu, D.; Ji, J.; Liu, F.; Ding, L.; Ni, Y.; Hou, Y. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis. Stem Cells, 2017, 35(5), 1208-1221.
[http://dx.doi.org/10.1002/stem.2564] [PMID: 28090688]
[114]
Sang, Z; Zhang, P; Wei, Y; Dong, S. MiR-214-3p attenuates sepsis-induced myocardial dysfunction in mice by inhibiting autophagy through PTEN/AKT/mTOR pathway. Biomed. Res. Int., 2020, 2020, 1409038.
[http://dx.doi.org/10.1155/2020/1409038] [PMID: 32714974]
[115]
Zheng, G; Qiu, G; Ge, M; Meng, J; Zhang, G; Wang, J; Huang, R; Shu, Q; Xu, J MiR-10a in peripheral blood mononuclear cells is a biomarker for sepsis and has anti-inflammatory function. Mediators Inflamm., 2020, 2020, 4370983.
[http://dx.doi.org/10.1155/2020/4370983] [PMID: 32214905]
[116]
Du, X; Tian, D; Wei, J; Yan, C; Hu, P; Wu, X; Yang, W; Zhu, Z MiR-199a-5p exacerbated intestinal barrier dysfunction through inhibiting surfactant protein D and activating NF- κ B pathway in sepsis. Mediators Inflamm., 2020, 2020, 8275026.
[http://dx.doi.org/10.1155/2020/8275026] [PMID: 32508527]
[117]
Qin, L.Y.; Wang, M.X.; Zhang, H. MiR-133a alleviates renal injury caused by sepsis by targeting BNIP3L. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(5), 2632-2639.
[PMID: 32196613]
[118]
Tacke, F.; Roderburg, C.; Benz, F.; Cardenas, D.V.; Luedde, M.; Hippe, H.J.; Frey, N.; Vucur, M.; Gautheron, J.; Koch, A.; Trautwein, C.; Luedde, T. Levels of circulating miR-133a are elevated in sepsis and predict mortality in critically ill patients. Crit. Care Med., 2014, 42(5), 1096-1104.
[http://dx.doi.org/10.1097/CCM.0000000000000131] [PMID: 24413579]
[119]
Chen, L.; Xie, W.; Wang, L.; Zhang, X.; Liu, E.; Kou, Q. MiRNA-133a aggravates inflammatory responses in sepsis by targeting SIRT1. Int. Immunopharmacol., 2020, 88, 106848.
[http://dx.doi.org/10.1016/j.intimp.2020.106848] [PMID: 32771944]
[120]
Zhang, J.; Wang, C.J.; Tang, X.M.; Wei, Y.K. Urinary miR-26b as a potential biomarker for patients with sepsis-associated acute kidney injury: A Chinese population-based study. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(14), 4604-4610.
[PMID: 30058697]
[121]
Zhou, Y.; Song, Y.; Shaikh, Z.; Li, H.; Zhang, H.; Caudle, Y.; Zheng, S.; Yan, H.; Hu, D.; Stuart, C.; Yin, D. MicroRNA-155 attenuates late sepsis-induced cardiac dysfunction through JNK and β-arrestin 2. Oncotarget, 2017, 8(29), 47317-47329.
[http://dx.doi.org/10.18632/oncotarget.17636] [PMID: 28525390]
[122]
Cao, Y.Y.; Wang, Z.; Wang, Z.H.; Jiang, X.G.; Lu, W.H. Inhibition of miR-155 alleviates sepsis-induced inflammation and intestinal barrier dysfunction by inactivating NF-κB signaling. Int. Immunopharmacol., 2021, 90, 107218.
[http://dx.doi.org/10.1016/j.intimp.2020.107218]
[123]
Vasques-Nóvoa, F.; Laundos, T.L.; Cerqueira, R.J.; Quina-Rodrigues, C.; Soares-dos-Reis, R.; Baganha, F.; Ribeiro, S.; Mendonça, L.; Gonçalves, F.; Reguenga, C.; Verhesen, W.; Carneiro, F.; Paiva, J.A.; Schroen, B.; Castro-Chaves, P.; Pinto-do-Ó, P.; Nascimento, D.S.; Heymans, S.; Leite-Moreira, A.F.; Roncon-Albuquerque, R., Jr MicroRNA-155 amplifies nitric oxide/cGMP signaling and impairs vascular angiotensin II reactivity in septic shock. Crit. Care Med., 2018, 46(9), e945-e954.
[http://dx.doi.org/10.1097/CCM.0000000000003296] [PMID: 29979224]
[124]
Liu, J.; Shi, K.; Chen, M.; Xu, L.; Hong, J.; Hu, B.; Yang, X.; Sun, R. Elevated miR-155 expression induces immunosuppression via CD39 + regulatory T-cells in sepsis patient. Int. J. Infect. Dis., 2015, 40, 135-141.
[http://dx.doi.org/10.1016/j.ijid.2015.09.016] [PMID: 26433115]
[125]
Lv, X.; Zhang, Y.; Cui, Y.; Ren, Y.; Li, R.; Rong, Q. Inhibition of microRNA-155 relieves sepsis-induced liver injury through inactivating the JAK/STAT pathway. Mol. Med. Rep., 2015, 12(4), 6013-6018.
[http://dx.doi.org/10.3892/mmr.2015.4188] [PMID: 26251957]
[126]
Du, X; Wu, M; Tian, D; Zhou, J; Wang, L; Zhan, L. MicroRNA-21 contributes to acute liver injury in LPS-induced sepsis mice by inhibiting PPAR α expression. PPAR Res., 2020, 2020, 6633022.
[http://dx.doi.org/10.1155/2020/6633022] [PMID: 33424957]
[127]
Sheng, B.; Zhao, L.; Zang, X.; Zhen, J.; Chen, W. miR-375 ameliorates sepsis by downregulating miR-21 level via inhibiting JAK2-STAT3 signaling. Biomed. Pharmacother., 2017, 86, 254-261.
[http://dx.doi.org/10.1016/j.biopha.2016.11.147] [PMID: 28006751]
[128]
Fu, D.; Dong, J.; Li, P.; Tang, C.; Cheng, W.; Xu, Z.; Zhou, W.; Ge, J.; Xia, C.; Zhang, Z. MiRNA-21 has effects to protect kidney injury induced by sepsis. Biomed. Pharmacother., 2017, 94, 1138-1144.
[http://dx.doi.org/10.1016/j.biopha.2017.07.098] [PMID: 28821165]
[129]
Wang, S.; Wang, J.; Zhang, Z.; Miao, H. Decreased miR-128 and increased miR-21 synergistically cause podocyte injury in sepsis. J. Nephrol., 2017, 30(4), 543-550.
[http://dx.doi.org/10.1007/s40620-017-0405-y] [PMID: 28497421]
[130]
van der Heide, V.; Möhnle, P.; Rink, J.; Briegel, J.; Kreth, S. Down-regulation of MicroRNA-31 in CD4+ T cells contributes to immunosuppression in human sepsis by promoting TH2skewing. Anesthesiology, 2016, 124(4), 908-922.
[http://dx.doi.org/10.1097/ALN.0000000000001031] [PMID: 26978146]
[131]
Liu, Y.; Guan, H.; Zhang, J.L.; Zheng, Z.; Wang, H.T.; Tao, K.; Han, S.C.; Su, L.L.; Hu, D. Acute downregulation of miR-199a attenuates sepsis-induced acute lung injury by targeting SIRT1. Am. J. Physiol. Cell Physiol., 2018, 314(4), C449-C455.
[http://dx.doi.org/10.1152/ajpcell.00173.2017] [PMID: 29351405]
[132]
Liu, L.; Li, T.M.; Liu, X.R.; Bai, Y.P.; Li, J.; Tang, N.; Wang, X.B. MicroRNA-140 inhibits skeletal muscle glycolysis and atrophy in endotoxin-induced sepsis in mice via the WNT signaling pathway. Am. J. Physiol. Cell Physiol., 2019, 317(2), C189-C199.
[http://dx.doi.org/10.1152/ajpcell.00419.2018] [PMID: 31042421]
[133]
Sun, W.; Li, H.; Gu, J. Up-regulation of microRNA-574 attenuates lipopolysaccharide- or cecal ligation and puncture-induced sepsis associated with acute lung injury. Cell Biochem. Funct., 2020, 38(7), 847-858.
[http://dx.doi.org/10.1002/cbf.3496] [PMID: 32090367]
[134]
Wang, H.; Zhang, P.; Chen, W.; Feng, D.; Jia, Y.; Xie, L. Evidence for serum miR-15a and miR-16 levels as biomarkers that distinguish sepsis from systemic inflammatory response syndrome in human subjects. Clin. Chem. Lab. Med., 2012, 50(8), 1423-1428.
[http://dx.doi.org/10.1515/cclm-2011-0826] [PMID: 22868808]
[135]
Wang, H.J.; Deng, J.; Wang, J.Y.; Zhang, P.J.; Xin, Z.; Xiao, K.; Feng, D.; Jia, Y.H.; Liu, Y.N.; Xie, L.X. Serum miR-122 levels are related to coagulation disorders in sepsis patients. Clin. Chem. Lab. Med., 2014, 52(6), 927-933.
[http://dx.doi.org/10.1515/cclm-2013-0899] [PMID: 24421215]
[136]
Gao, M.; Yu, T.; Liu, D.; Shi, Y.; Yang, P.; Zhang, J.; Wang, J.; Liu, Y.; Zhang, X. Sepsis plasma-derived exosomal miR-1-3p induces endothelial cell dysfunction by targeting SERP1. Clin. Sci., 2021, 135(2), 347-365.
[http://dx.doi.org/10.1042/CS20200573] [PMID: 33416075]
[137]
Zhang, L.N.; Tian, H.; Zhou, X.L.; Tian, S.C.; Zhang, X.H.; Wu, T.J. Upregulation of microRNA-351 exerts protective effects during sepsis by ameliorating skeletal muscle wasting through the Tead- 4 -mediated blockade of the Hippo signaling pathway. FASEB J., 2018, 32(12), 6934-6947.
[http://dx.doi.org/10.1096/fj.201800151RR] [PMID: 30040486]
[138]
McClure, C.; McPeak, M.B.; Youssef, D.; Yao, Z.Q.; McCall, C.E.; El Gazzar, M. Stat3 and C/EBPβ synergize to induce miR-21 and miR-181b expression during sepsis. Immunol. Cell Biol., 2017, 95(1), 42-55.
[http://dx.doi.org/10.1038/icb.2016.63] [PMID: 27430527]
[139]
Tod, P.; Róka, B.; Kaucsár, T.; Szatmári, K.; Vizovišek, M.; Vidmar, R.; Fonovič, M.; Szénási, G.; Hamar, P. Time-dependent mirna profile during septic acute kidney injury in mice. Int. J. Mol. Sci., 2020, 21(15), 5316.
[http://dx.doi.org/10.3390/ijms21155316] [PMID: 32727087]
[140]
Zheng, D.; Yu, Y.; Li, M.; Wang, G.; Chen, R.; Fan, G.C.; Martin, C.; Xiong, S.; Peng, T. Inhibition of MicroRNA 195 prevents apoptosis and multiple-organ injury in mouse models of sepsis. J. Infect. Dis., 2016, 213(10), 1661-1670.
[http://dx.doi.org/10.1093/infdis/jiv760] [PMID: 26704614]
[141]
Ma, H.; Wang, X.; Ha, T.; Gao, M.; Liu, L.; Wang, R.; Yu, K.; Kalbfleisch, J.H.; Kao, R.L.; Williams, D.L.; Li, C. MicroRNA-125b prevents cardiac dysfunction in polymicrobial sepsis by targeting TRAF6-mediated nuclear factor κb activation and p53-mediated apoptotic signaling. J. Infect. Dis., 2016, 214(11), 1773-1783.
[http://dx.doi.org/10.1093/infdis/jiw449] [PMID: 27683819]
[142]
Zhang, H.; Li, H.; Shaikh, A.; Caudle, Y.; Yao, B.; Yin, D. Inhibition of MicroRNA-23b attenuates immunosuppression during late sepsis through NIK, TRAF1, and XIAP. J. Infect. Dis., 2018, 218(2), 300-311.
[http://dx.doi.org/10.1093/infdis/jiy116] [PMID: 29506272]
[143]
Zhang, H.; Caudle, Y.; Shaikh, A.; Yao, B.; Yin, D. Inhibition of microRNA-23b prevents polymicrobial sepsis-induced cardiac dysfunction by modulating TGIF1 and PTEN. Biomed. Pharmacother., 2018, 103, 869-878.
[http://dx.doi.org/10.1016/j.biopha.2018.04.092] [PMID: 29710503]
[144]
Cheng, D.L.; Fang, H.X.; Liang, Y.; Zhao, Y.; Shi, C. MicroRNA-34a promotes iNOS secretion from pulmonary macrophages in septic suckling rats through activating STAT3 pathway. Biomed. Pharmacother., 2018, 105, 1276-1282.
[http://dx.doi.org/10.1016/j.biopha.2018.06.063] [PMID: 30021364]
[145]
Li, Y.; Ke, J.; Peng, C.; Wu, F.; Song, Y. microRNA-300/NAMPT regulates inflammatory responses through activation of AMPK/mTOR signaling pathway in neonatal sepsis. Biomed. Pharmacother., 2018, 108, 271-279.
[http://dx.doi.org/10.1016/j.biopha.2018.08.064] [PMID: 30223098]
[146]
Zhen, J.; Chen, W.; Zhao, L.; Zang, X.; Liu, Y. A negative Smad2/miR-9/ANO1 regulatory loop is responsible for LPS-induced sepsis. Biomed. Pharmacother., 2019, 116, 109016.
[http://dx.doi.org/10.1016/j.biopha.2019.109016] [PMID: 31174089]
[147]
Wang, Z.; Ruan, Z.; Mao, Y.; Dong, W.; Zhang, Y.; Yin, N.; Jiang, L. miR-27a is up regulated and promotes inflammatory response in sepsis. Cell. Immunol., 2014, 290(2), 190-195.
[http://dx.doi.org/10.1016/j.cellimm.2014.06.006] [PMID: 25043848]
[148]
Gao, X.L.; Li, J.Q.; Dong, Y.T.; Cheng, E.J.; Gong, J.N.; Qin, Y.L.; Huang, Y.Q.; Yang, J.J.; Wang, S.J.; An, D.D. Upregulation of microRNA-335-5p reduces inflammatory responses by inhibiting FASN through the activation of AMPK/ULK1 signaling pathway in a septic mouse model. Cytokine, 2018, 110, 466-478.
[http://dx.doi.org/10.1016/j.cyto.2018.05.016] [PMID: 29866515]
[149]
Zheng, G.; Pan, M.; Jin, W.; Jin, G.; Huang, Y. MicroRNA-135a is up-regulated and aggravates myocardial depression in sepsis via regulating p38 MAPK/NF-κB pathway. Int. Immunopharmacol., 2017, 45, 6-12.
[http://dx.doi.org/10.1016/j.intimp.2017.01.029] [PMID: 28147298]
[150]
Ling, Y.; Li, Z.Z.; Zhang, J.F.; Zheng, X.W.; Lei, Z.Q.; Chen, R.Y.; Feng, J.H. RETRACTED: MicroRNA-494 inhibition alleviates acute lung injury through Nrf2 signaling pathway via NQO1 in sepsis-associated acute respiratory distress syndrome. Life Sci., 2018, 210, 1-8.
[http://dx.doi.org/10.1016/j.lfs.2018.08.037] [PMID: 30121199]
[151]
Xu, F.; Yuan, J.; Tian, S.; Chen, Y.; Zhou, F. MicroRNA-92a serves as a risk factor in sepsis-induced ARDS and regulates apoptosis and cell migration in lipopolysaccharide-induced HPMEC and A549 cell injury. Life Sci., 2020, 256, 117957.
[http://dx.doi.org/10.1016/j.lfs.2020.117957] [PMID: 32534035]
[152]
Wang, H.; Bei, Y.; Shen, S.; Huang, P.; Shi, J.; Zhang, J.; Sun, Q.; Chen, Y.; Yang, Y.; Xu, T.; Kong, X.; Xiao, J. miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2. J. Mol. Cell. Cardiol., 2016, 94, 43-53.
[http://dx.doi.org/10.1016/j.yjmcc.2016.03.014] [PMID: 27033308]
[153]
Pfeiffer, D.; Roßmanith, E.; Lang, I.; Falkenhagen, D. miR-146a, miR-146b, and miR-155 increase expression of IL-6 and IL-8 and support HSP10 in an in vitro sepsis model. PLoS One, 2017, 12(6), e0179850.
[http://dx.doi.org/10.1371/journal.pone.0179850] [PMID: 28662100]
[154]
Rahmel, T.; Schäfer, S.T.; Frey, U.H.; Adamzik, M.; Peters, J. Increased circulating microRNA-122 is a biomarker for discrimination and risk stratification in patients defined by sepsis-3 criteria. PLoS One, 2018, 13(5), e0197637.
[http://dx.doi.org/10.1371/journal.pone.0197637] [PMID: 29782519]
[155]
Zhu, J.; Lin, X.; Yan, C.; Yang, S.; Zhu, Z. RETRACTED ARTICLE: microRNA-98 protects sepsis mice from cardiac dysfunction, liver and lung injury by negatively regulating HMGA2 through inhibiting NF-κB signaling pathway. Cell Cycle, 2019, 18(16), 1948-1964.
[http://dx.doi.org/10.1080/15384101.2019.1635869] [PMID: 31234706]
[156]
Liu, Z.; Yang, D.; Gao, J.; Xiang, X.; Hu, X.; Li, S.; Wu, W.; Cai, J.; Tang, C.; Zhang, D.; Dong, Z. Discovery and validation of miR-452 as an effective biomarker for acute kidney injury in sepsis. Theranostics, 2020, 10(26), 11963-11975.
[http://dx.doi.org/10.7150/thno.50093] [PMID: 33204323]
[157]
Chen, L.; Yu, L.; Zhang, R.; Zhu, L.; Shen, W. Correlation of microRNA-146a/b with disease risk, biochemical indices, inflammatory cytokines, overall disease severity, and prognosis of sepsis. Medicine, 2020, 99(22), e19754.
[http://dx.doi.org/10.1097/MD.0000000000019754] [PMID: 32481361]
[158]
Huang, Z.; Xu, H. MicroRNA-181a-5p regulates inflammatory response of macrophages in sepsis. Open Med., 2019, 14(1), 899-908.
[http://dx.doi.org/10.1515/med-2019-0106] [PMID: 31844680]
[159]
Younes, N.; Zhou, L.; Amatullah, H.; Mei, S.H.J.; Herrero, R.; Lorente, J.A.; Stewart, D.J.; Marsden, P.; Liles, W.C.; Hu, P.; dos Santos, C.C. Mesenchymal stromal/stem cells modulate response to experimental sepsis-induced lung injury via regulation of miR-27a-5p in recipient mice. Thorax, 2020, 75(7), 556-567.
[http://dx.doi.org/10.1136/thoraxjnl-2019-213561] [PMID: 32546573]
[160]
Li, M.; Li, W.; Ren, F.Q.; Zhang, M. miRNA-186 improves sepsis induced renal injury via PTEN/PI3K/AKT/P53 pathway. Open Med., 2020, 15(1), 254-260.
[http://dx.doi.org/10.1515/med-2020-0036] [PMID: 32292821]
[161]
Möhnle, P.; Hirschberger, S.; Hinske, L.C.; Briegel, J.; Hübner, M.; Weis, S.; Dimopoulos, G.; Bauer, M.; Giamarellos-Bourboulis, E.J.; Kreth, S. MicroRNAs 143 and 150 in whole blood enable detection of T-cell immunoparalysis in sepsis. Mol. Med., 2018, 24(1), 54.
[http://dx.doi.org/10.1186/s10020-018-0056-z] [PMID: 30332984]
[162]
Zhao, X.; Liu, D.; Gong, W.; Zhao, G.; Liu, L.; Yang, L.; Hou, Y. The toll-like receptor 3 ligand, poly(I:C), improves immunosuppressive function and therapeutic effect of mesenchymal stem cells on sepsis via inhibiting MiR-143. Stem Cells, 2014, 32(2), 521-533.
[http://dx.doi.org/10.1002/stem.1543] [PMID: 24105952]
[163]
Wang, L.; Wang, K.; Tian, Z. miR-128-3p inhibits NRP1 expression and promotes inflammatory response to acute kidney injury in sepsis. Inflammation, 2020, 43(5), 1772-1779.
[http://dx.doi.org/10.1007/s10753-020-01251-8] [PMID: 32500307]
[164]
Sun, J.; Sun, X.; Chen, J.; Liao, X.; He, Y.; Wang, J.; Chen, R.; Hu, S.; Qiu, C. microRNA-27b shuttled by mesenchymal stem cell-derived exosomes prevents sepsis by targeting JMJD3 and downregulating NF-κB signaling pathway. Stem Cell Res. Ther., 2021, 12(1), 14.
[http://dx.doi.org/10.1186/s13287-020-02068-w]
[165]
Ge, C.; Liu, J.; Dong, S. miRNA-214 protects sepsis-induced myocardial injury. Shock, 2018, 50(1), 112-118.
[http://dx.doi.org/10.1097/SHK.0000000000000978] [PMID: 28858140]
[166]
Visitchanakun, P.; Tangtanatakul, P.; Trithiphen, O.; Soonthornchai, W.; Wongphoom, J.; Tachaboon, S.; Srisawat, N.; Leelahavanichkul, A. Plasma miR-370-3P as a biomarker of sepsis-associated encephalopathy, the transcriptomic profiling analysis of microrna-arrays from mouse brains. Shock, 2020, 54(3), 347-357.
[http://dx.doi.org/10.1097/SHK.0000000000001473] [PMID: 31743302]
[167]
Yan, J.; Yang, F.; Wang, D.; Lu, Y.; Liu, L.; Wang, Z. MicroRNA-217 modulates inflammation, oxidative stress, and lung injury in septic mice via SIRT1. Free Radic. Res., 2020, 55(1), 1-10.
[PMID: 33207945]
[168]
Zhang, W; Lu, F; Xie, Y; Lin, Y; Zhao, T; Tao, S MiR-23b negatively regulates sepsis-induced inflammatory responses by targeting ADAM10 in human THP-1 monocytes. Mediators Inflamm., 2019, 2019, 5306541.
[http://dx.doi.org/10.1155/2019/5306541] [PMID: 31780861]
[169]
Fatmi, A.; Rebiahi, S.A.; Chabni, N.; Zerrouki, H.; Azzaoui, H.; Elhabiri, Y.; Benmansour, S.; Ibáñez-Cabellos, J.S.; Smahi, M.C-E.; Aribi, M.; García-Giménez, J.L.; Pallardó, F.V. miRNA-23b as a biomarker of culture-positive neonatal sepsis. Mol. Med., 2020, 26(1), 94.
[http://dx.doi.org/10.1186/s10020-020-00217-8]
[170]
Yang, M; Zhao, L; Sun, M. Diagnostic Value of miR-103 in patients with sepsis and noninfectious SIRS and its regulatory role in LPS-induced inflammatory response by targeting TLR4. Int. J. Genomics, 2020, 2020, 2198308.
[http://dx.doi.org/10.1155/2020/2198308] [PMID: 32455124]
[171]
Zhu, XG; Zhang, TN; Wen, R; Liu, CF Overexpression of miR-150-5p alleviates apoptosis in sepsis-induced myocardial depression. Biomed. Res. Int., 2020, 2020, 3023186.
[http://dx.doi.org/10.1155/2020/3023186] [PMID: 32908879]
[172]
Wang, H.F.; Li, Y.; Wang, Y.Q.; Li, H.J.; Dou, L. MicroRNA-494-3p alleviates inflammatory response in sepsis by targeting TLR6. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(7), 2971-2977.
[PMID: 31002148]
[173]
Li, J.M.; Zhang, H.; Zuo, Y.J. MicroRNA-218 alleviates sepsis inflammation by negatively regulating VOPP1 via JAK/STAT pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(17), 5620-5626.
[PMID: 30229837]
[174]
Li, X.; Yao, L.; Zeng, X.; Hu, B.; Zhang, X.; Wang, J.; Zhu, R.; Yu, Q. miR-30c-5p alleviated pyroptosis during sepsis-induced acute kidney injury via targeting TXNIP. Inflammation, 2021, 44(1), 217-228.
[http://dx.doi.org/10.1007/s10753-020-01323-9] [PMID: 32892306]
[175]
Chen, X.; Chen, Y.; Dai, L.; Wang, N. MiR-96-5p alleviates inflammatory responses by targeting NAMPT and regulating the NF-κB pathway in neonatal sepsis. Biosci. Rep., 2020, 40(7), BSR20201267.
[http://dx.doi.org/10.1042/BSR20201267]
[176]
Wang, X.; Wang, Y.; Kong, M.; Yang, J. MiR-22-3p suppresses sepsis-induced acute kidney injury by targeting PTEN. Biosci. Rep., 2020, 40(6), BSR20200527.
[http://dx.doi.org/10.1042/BSR20200527] [PMID: 32412059]
[177]
Chen, S.; Ding, R.; Hu, Z.; Yin, X.; Xiao, F.; Zhang, W.; Yan, S.; Lv, C. MicroRNA-34a inhibition alleviates lung injury in cecal ligation and puncture induced septic mice. Front. Immunol., 2020, 11, 1829.
[http://dx.doi.org/10.3389/fimmu.2020.01829] [PMID: 32903604]
[178]
Szilágyi, B.; Fejes, Z.; Póliska, S.; Pócsi, M.; Czimmerer, Z.; Patsalos, A.; Fenyvesi, F.; Rusznyák, Á.; Nagy, G.; Kerekes, G.; Berhés, M.; Szűcs, I.; Kunapuli, S.P.; Kappelmayer, J.; Nagy, B., Jr Reduced miR-26b expression in megakaryocytes and platelets contributes to elevated level of platelet activation status in Sepsis. Int. J. Mol. Sci., 2020, 21(3), 866.
[http://dx.doi.org/10.3390/ijms21030866] [PMID: 32013235]
[179]
Wu, Y.; Li, P.; Goodwin, A.J.; Cook, J.A.; Halushka, P.V.; Zingarelli, B.; Fan, H. MiR-145a regulation of pericyte dysfunction in a Murine model of Sepsis. J. Infect. Dis., 2020, 222(6), 1037-1045.
[http://dx.doi.org/10.1093/infdis/jiaa184] [PMID: 32285112]
[180]
Wang, J.; Yu, M.; Yu, G.; Bian, J.; Deng, X.; Wan, X.; Zhu, K. Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem. Biophys. Res. Commun., 2010, 394(1), 184-188.
[http://dx.doi.org/10.1016/j.bbrc.2010.02.145] [PMID: 20188071]
[181]
Ma, Y.; Liu, Y.; Hou, H.; Yao, Y.; Meng, H. MiR-150 predicts survival in patients with sepsis and inhibits LPS-induced inflammatory factors and apoptosis by targeting NF-κB1 in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun., 2018, 500(3), 828-837.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.168] [PMID: 29689269]
[182]
Vasilescu, C.; Rossi, S.; Shimizu, M.; Tudor, S.; Veronese, A.; Ferracin, M.; Nicoloso, M.S.; Barbarotto, E.; Popa, M.; Stanciulea, O.; Fernandez, M.H.; Tulbure, D.; Bueso-Ramos, C.E.; Negrini, M.; Calin, G.A. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS One, 2009, 4(10), e7405.
[http://dx.doi.org/10.1371/journal.pone.0007405] [PMID: 19823581]
[183]
Roderburg, C.; Luedde, M.; Vargas Cardenas, D.; Vucur, M.; Scholten, D.; Frey, N.; Koch, A.; Trautwein, C.; Tacke, F.; Luedde, T. Circulating microRNA-150 serum levels predict survival in patients with critical illness and sepsis. PLoS One, 2013, 8(1), e54612.
[http://dx.doi.org/10.1371/journal.pone.0054612] [PMID: 23372743]
[184]
Liu, L.; Yan, L.N.; Sui, Z. MicroRNA-150 affects endoplasmic reticulum stress via MALAT1-miR-150 axis-mediated NF-κB pathway in LPS-challenged HUVECs and septic mice. Life Sci., 2021, 265, 118744.
[http://dx.doi.org/10.1016/j.lfs.2020.118744]
[185]
Ling, L.; Zhang, S.H.; Zhi, L.D.; Li, H.; Wen, Q.K.; Li, G.; Zhang, W.J. RETRACTED: MicroRNA-30e promotes hepatocyte proliferation and inhibits apoptosis in cecal ligation and puncture-induced sepsis through the JAK/STAT signaling pathway by binding to FOSL2. Biomed. Pharmacother., 2018, 104, 411-419.
[http://dx.doi.org/10.1016/j.biopha.2018.05.042] [PMID: 29787988]
[186]
Cao, X.; Zhang, C.; Zhang, X.; Chen, Y.; Zhang, H. MiR-145 negatively regulates TGFBR2 signaling responsible for sepsis-induced acute lung injury. Biomed. Pharmacother., 2019, 111, 852-858.
[http://dx.doi.org/10.1016/j.biopha.2018.12.138] [PMID: 30841464]
[187]
Pan, W.; Wei, N.; Xu, W.; Wang, G.; Gong, F.; Li, N. MicroRNA-124 alleviates the lung injury in mice with septic shock through inhibiting the activation of the MAPK signaling pathway by downregulating MAPK14. Int. Immunopharmacol., 2019, 76, 105835.
[http://dx.doi.org/10.1016/j.intimp.2019.105835] [PMID: 31476692]
[188]
Ouyang, H.; Tan, Y.; Li, Q.; Xia, F.; Xiao, X.; Zheng, S.; Lu, J.; Zhong, J.; Hu, Y. RETRACTED: MicroRNA-208-5p regulates myocardial injury of sepsis mice via targeting SOCS2-mediated NF-κB/HIF-1α pathway. Int. Immunopharmacol., 2020, 81, 106204.
[http://dx.doi.org/10.1016/j.intimp.2020.106204] [PMID: 32086130]
[189]
Yang, P.; Xiong, W.; Chen, X.; Liu, J.; Ye, Z. Overexpression of miR-129-5p mitigates sepsis-induced acute lung injury by targeting high mobility group Box 1. J. Surg. Res., 2020, 256, 23-30.
[http://dx.doi.org/10.1016/j.jss.2020.05.101] [PMID: 32682121]
[190]
He, Z.; Wang, H.; Yue, L. Endothelial progenitor cells-secreted extracellular vesicles containing microRNA-93-5p confer protection against sepsis-induced acute kidney injury via the KDM6B/H3K27me3/TNF-α axis. Exp. Cell Res., 2020, 395(2), 112173.
[http://dx.doi.org/10.1016/j.yexcr.2020.112173] [PMID: 32679234]
[191]
Chen, L.; Lu, Q.; Deng, F.; Peng, S.; Yuan, J.; Liu, C.; Du, X. miR-103a-3p could attenuate sepsis-induced liver injury by targeting HMGB1. Inflammation, 2020, 43(6), 2075-2086.
[http://dx.doi.org/10.1007/s10753-020-01275-0] [PMID: 32556802]
[192]
Zhou, J.; Chaudhry, H.; Zhong, Y.; Ali, M.M.; Perkins, L.A.; Owens, W.B.; Morales, J.E.; McGuire, F.R.; Zumbrun, E.E.; Zhang, J.; Nagarkatti, P.S.; Nagarkatti, M. Dysregulation in microRNA expression in peripheral blood mononuclear cells of sepsis patients is associated with immunopathology. Cytokine, 2015, 71(1), 89-100.
[http://dx.doi.org/10.1016/j.cyto.2014.09.003] [PMID: 25265569]
[193]
Wang, Y.; Wang, H.; Zhang, C.; Zhang, C.; Yang, H.; Gao, R.; Tong, Z. Plasma Hsa-miR-92a-3p in correlation with lipocalin-2 is associated with sepsis-induced coagulopathy. BMC Infect. Dis., 2020, 20(1), 155.
[http://dx.doi.org/10.1186/s12879-020-4853-y] [PMID: 32075600]
[194]
Zuo, T.; Tang, Q.; Zhang, X.; Shang, F. RETRACTED: MicroRNA-410-3p binds to TLR2 and alleviates myocardial mitochondrial dysfunction and chemokine production in LPS-induced sepsis. Mol. Ther. Nucleic Acids, 2020, 22, 273-284.
[http://dx.doi.org/10.1016/j.omtn.2020.07.031] [PMID: 33230433]
[195]
Fang, H.; Li, H.F.; Yan, J.Y.; Yang, M.; Zhang, J.P. Dexmedetomidine-up-regulated microRNA-381 exerts anti-inflammatory effects in rats with cerebral ischaemic injury via the transcriptional factor IRF4. J. Cell. Mol. Med., 2020, 25(4), 2098-2109.
[PMID: 33314611]
[196]
Zhang, D.L.; Liu, X.; Wang, Q.; Li, N.; Wu, S.H.; Wang, C. Downregulation of microRNA-196a attenuates ischemic brain injury in rats by directly targeting HMGA1. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(2), 740-748.
[PMID: 30720182]
[197]
Pan, Q; Zheng, J; Du, D; Liao, X; Ma, C; Yang, Y; Chen, Y; Zhong, W; Ma, X MicroRNA-126 priming enhances functions of endothelial progenitor cells under physiological and hypoxic conditions and their therapeutic efficacy in cerebral ischemic damage. Stem. Cells Int., 2018, 2018, 2912347.
[http://dx.doi.org/10.1155/2018/2912347] [PMID: 29760722]
[198]
Shan, C.; Ma, Y. MicroRNA-126/stromal cell-derived factor 1/C-X-C chemokine receptor type 7 signaling pathway promotes post-stroke angiogenesis of endothelial progenitor cell transplantation. Mol. Med. Rep., 2018, 17(4), 5300-5305.
[http://dx.doi.org/10.3892/mmr.2018.8513] [PMID: 29393458]
[199]
Liu, P.; Han, Z.; Ma, Q.; Liu, T.; Wang, R.; Tao, Z.; Li, G.; Li, F.; Zhang, S.; Li, L.; Ji, X.; Zhao, H.; Luo, Y. Upregulation of microrna-128 in the peripheral blood of acute ischemic stroke patients is correlated with stroke severity partially through inhibition of neuronal cell cycle reentry. Cell Transplant., 2019, 28(7), 839-850.
[http://dx.doi.org/10.1177/0963689719846848] [PMID: 31037985]
[200]
Chen, C.; Ling, C.; Gong, J.; Li, C.; Zhang, L.; Gao, S.; Li, Z.; Huang, T.; Wang, H.; Guo, Y. Increasing the expression of microRNA-126-5p in the temporal muscle can promote angiogenesis in the chronically ischemic brains of rats subjected to two-vessel occlusion plus encephalo-myo-synangiosis. Aging, 2020, 12(13), 13234-13254.
[http://dx.doi.org/10.18632/aging.103431] [PMID: 32644942]
[201]
Sun, Y.; Gui, H.; Li, Q.; Luo, Z.M.; Zheng, M.J.; Duan, J.L.; Liu, X. MicroRNA-124 protects neurons against apoptosis in cerebral ischemic stroke. CNS Neurosci. Ther., 2013, 19(10), 813-819.
[http://dx.doi.org/10.1111/cns.12142] [PMID: 23826665]
[202]
Liu, X.; Li, F.; Zhao, S.; Luo, Y.; Kang, J.; Zhao, H.; Yan, F.; Li, S.; Ji, X. MicroRNA-124-mediated regulation of inhibitory member of apoptosis-stimulating protein of p53 family in experimental stroke. Stroke, 2013, 44(7), 1973-1980.
[http://dx.doi.org/10.1161/STROKEAHA.111.000613] [PMID: 23696548]
[203]
Li, S.; Lu, G.; Wang, D.; He, J.L.; Zuo, L.; Wang, H.; Gu, Z.T.; Zhou, J.S.; Yan, F.L.; Deng, Q.W. MicroRNA-4443 regulates monocyte activation by targeting tumor necrosis factor receptor associated factor 4 in stroke-induced immunosuppression. Eur. J. Neurol., 2020, 27(8), 1625-1637.
[http://dx.doi.org/10.1111/ene.14282] [PMID: 32337817]
[204]
Li, D.B.; Liu, J.L.; Wang, W.; Luo, X.M.; Zhou, X.; Li, J.P.; Cao, X.L.; Long, X.H.; Chen, J.G.; Qin, C. Plasma exosomal miRNA-122-5p and miR-300-3p as potential markers for transient ischaemic attack in rats. Front. Aging Neurosci., 2018, 10(FEB), 24.
[http://dx.doi.org/10.3389/fnagi.2018.00024] [PMID: 29467645]
[205]
Chen, Y.; Song, Y.; Huang, J.; Qu, M.; Zhang, Y.; Geng, J.; Zhang, Z.; Liu, J.; Yang, G.Y. Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke. Front. Neurol., 2017, 8(FEB), 57.
[http://dx.doi.org/10.3389/fneur.2017.00057] [PMID: 28289400]
[206]
Wang, Z.Q.; Li, K.; Huang, J.; Huo, T.T.; Lv, P.Y. MicroRNA Let-7i Is a promising serum biomarker for post-stroke cognitive impairment and alleviated OGD-induced cell damage in vitro by regulating Bcl-2. Front. Neurosci., 2020, 14, 215.
[http://dx.doi.org/10.3389/fnins.2020.00215] [PMID: 32265630]
[207]
Mo, J.L.; Liu, Q.; Kou, Z.W.; Wu, K.W.; Yang, P.; Chen, X.H.; Sun, F.Y. MicroRNA-365 modulates astrocyte conversion into neuron in adult rat brain after stroke by targeting Pax6. Glia, 2018, 66(7), 1346-1362.
[http://dx.doi.org/10.1002/glia.23308] [PMID: 29451327]
[208]
Mo, J.L.; Pan, Z.G.; Chen, X.; Lei, Y.; Lv, L.L.; Qian, C.; Sun, F.Y. MicroRNA-365 knockdown prevents ischemic neuronal injury by activating oxidation resistance 1-mediated antioxidant signals. Neurosci. Bull., 2019, 35(5), 815-825.
[http://dx.doi.org/10.1007/s12264-019-00371-y] [PMID: 30977043]
[209]
Yan, Q.; Sun, S.; Yuan, S.; Wang, X.; Zhang, Z. Inhibition of MICRORNA -9-5p and MICRORNA -128-3p can inhibit ischemic stroke-related cell death in vitro and in vivo. IUBMB Life, 2020, 72(11), 2382-2390.
[http://dx.doi.org/10.1002/iub.2357] [PMID: 32797712]
[210]
Buller, B.; Liu, X.; Wang, X.; Zhang, R.L.; Zhang, L.; Hozeska-Solgot, A.; Chopp, M.; Zhang, Z.G. MicroRNA-21 protects neurons from ischemic death. FEBS J., 2010, 277(20), 4299-4307.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07818.x] [PMID: 20840605]
[211]
Fang, H.; Li, H.F.; Yang, M.; Wang, R.R.; Wang, Q.Y.; Zheng, P.C.; Zhang, F.X.; Zhang, J.P. RETRACTED: microRNA-128 enhances neuroprotective effects of dexmedetomidine on neonatal mice with hypoxic-ischemic brain damage by targeting WNT1. Biomed. Pharmacother., 2019, 113, 108671.
[http://dx.doi.org/10.1016/j.biopha.2019.108671] [PMID: 30875657]
[212]
Chi, W.; Meng, F.; Li, Y.; Li, P.; Wang, G.; Cheng, H.; Han, S.; Li, J. Impact of microRNA-134 on neural cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by targeting HSPA12B. Brain Res., 2014, 1592, 22-33.
[http://dx.doi.org/10.1016/j.brainres.2014.09.072] [PMID: 25304362]
[213]
Liu, N.N.; Dong, Z.L.; Han, L.L. MicroRNA-410 inhibition of the TIMP2-dependent MAPK pathway confers neuroprotection against oxidative stress-induced apoptosis after ischemic stroke in mice. Brain Res. Bull., 2018, 143, 45-57.
[http://dx.doi.org/10.1016/j.brainresbull.2018.09.009] [PMID: 30240841]
[214]
Huang, L.; Ma, Q.; Li, Y.; Li, B.; Zhang, L. Inhibition of microRNA-210 suppresses pro-inflammatory response and reduces acute brain injury of ischemic stroke in mice. Exp. Neurol., 2018, 300, 41-50.
[http://dx.doi.org/10.1016/j.expneurol.2017.10.024] [PMID: 29111308]
[215]
Ma, Q.; Dasgupta, C.; Li, Y.; Bajwa, N.M.; Xiong, F.; Harding, B.; Hartman, R.; Zhang, L. Inhibition of microRNA-210 provides neuroprotection in hypoxic–ischemic brain injury in neonatal rats. Neurobiol. Dis., 2016, 89, 202-212.
[http://dx.doi.org/10.1016/j.nbd.2016.02.011] [PMID: 26875527]
[216]
Meng, Z.Y.; Kang, H.L.; Duan, W.; Zheng, J.; Li, Q.N.; Zhou, Z.J. MicroRNA-210 promotes accumulation of neural precursor cells around ischemic foci after cerebral ischemia by regulating the SOCS1-STAT3-VEGF-C pathway. J. Am. Heart Assoc., 2018, 7(5), e005052.
[http://dx.doi.org/10.1161/JAHA.116.005052] [PMID: 29478968]
[217]
Ma, Q.; Dasgupta, C.; Shen, G.; Li, Y.; Zhang, L. MicroRNA-210 downregulates TET2 and contributes to inflammatory response in neonatal hypoxic-ischemic brain injury. J. Neuroinflammation, 2021, 18(1), 6.
[http://dx.doi.org/10.1186/s12974-020-02068-w] [PMID: 33402183]
[218]
Li, B.; Dasgupta, C.; Huang, L.; Meng, X.; Zhang, L. MiRNA-210 induces microglial activation and regulates microglia-mediated neuroinflammation in neonatal hypoxic-ischemic encephalopathy. Cell. Mol. Immunol., 2020, 17(9), 976-991.
[http://dx.doi.org/10.1038/s41423-019-0257-6] [PMID: 31300734]
[219]
Cao, Y.; Zhang, H.; Lu, X.; Wang, J.; Zhang, X.; Sun, S.; Bao, Z.; Tian, W.; Ning, S.; Wang, L.; Cui, L. Overexpression of MicroRNA-9a-5p ameliorates nlrp1 inflammasome-mediated ischemic injury in rats following ischemic stroke. Neuroscience, 2020, 444, 106-117.
[http://dx.doi.org/10.1016/j.neuroscience.2020.01.008] [PMID: 31954830]
[220]
Liu, X.S.; Chopp, M.; Wang, X.L.; Zhang, L.; Hozeska-Solgot, A.; Tang, T.; Kassis, H.; Zhang, R.L.; Chen, C.; Xu, J.; Zhang, Z.G. MicroRNA-17-92 cluster mediates the proliferation and survival of neural progenitor cells after stroke. J. Biol. Chem., 2013, 288(18), 12478-12488.
[http://dx.doi.org/10.1074/jbc.M112.449025] [PMID: 23511639]
[221]
Deng, W.; Fan, C.; Zhao, Y.; Mao, Y.; Li, J.; Zhang, Y.; Teng, J. MicroRNA-130a regulates neurological deficit and angiogenesis in rats with ischaemic stroke by targeting XIAP. J. Cell. Mol. Med., 2020, 24(18), 10987-11000.
[http://dx.doi.org/10.1111/jcmm.15732] [PMID: 32790238]
[222]
Xu, X.; Wen, Z.; Zhao, N.; Xu, X.; Wang, F.; Gao, J.; Jiang, Y.; Liu, X. MicroRNA-1906, a novel regulator of toll-like receptor 4, ameliorates ischemic injury after experimental stroke in mice. J. Neurosci., 2017, 37(43), 10498-10515.
[http://dx.doi.org/10.1523/JNEUROSCI.1139-17.2017] [PMID: 28924010]
[223]
Zhang, H.; Chen, G.; Qiu, W.; Pan, Q.; Chen, Y.; Chen, Y.; Ma, X. Plasma endothelial microvesicles and their carrying miRNA-155 serve as biomarkers for ischemic stroke. J. Neurosci. Res., 2020, 98(11), 2290-2301.
[http://dx.doi.org/10.1002/jnr.24696] [PMID: 32725652]
[224]
Wen, Y.; Zhang, X.; Dong, L.; Zhao, J.; Zhang, C.; Zhu, C. Acetylbritannilactone modulates microRNA-155-mediated inflammatory response in ischemic cerebral tissues. Mol. Med., 2015, 21(1), 197-209.
[http://dx.doi.org/10.2119/molmed.2014.00199] [PMID: 25811992]
[225]
Yao, K.; Yang, Q.; Li, Y.; Lan, T.; Yu, H.; Yu, Y. MicroRNA-9 mediated the protective effect of ferulic acid on hypoxic-ischemic brain damage in neonatal rats. PLoS One, 2020, 15(5), e0228825.
[http://dx.doi.org/10.1371/journal.pone.0228825] [PMID: 32470970]
[226]
Dong, H.; Cui, B.; Hao, X. MicroRNA-22 alleviates inflammation in ischemic stroke via p38 MAPK pathways. Mol. Med. Rep., 2019, 20(1), 735-744.
[http://dx.doi.org/10.3892/mmr.2019.10269] [PMID: 31115561]
[227]
Vinciguerra, A.; Formisano, L.; Cerullo, P.; Guida, N.; Cuomo, O.; Esposito, A.; Di Renzo, G.; Annunziato, L.; Pignataro, G. MicroRNA-103-1 selectively downregulates brain NCX1 and its inhibition by anti-miRNA ameliorates stroke damage and neurological deficits. Mol. Ther., 2014, 22(10), 1829-1838.
[http://dx.doi.org/10.1038/mt.2014.113] [PMID: 24954474]
[228]
Bu, X.; Li, D.; Wang, F.; Sun, Q.; Zhang, Z. Protective role of astrocyte-derived exosomal microRNA-361 in cerebral ischemic-reperfusion injury by regulating the AMPK/MTOR signaling pathway and targeting CTSB. Neuropsychiatr. Dis. Treat., 2020, 16, 1863-1877.
[http://dx.doi.org/10.2147/NDT.S260748] [PMID: 32801720]
[229]
Dhiraj, D.K.; Chrysanthou, E.; Mallucci, G.R.; Bushell, M. miRNAs-19b, -29b-2* and -339-5p show an early and sustained up-regulation in ischemic models of stroke. PLoS One, 2013, 8(12), e83717.
[http://dx.doi.org/10.1371/journal.pone.0083717] [PMID: 24376737]
[230]
Chang, L.; Zhang, W.; Shi, S.; Peng, Y.; Wang, D.; Zhang, L.; Zhang, J. RETRACTED ARTICLE: microRNA-195 attenuates neuronal apoptosis in rats with ischemic stroke through inhibiting KLF5-mediated activation of the JNK signaling pathway. Mol. Med., 2020, 26(1), 31.
[http://dx.doi.org/10.1186/s10020-020-00150-w] [PMID: 32272873]
[231]
Wang, P.; Liang, J.; Li, Y.; Li, J.; Yang, X.; Zhang, X.; Han, S.; Li, S.; Li, J. Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing beclin 1-mediated autophagy. Neurochem. Res., 2014, 39(7), 1279-1291.
[http://dx.doi.org/10.1007/s11064-014-1310-6] [PMID: 24771295]
[232]
Wang, P.; Liang, X.; Lu, Y.; Zhao, X.; Liang, J. MicroRNA-93 downregulation ameliorates cerebral ischemic injury through the Nrf2/HO-1 defense pathway. Neurochem. Res., 2016, 41(10), 2627-2635.
[http://dx.doi.org/10.1007/s11064-016-1975-0] [PMID: 27300700]
[233]
Liu, X.S.; Chopp, M.; Pan, W.L.; Wang, X.L.; Fan, B.Y.; Zhang, Y.; Kassis, H.; Zhang, R.L.; Zhang, X.M.; Zhang, Z.G. MicroRNA-146a promotes oligodendrogenesis in stroke. Mol. Neurobiol., 2017, 54(1), 227-237.
[http://dx.doi.org/10.1007/s12035-015-9655-7] [PMID: 26738853]
[234]
Bam, M.; Yang, X.; Sen, S.; Zumbrun, E.E.; Dennis, L.; Zhang, J.; Nagarkatti, P.S.; Nagarkatti, M. Characterization of dysregulated miRNA in peripheral blood mononuclear cells from ischemic stroke patients. Mol. Neurobiol., 2018, 55(2), 1419-1429.
[http://dx.doi.org/10.1007/s12035-016-0347-8] [PMID: 28168424]
[235]
Vijayan, M.; Alamri, F.F.; Al Shoyaib, A.; Karamyan, V.T.; Reddy, P.H. Novel miRNA PC-5P-12969 in ischemic stroke. Mol. Neurobiol., 2019, 56(10), 6976-6985.
[http://dx.doi.org/10.1007/s12035-019-1562-x] [PMID: 30953313]
[236]
Casey, S.; Goasdoue, K.; Miller, S.M.; Brennan, G.P.; Cowin, G.; O’Mahony, A.G.; Burke, C.; Hallberg, B.; Boylan, G.B.; Sullivan, A.M.; Henshall, D.C.; O’Keeffe, G.W.; Mooney, C.; Bjorkman, T.; Murray, D.M. Temporally altered mirna expression in a piglet model of hypoxic ischemic brain injury. Mol. Neurobiol., 2020, 57(10), 4322-4344.
[http://dx.doi.org/10.1007/s12035-020-02018-w] [PMID: 32720074]
[237]
Peng, G.; Yuan, Y.; Wu, S.; He, F.; Hu, Y.; Luo, B. MicroRNA let-7e is a potential circulating biomarker of acute stage ischemic stroke. Transl. Stroke Res., 2015, 6(6), 437-445.
[http://dx.doi.org/10.1007/s12975-015-0422-x] [PMID: 26415639]
[238]
van Kralingen, J.C.; McFall, A.; Ord, E.N.J.; Coyle, T.F.; Bissett, M.; McClure, J.D.; McCabe, C.; Macrae, I.M.; Dawson, J.; Work, L.M. Altered extracellular vesicle microrna expression in ischemic stroke and small vessel disease. Transl. Stroke Res., 2019, 10(5), 495-508.
[http://dx.doi.org/10.1007/s12975-018-0682-3] [PMID: 30617992]
[239]
Deng, Y.; Chen, D.; Gao, F.; Lv, H.; Zhang, G.; Sun, X.; Liu, L.; Mo, D.; Ma, N.; Song, L.; Huo, X.; Yan, T.; Zhang, J.; Miao, Z. Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J. Biol. Eng., 2019, 13(1), 71.
[http://dx.doi.org/10.1186/s13036-019-0193-0] [PMID: 31485266]
[240]
Li, Y.; Mao, L.; Gao, Y.; Baral, S.; Zhou, Y.; Hu, B. MicroRNA-107 contributes to post-stroke angiogenesis by targeting Dicer-1. Sci. Rep., 2015, 5(1), 13316.
[http://dx.doi.org/10.1038/srep13316] [PMID: 26294080]
[241]
Yang, X.; Tang, X.; Sun, P.; Shi, Y.; Liu, K.; Hassan, S.H.; Stetler, R.A.; Chen, J.; Yin, K.J. MicroRNA-15a/16-1 antagomir ameliorates ischemic brain injury in experimental stroke. Stroke, 2017, 48(7), 1941-1947.
[http://dx.doi.org/10.1161/STROKEAHA.117.017284] [PMID: 28546328]
[242]
Stanzione, R; Bianchi, F; Cotugno, M; Marchitti, S; Forte, M; Busceti, C; Ryskalin, L; Fornai, F; Volpe, M; Rubattu, S A decrease of brain MicroRNA-122 level is an early marker of cerebrovascular disease in the stroke-prone spontaneously hypertensive rat. Oxid. Med. Cell Longev., 2017, 2017, 1206420.
[http://dx.doi.org/10.1155/2017/1206420] [PMID: 28751928]
[243]
Li, L; Dong, L; Zhao, J; He, W; Chu, B; Zhang, J; Wu, Z; Zhao, C; Cheng, J; Yao, W; Wang, H Circulating miRNA-3552 as a potential biomarker for ischemic stroke in rats. Biomed. Res. Int., 2020, 2020, 4501393.
[http://dx.doi.org/10.1155/2020/4501393] [PMID: 32724801]
[244]
Tabet, F.; Lee, S.; Zhu, W.; Levin, M.G.; Toth, C.L.; Cuesta Torres, L.F.; Vinh, A.; Kim, H.A.; Chu, H.X.; Evans, M.A.; Kuzmich, M.E.; Drummond, G.R.; Remaley, A.T.; Rye, K.A.; Sobey, C.G.; Vickers, K.C. microRNA-367-3p regulation of GPRC5A is suppressed in ischemic stroke. J. Cereb. Blood Flow Metab., 2020, 40(6), 1300-1315.
[http://dx.doi.org/10.1177/0271678X19858637] [PMID: 31296130]
[245]
Sun, L.Q.; Guo, G.L.; Zhang, S.; Yang, L.L. Effects of MicroRNA-592-5p on hippocampal neuron injury following hypoxic-ischemic brain damage in neonatal mice-involvement of PGD2/DP and PTGDR. Cell. Physiol. Biochem., 2018, 45(2), 458-473.
[http://dx.doi.org/10.1159/000486923] [PMID: 29402808]
[246]
Song, H.; Zhang, X.; Chen, R.; Miao, J.; Wang, L.; Cui, L.; Ji, H.; Liu, Y. Cortical neuron-derived exosomal MicroRNA-181c-3p inhibits neuroinflammation by downregulating CXCL1 in astrocytes of a rat model with ischemic brain injury. Neuroimmunomodulation, 2019, 26(5), 217-233.
[http://dx.doi.org/10.1159/000502694] [PMID: 31665717]
[247]
Fan, J.; Xu, W.; Nan, S.; Chang, M.; Zhang, Y. MicroRNA-384-5p promotes endothelial progenitor cell proliferation and angiogenesis in cerebral ischemic stroke through the delta-likeligand 4-mediated notch signaling pathway. Cerebrovasc. Dis., 2020, 49(1), 39-54.
[http://dx.doi.org/10.1159/000503950] [PMID: 31927543]
[248]
Yong, Y.X.; Yang, H.; Lian, J.; Xu, X.W.; Han, K.; Hu, M.Y.; Wang, H.C.; Zhou, L.M. RETRACTED ARTICLE: Up-regulated microRNA-199b-3p represses the apoptosis of cerebral microvascular endothelial cells in ischemic stroke through down-regulation of MAPK/ERK/EGR1 axis. Cell Cycle, 2019, 18(16), 1868-1881.
[http://dx.doi.org/10.1080/15384101.2019.1632133] [PMID: 31204565]
[249]
Ma, Q.; Zhao, H.; Tao, Z.; Wang, R.; Liu, P.; Han, Z.; Ma, S.; Luo, Y.; Jia, J. MicroRNA-181c exacerbates brain injury in acute Ischemic stroke. Aging Dis., 2016, 7(6), 705-714.
[http://dx.doi.org/10.14336/AD.2016.0320] [PMID: 28053821]
[250]
Xie, K.; Cai, Y.; Yang, P.; Du, F.; Wu, K. Upregulating microRNA-874-3p inhibits CXCL12 expression to promote angiogenesis and suppress inflammatory response in ischemic stroke. Am. J. Physiol. Cell Physiol., 2020, 319(3), C579-C588.
[http://dx.doi.org/10.1152/ajpcell.00001.2020] [PMID: 32608990]
[251]
Geng, W.; Tang, H.; Luo, S.; Lv, Y.; Liang, D.; Kang, X.; Hong, W. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. Am. J. Transl. Res., 2019, 11(2), 780-792.
[PMID: 30899379]
[252]
Huang, L.G.; Li, J.P.; Pang, X.M.; Chen, C.Y.; Xiang, H.Y.; Feng, L.B.; Su, S.Y.; Li, S.H.; Zhang, L.; Liu, J.L. MicroRNA-29c correlates with neuroprotection induced by FNS by targeting both birc2 and bak1 in rat brain after stroke. CNS Neurosci. Ther., 2015, 21(6), 496-503.
[http://dx.doi.org/10.1111/cns.12383] [PMID: 25678279]
[253]
Du, L.; Jiang, Y.; Sun, Y. Astrocyte-derived exosomes carry microRNA-17-5p to protect neonatal rats from hypoxic-ischemic brain damage via inhibiting BNIP-2 expression. Neurotoxicology, 2021, 83, 28-39.
[http://dx.doi.org/10.1016/j.neuro.2020.12.006] [PMID: 33309839]
[254]
Li, Q.; He, Q.; Baral, S.; Mao, L.; Li, Y.; Jin, H.; Chen, S.; An, T.; Xia, Y.; Hu, B. MicroRNA-493 regulates angiogenesis in a rat model of ischemic stroke by targeting MIF. FEBS J., 2016, 283(9), 1720-1733.
[http://dx.doi.org/10.1111/febs.13697] [PMID: 26929185]
[255]
Si, W.; Li, Y.; Ye, S.; Li, Z.; Liu, Y.; Kuang, W.; Chen, D.; Zhu, M. Methyltransferase 3 Mediated miRNA m6A methylation promotes stress granule formation in the early stage of acute ischemic stroke. Front. Mol. Neurosci., 2020, 13, 103.
[http://dx.doi.org/10.3389/fnmol.2020.00103] [PMID: 32581712]
[256]
Zhang, N.; Zhong, J.; Han, S.; Li, Y.; Yin, Y.; Li, J. MicroRNA-378 alleviates cerebral ischemic injury by negatively regulating apoptosis executioner caspase-3. Int. J. Mol. Sci., 2016, 17(9), 1427.
[http://dx.doi.org/10.3390/ijms17091427] [PMID: 27598143]
[257]
Matsuoka, H.; Tamura, A.; Kinehara, M.; Shima, A.; Uda, A.; Tahara, H.; Michihara, A. Levels of tight junction protein CLDND1 are regulated by microRNA-124 in the cerebellum of stroke-prone spontaneously hypertensive rats. Biochem. Biophys. Res. Commun., 2018, 498(4), 817-823.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.063] [PMID: 29530526]
[258]
Miao, W.; Yan, Y.; Bao, T.; Jia, W.; Yang, F.; Wang, Y.; Zhu, Y.; Yin, M.; Han, J. Ischemic postconditioning exerts neuroprotective effect through negatively regulating PI3K/Akt2 signaling pathway by microRNA-124. Biomed. Pharmacother., 2020, 126, 109786.
[http://dx.doi.org/10.1016/j.biopha.2019.109786]
[259]
Zhou, X.; Su, S.; Li, S.; Pang, X.; Chen, C.; Li, J.; Liu, J. MicroRNA-146a down-regulation correlates with neuroprotection and targets pro-apoptotic genes in cerebral ischemic injury in vitro. Brain Res., 2016, 1648(Pt A), 136-143.
[http://dx.doi.org/10.1016/j.brainres.2016.07.034] [PMID: 27449900]
[260]
Chen, Z.; Hu, Y.; Lu, R.; Ge, M.; Zhang, L. MicroRNA-374a-5p inhibits neuroinflammation in neonatal hypoxic-ischemic encephalopathy via regulating NLRP3 inflammasome targeted Smad6. Life Sci., 2020, 252, 117664.
[http://dx.doi.org/10.1016/j.lfs.2020.117664] [PMID: 32304765]
[261]
O’Sullivan, M.P.; Looney, A.M.; Moloney, G.M.; Finder, M.; Hallberg, B.; Clarke, G.; Boylan, G.B.; Murray, D.M. Validation of altered umbilical cord blood microrna expression in neonatal hypoxic-ischemic encephalopathy. JAMA Neurol., 2019, 76(3), 333-341.
[http://dx.doi.org/10.1001/jamaneurol.2018.4182] [PMID: 30592487]
[262]
Lusardi, T.A.; Farr, C.D.; Faulkner, C.L.; Pignataro, G.; Yang, T.; Lan, J.; Simon, R.P.; Saugstad, J.A. Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. J. Cereb. Blood Flow Metab., 2010, 30(4), 744-756.
[http://dx.doi.org/10.1038/jcbfm.2009.253] [PMID: 20010955]
[263]
Han, X.R.; Wen, X.; Wang, Y.J.; Wang, S.; Shen, M.; Zhang, Z.F.; Fan, S.H.; Shan, Q.; Wang, L.; Li, M.Q.; Hu, B.; Sun, C.H.; Wu, D.M.; Lu, J.; Zheng, Y.L. Retracted: Micro RNA -140-5p elevates cerebral protection of dexmedetomidine against hypoxic–ischaemic brain damage via the Wnt/β-catenin signalling pathway. J. Cell. Mol. Med., 2018, 22(6), 3167-3182.
[http://dx.doi.org/10.1111/jcmm.13597] [PMID: 29536658]
[264]
Jiang, C.; Dong, N.; Feng, J.; Hao, M. MiRNA-190 exerts neuroprotective effects against ischemic stroke through Rho/Rho-kinase pathway. Pflugers Arch., 2021, 473(1), 121-130.
[http://dx.doi.org/10.1007/s00424-020-02490-2] [PMID: 33196911]
[265]
Scherrer, N.; Fays, F.; Mueller, B.; Luft, A.; Fluri, F.; Christ-Crain, M.; Devaux, Y.; Katan, M. Microrna 150-5p improves risk classification for mortality within 90 days after acute ischemic stroke. J. Stroke, 2017, 19(3), 323-332.
[http://dx.doi.org/10.5853/jos.2017.00423] [PMID: 29037006]
[266]
Pandi, G.; Nakka, V.P.; Dharap, A.; Roopra, A.; Vemuganti, R. MicroRNA miR-29c down-regulation leading to de-repression of its target DNA methyltransferase 3a promotes ischemic brain damage. PLoS One, 2013, 8(3), e58039.
[http://dx.doi.org/10.1371/journal.pone.0058039] [PMID: 23516428]
[267]
Fei, S.; Cao, L.; Li, S. RETRACTED: microRNA-139-5p alleviates neurological deficit in hypoxic-ischemic brain damage via HDAC4 depletion and BCL-2 activation. Brain Res. Bull., 2021, 169, 73-80.
[http://dx.doi.org/10.1016/j.brainresbull.2020.12.020] [PMID: 33400954]
[268]
Che, F.; Du, H.; Zhang, W.; Cheng, Z.; Tong, Y. MicroRNA-132 modifies angiogenesis in patients with ischemic cerebrovascular disease by suppressing the NF-κB and VEGF pathway. Mol. Med. Rep., 2018, 17(2), 2724-2730.
[PMID: 29207094]
[269]
Zhou, L.; Yang, W.; Yao, E.; Li, H.; Wang, J.; Wang, K.; Zhong, X.; Peng, Z.; Huang, X. Microrna-488-3p regulates neuronal cell death in cerebral ischemic stroke through vacuolar protein sorting 4b (VPS4B). Neuropsychiatr. Dis. Treat., 2021, 17, 41-55.
[http://dx.doi.org/10.2147/NDT.S255666] [PMID: 33442254]
[270]
Song, W.; Wang, T.; Shi, B.; Wu, Z.; Wang, W.; Yang, Y. Neuroprotective effects of microRNA-140-5p on ischemic stroke in mice via regulation of the TLR4/NF-κB axis. Brain Res. Bull., 2021, 168, 8-16.
[http://dx.doi.org/10.1016/j.brainresbull.2020.10.020] [PMID: 33246036]
[271]
Liu, X.S.; Chopp, M.; Zhang, R.L.; Tao, T.; Wang, X.L.; Kassis, H.; Hozeska-Solgot, A.; Zhang, L.; Chen, C.; Zhang, Z.G. MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. PLoS One, 2011, 6(8), e23461.
[http://dx.doi.org/10.1371/journal.pone.0023461] [PMID: 21887253]
[272]
Li, J.; Lv, H.; Che, Y. microRNA-381-3p confers protection against ischemic stroke through promoting angiogenesis and inhibiting inflammation by suppressing cebpb and Map3k8. Cell. Mol. Neurobiol., 2020, 40(8), 1307-1319.
[http://dx.doi.org/10.1007/s10571-020-00815-4] [PMID: 32297103]
[273]
Yoo, H.; Kim, J.; Lee, A.R.; Lee, J.M.; Kim, O.J.; Kim, J.K.; Oh, S.H. Alteration of microRNA 340-5p and arginase-1 expression in peripheral blood cells during acute ischemic stroke. Mol. Neurobiol., 2019, 56(5), 3211-3221.
[http://dx.doi.org/10.1007/s12035-018-1295-2] [PMID: 30112629]
[274]
Hou, K.; Li, G.; Zhao, J.; Xu, B.; Zhang, Y.; Yu, J.; Xu, K. Correction to: Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J. Neuroinflammation, 2020, 17(1), 203.
[http://dx.doi.org/10.1186/s12974-020-01872-8]
[275]
Kim, T.; Mehta, S.L.; Morris-Blanco, K.C.; Chokkalla, A.K.; Chelluboina, B.; Lopez, M.; Sullivan, R.; Kim, H.T.; Cook, T.D.; Kim, J.Y.; Kim, H.; Kim, C.; Vemuganti, R. The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing α-synuclein. Sci. Signal., 2018, 11(560), eaat4285.
[http://dx.doi.org/10.1126/scisignal.aat4285] [PMID: 30538177]
[276]
Wei, N.; Xiao, L.; Xue, R.; Zhang, D.; Zhou, J.; Ren, H.; Guo, S.; Xu, J. MicroRNA-9 mediates the cell apoptosis by targeting bcl2l11 in ischemic stroke. Mol. Neurobiol., 2016, 53(10), 6809-6817.
[http://dx.doi.org/10.1007/s12035-015-9605-4] [PMID: 26660116]
[277]
Jickling, G.C.; Ander, B.P.; Shroff, N.; Orantia, M.; Stamova, B.; Dykstra-Aiello, C.; Hull, H.; Zhan, X.; Liu, D.; Sharp, F.R. Leukocyte response is regulated by microRNA let7i in patients with acute ischemic stroke. Neurology, 2016, 87(21), 2198-2205.
[http://dx.doi.org/10.1212/WNL.0000000000003354] [PMID: 27784773]
[278]
Yu, X.; Li, X. microRNA-1906 protects cerebral ischemic injury through activating Janus kinase 2/signal transducer and activator of transcription 3 pathway in rats. Neuroreport, 2020, 31(12), 871-878.
[http://dx.doi.org/10.1097/WNR.0000000000001456] [PMID: 32427806]
[279]
Zhao, H.; Li, G.; Wang, R.; Tao, Z.; Ma, Q.; Zhang, S.; Han, Z.; Yan, F.; Li, F.; Liu, P.; Ma, S.; Ji, X.; Luo, Y. Silencing of microRNA-494 inhibits the neurotoxic Th1 shift via regulating HDAC2-STAT4 cascade in ischaemic stroke. Br. J. Pharmacol., 2020, 177(1), 128-144.
[http://dx.doi.org/10.1111/bph.14852] [PMID: 31465536]
[280]
Yu, P.; Chen, W. Advances in the diagnosis of exosomal miRNAs in ischemic stroke. Neuropsychiatr. Dis. Treat., 2019, 15, 2339-2343.
[http://dx.doi.org/10.2147/NDT.S216784] [PMID: 31695378]
[281]
Vasudeva, K.; Munshi, A. miRNA dysregulation in ischaemic stroke: Focus on diagnosis, prognosis, therapeutic and protective biomarkers. Eur. J. Neurosci., 2020, 52(6), 3610-3627.
[http://dx.doi.org/10.1111/ejn.14695] [PMID: 32022336]
[282]
Chakraborty, C.; Sharma, A.R.; Sharma, G.; Lee, S.S. Therapeutic advances of miRNAs: A preclinical and clinical update. J. Adv. Res., 2021, 28, 127-138.
[http://dx.doi.org/10.1016/j.jare.2020.08.012] [PMID: 33364050]
[283]
Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; Rassenti, L.; Kipps, T.; Negrini, M.; Bullrich, F.; Croce, C.M. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci., 2002, 99(24), 15524-15529.
[http://dx.doi.org/10.1073/pnas.242606799] [PMID: 12434020]
[284]
Romano, G.; Acunzo, M.; Nana-Sinkam, P. microRNAs as novel therapeutics in cancer. Cancers, 2021, 13(7), 1526.
[http://dx.doi.org/10.3390/cancers13071526] [PMID: 33810332]
[285]
Fortunato, O.; Iorio, M.V. The therapeutic potential of MicroRNAs in cancer: Illusion or opportunity? Pharmaceuticals, 2020, 13(12), 438.
[http://dx.doi.org/10.3390/ph13120438] [PMID: 33271894]
[286]
Chen, B.; Xia, Z.; Deng, Y.N.; Yang, Y.; Zhang, P.; Zhu, H.; Xu, N.; Liang, S. Emerging microRNA biomarkers for colorectal cancer diagnosis and prognosis. Open Biol., 2019, 9(1), 180212.
[http://dx.doi.org/10.1098/rsob.180212] [PMID: 30958116]
[287]
Giridhar, K.V.; Kohli, M.; Wang, L. Is microRNA expression profile in prostate cancer dependent on clinicopathologic stage or cell subtype? Transl. Cancer Res., 2016, 5(S6), S1139-S1141.
[http://dx.doi.org/10.21037/tcr.2016.11.25]
[288]
Segal, M.; Slack, F.J. Challenges identifying efficacious miRNA therapeutics for cancer. Expert Opin. Drug Discov., 2020, 15(9), 987-992.
[http://dx.doi.org/10.1080/17460441.2020.1765770] [PMID: 32421364]
[289]
Cui, M.; Wang, H.; Yao, X.; Zhang, D.; Xie, Y.; Cui, R.; Zhang, X. Circulating microRNAs in cancer: Potential and challenge. Front. Genet., 2019, 10, 626.
[http://dx.doi.org/10.3389/fgene.2019.00626] [PMID: 31379918]
[290]
Zhang, S.; Cheng, Z.; Wang, Y.; Han, T. The risks of miRNA therapeutics: In a drug target perspective. Drug Des. Devel. Ther., 2021, 15, 721-733.
[http://dx.doi.org/10.2147/DDDT.S288859] [PMID: 33654378]
[291]
Huang, D.T.; Ramirez, P. Biomarkers in the ICU: Less is more? Yes. Intensive Care Med., 2021, 47(1), 94-96.
[http://dx.doi.org/10.1007/s00134-020-06049-8] [PMID: 32347324]
[292]
Bonneau, E.; Neveu, B.; Kostantin, E.; Tsongalis, G.J.; De Guire, V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC, 2019, 30(2), 114-127.
[PMID: 31263388]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy