Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Review Article

Biocatalytic Attributes of Laccase and its Applications in Bioremediation

Author(s): Divya Sharma, Manisha Sharma, Rutika Sehgal, Sunita Borkar and Reena Gupta*

Volume 12, Issue 3, 2023

Published on: 21 July, 2023

Page: [139 - 150] Pages: 12

DOI: 10.2174/2211550112666230721102406

Price: $65

Abstract

Laccases are proteins with multiple copper atoms that utilize molecular oxygen to catalyze the oxidation of organic compounds by a radical-catalyzed mechanism. They are the main focus of researchers due to their varied applications, for example, waste detoxification, textile transformation, and biosensor applications. Laccases help in the degradation of xenobiotics, such as polycyclic aromatic hydrocarbons, pesticides, and chlorinated phenolics. They are used to bleach textiles and decolorize dyes. They also play a bioremediatory role in the pulp and paper industry for the detoxification of effluent.

Moreover, laccases help in the removal of detrimental micropollutants, such as nonylphenol and bisphenol A. They also degrade wastewater contaminants, such as 2-hydroxybiphenyl, naproxen, and diethyl phthalate. The remarkable biocatalytic attributes of laccases, coupled with their wide range of applications, make them a promising solution for the treatment of pollutants and contaminants.

Graphical Abstract

[1]
Forootanfar H, Faramarzi MA. Insights into laccase producing organisms, fermentation states, purification strategies, and biotechnological applications. Biotechnol Prog 2015; 31(6): 1443-63.
[http://dx.doi.org/10.1002/btpr.2173]
[2]
Thakkar AT, Bhatt SA. Isolation, identification, and optimization of laccase from Alternaria alternata. J Appl Biol Biotechnol 2020; 8(3): 64-9.
[http://dx.doi.org/10.7324/JABB.2020.803012]
[3]
Rodríguez-Couto S. Solid-state fermentation for laccases production and their applications. Current Developments in Biotechnology and Bioengineering 2018; pp. 211-34.
[http://dx.doi.org/10.1016/B978-0-444-63990-5.00011-6]
[4]
Danna M, Khaniki GB, Mokhtarieh AA, Davarpanah SJ. Biotechnological and industrial applications of laccase. Appl Biotechnol Rep 2017; 4: 675-9.
[5]
Makela M, Tuomela M, Hatokka A, Hilden K. Fungal laccases and their potential in bioremediation applications. Micro Mono 2020; 33: 1-25.
[6]
Zerva A, Simić S, Topakas E, Nikodinovic-Runic J. Applications of microbial laccases: Patent review of the past decade (2009-2019). Catalysts 2019; 9(12): 1023.
[http://dx.doi.org/10.3390/catal9121023]
[7]
Cañas AI, Camarero S. Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 2010; 28(6): 694-705.
[http://dx.doi.org/10.1016/j.biotechadv.2010.05.002]
[8]
El-Bendary MA, Ezzat SM, Ewais EA, Al-Zalama MA. Optimization of spore laccase production by Bacillus amyloliquefaciens isolated from wastewater and its potential in green biodecolorization of synthetic textile dyes. Prep Biochem Biotechnol 2021; 51(1): 16-27.
[http://dx.doi.org/10.1080/10826068.2020.1786698]
[9]
Jeon JR, Baldrian P, Murugesai K, Chang YS. Laccase-catalyzed oxidations of naturally occurring phenols: from In vivo biosynthetic pathways to green synthetic applications. Microb Biotechnol 2012; 5: 318-32.
[http://dx.doi.org/10.1111/j.1751-7915.2011.00273.x]
[10]
Karaki N, Aljawish A, Humeau C, Muniglia L, Jaśniewski J. Enzymatic modification of polysaccharides: Mechanisms, properties, and potential applications: A review. Enzyme Microb Technol 2016; 90: 1-18.
[http://dx.doi.org/10.1016/j.enzmictec.2016.04.004]
[11]
Mayolo-Deloisa K, González-González M, Rito-Palomares M. Laccases in food industry: bioprocessing, potential industrial and biotechnological applications. Front Bioeng Biotechnol 2020; 8: 222.
[http://dx.doi.org/10.3389/fbioe.2020.00222]
[12]
Viswanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G. Fungal laccases and their applications in bioremediation. Enzyme Res 2014; 2014: 1-21.
[http://dx.doi.org/10.1155/2014/163242]
[13]
Sonal M, Nidhi P, Rajput K, Kumar R. Properties, mode of action and applications of fungal laccase. Int Res J Eng Technol 2020.
[14]
Datta S, Veena R, Samuel MS, Selvarajan E. Immobilization of laccases and applications for the detection and remediation of pollutants: A review. Environ Chem Lett 2021; 19(1): 521-38.
[http://dx.doi.org/10.1007/s10311-020-01081-y]
[15]
Arregui L, Ayala M, Gómez-Gil X, et al. Laccases: Structure, function, and potential application in water bioremediation. Microb Cell Fact 2019; 18(1): 200.
[http://dx.doi.org/10.1186/s12934-019-1248-0]
[16]
Ferraroni M, Myasoedova NM, Schmatchenko V, et al. Crystal structure of a blue laccase from Lentinus tigrinus: Evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Struct Biol 2007; 7(1): 60.
[http://dx.doi.org/10.1186/1472-6807-7-60]
[17]
Janusz G, Pawlik A, Świderska-Burek U, et al. Laccase properties, physiological functions, and evolution. Int J Mol Sci 2020; 21(3): 966.
[http://dx.doi.org/10.3390/ijms21030966]
[18]
Martins LO, Durão P, Brissos V, Lindley PF. Laccases of prokaryotic origin: Enzymes at the interface of protein science and protein technology. Cell Mol Life Sci 2015; 72(5): 911-22.
[http://dx.doi.org/10.1007/s00018-014-1822-x]
[19]
Moreno AD, Ibarra D, Eugenio ME, Tomás-Pejó E. Laccases as versatile enzymes: From industrial uses to novel applications. J Chem Technol Biotechnol 2020; 95(3): 481-94.
[http://dx.doi.org/10.1002/jctb.6224]
[20]
Hakulinen N, Rouvinen J. Three-dimensional structures of laccases. Cell Mol Life Sci 2015; 72(5): 857-68.
[http://dx.doi.org/10.1007/s00018-014-1827-5]
[21]
Mehra R, Muschiol J, Meyer AS, Kepp KP. A structural-chemical explanation of fungal laccase activity. Sci Rep 2018; 8(1): 17285.
[http://dx.doi.org/10.1038/s41598-018-35633-8]
[22]
Catherine H, Penninckx M, Frédéric D. Product formation from phenolic compounds removal by laccases: A review. Environmental Technology & Innovation 2016; 5: 250-66.
[http://dx.doi.org/10.1016/j.eti.2016.04.001]
[23]
Agrawal K, Chaturvedi V, Verma P. Fungal laccase discovered but yet undiscovered. Bioresour Bioprocess 2018; 5(1): 4.
[http://dx.doi.org/10.1186/s40643-018-0190-z]
[24]
Mano N, de Poulpiquet A. 2 reduction in enzymatic biofuel cells. Chem Rev 2018; 118(5): 2392-468.
[http://dx.doi.org/10.1021/acs.chemrev.7b00220]
[25]
Chandra R, Chowdhary P. Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Impacts 2015; 17(2): 326-42.
[http://dx.doi.org/10.1039/C4EM00627E]
[26]
Singh D, Gupta N. Microbial Laccase: A robust enzyme and its industrial applications. Biologia 2020; 75(8): 1183-93.
[http://dx.doi.org/10.2478/s11756-019-00414-9]
[27]
Teerapatsakul C, Chitradon L. Physiological regulation of an alkaline-resistant laccase produced by Perenniporia tephropora and efficiency in biotreatment of pulp mill effluent. Mycobiology 2016; 44(4): 260-8.
[http://dx.doi.org/10.5941/MYCO.2016.44.4.260]
[28]
Dwivedi UN, Singh P, Pandey VP, Kumar A. Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal, B Enzym 2011; 68(2): 117-28.
[http://dx.doi.org/10.1016/j.molcatb.2010.11.002]
[29]
Góralczyk-Bińkowska A, Jasińska A, Długoński J. Characteristics and use of multicopper oxidases enzymes. Postępy Mikrobiologii - Advancements of Microbiology 2019; 58(1): 7-18.
[http://dx.doi.org/10.21307/PM-2019.58.1.007]
[30]
Dong SJ, Zhang BX, Wang FL, et al. Efficient lignin degradation of corn stalk by Trametes with high laccase activity and enzymatic stability in salt and ionic liquid. BioResources 2019; 14(3): 5339-54.
[http://dx.doi.org/10.15376/biores.14.3.5339-5354]
[31]
Kallio JP, Gasparetti C, Andberg M, et al. Crystal structure of an ascomycete fungal laccase from Thielavia arenaria - common structural features of asco-laccases. FEBS J 2011; 278(13): 2283-95.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08146.x]
[32]
Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV. Catalytic properties of yellow laccase from Pleurotus ostreatus D1. J Mol Catal, B Enzym 2004; 30(1): 19-24.
[http://dx.doi.org/10.1016/j.molcatb.2004.03.005]
[33]
Patel A, Patel V, Patel R, Trivedi U, Patel K. Fungal laccase: Versatile green catalyst for bioremediation of organic pollutants M P. Couto, RS Sengar R. 2020.
[34]
Shleev SV, Morozova OV, Nikitina OV, et al. Comparison of physico-chemical characteristics of four laccases from different basidiomycetes. Biochimie 2004; 86(9-10): 693-703.
[http://dx.doi.org/10.1016/j.biochi.2004.08.005]
[35]
Wang Z, Ren D, Yu H, Jiang S, Zhang S, Zhang X. Study on improving the stability of adsorption-encapsulation immobilized Laccase@ZIF-67. Biotechnol Rep 2020; 28: e00553.
[http://dx.doi.org/10.1016/j.btre.2020.e00553]
[36]
Khan H, Kim CM, Kim SY, et al. Fabrication of enzymatic biofuel cell with electrodes on both sides of microfluidic channel. International Journal of Precision Engineering and Manufacturing-Green Technology 2019; 6(3): 511-20.
[http://dx.doi.org/10.1007/s40684-019-00056-x]
[37]
Rodgers CJ, Blanford CF, Giddens SR, Skamnioti P, Armstrong FA, Gurr SJ. Designer laccases: A vogue for high-potential fungal enzymes? Trends Biotechnol 2010; 28(2): 63-72.
[http://dx.doi.org/10.1016/j.tibtech.2009.11.001]
[38]
Jin X, Yu X, Zhu G, Zheng Z, Feng F, Zhang Z. Conditions optimizing and application of laccase-mediator system (LMS) for the laccase-catalyzed pesticide degradation. Sci Rep 2016; 6(1): 35787.
[http://dx.doi.org/10.1038/srep35787]
[39]
García-Junceda E, Lavandera I, Rother D, Schrittwieser JH. (Chemo)enzymatic cascades—Nature’s synthetic strategy transferred to the laboratory. J Mol Catal, B Enzym 2015; 114: 1-6.
[http://dx.doi.org/10.1016/j.molcatb.2014.12.007]
[40]
Dhull N, Michael M, Simran P, Gokak VR, Venkatanagaraju E. Production and purification strategies for laccase. Int J Pharm Sci Res 2020; 11: 2617-25.
[41]
Kudanga T, Le Roes-Hill M. Laccase applications in biofuels production: Current status and future prospects. Appl Microbiol Biotechnol 2014; 98(15): 6525-42.
[http://dx.doi.org/10.1007/s00253-014-5810-8]
[42]
Jaiswal N, Pandey VP, Dwivedi UN. Purification of a thermostable alkaline laccase from papaya (Carica papaya) using affinity chromatography. Int J Biol Macromol 2015; 72: 326-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.032]
[43]
Diaz-Rodriguez A, Lavandera I, Gotor V. Why leave a job half done? recent progress in enzymatic deracemizations. Curr Green Chem 2015; 2(2): 192-211.
[http://dx.doi.org/10.2174/2213346102666150120221227]
[44]
Hilgers R, Vincken JP, Gruppen H, Kabel MA. Laccase/ mediator systems: Their reactivity toward phenolic lignin structures. ACS Sustain Chem& Eng 2018; 6(2): 2037-46.
[http://dx.doi.org/10.1021/acssuschemeng.7b03451]
[45]
Quan D, Kim Y, Shin W. Characterization of an amperometric laccase electrode covalently immobilized on platinum surface. J Electroanal Chem 2004; 561: 181-9.
[http://dx.doi.org/10.1016/j.jelechem.2003.08.003]
[46]
Mot AC, Silaghi-Dumitrescu R. Laccases: Complex architectures for one-electron oxidations. Biochemistry 2012; 77(12): 1395-407.
[http://dx.doi.org/10.1134/S0006297912120085]
[47]
Rochefort D, Leech D, Bourbonnais R. Electron transfer mediator systems for bleaching of paper pulp. Green Chem 2004; 6(1): 14.
[http://dx.doi.org/10.1039/b311898n]
[48]
Mate DM, Alcalde M. Laccase: A multi-purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol 2017; 10(6): 1457-67.
[http://dx.doi.org/10.1111/1751-7915.12422]
[49]
Camarero S, García O, Vidal T, et al. Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme Microb Technol 2004; 35(2-3): 113-20.
[http://dx.doi.org/10.1016/j.enzmictec.2003.10.019]
[50]
Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YI. Laccase-mediator systems and their applications: A review. Appl Biochem Microbiol 2007; 43(5): 523-35.
[http://dx.doi.org/10.1134/S0003683807050055]
[51]
Kubala D, Regeta K, Janečková R, et al. The electronic structure of TEMPO, its cation and anion. Mol Phys 2013; 111(14-15): 2033-40.
[http://dx.doi.org/10.1080/00268976.2013.781695]
[52]
Mateljak I, Monza E, Lucas MF, et al. Increasing redox potential, redox mediator activity, and stability in a fungal laccase by computer-guided mutagenesis and directed evolution. ACS Catal 2019; 9(5): 4561-72.
[http://dx.doi.org/10.1021/acscatal.9b00531]
[53]
Zheng W, Zhou HM, Zheng YF, Wang N. A comparative study on electrochemistry of laccase at two kinds of carbon nanotubes and its application for biofuel cell. Chem Phys Lett 2008; 457(4-6): 381-5.
[http://dx.doi.org/10.1016/j.cplett.2008.04.047]
[54]
Christopher LP, Yao B, Ji Y. Lignin biodegradation with laccase-mediator systems. Front Energy Res 2014; 2.
[http://dx.doi.org/10.3389/fenrg.2014.00012]
[55]
Reiss R, Ihssen J, Richter M, Eichhorn E, Schilling B, Thöny-Meyer L. Laccase versus laccase-like multi-copper oxidase: A comparative study of similar enzymes with diverse substrate spectra. PLoS One 2013; 8(6): e65633.
[http://dx.doi.org/10.1371/journal.pone.0065633]
[56]
Matera I, Gullotto A, Tilli S, Ferraroni M, Scozzafava A, Briganti F. Crystal structure of the blue multicopper oxidase from the white-rot fungus Trametes trogii complexed with p-toluate. Inorg Chim Acta 2008; 361(14-15): 4129-37.
[http://dx.doi.org/10.1016/j.ica.2008.03.091]
[57]
France SP, Hepworth LJ, Turner NJ, Flitsch SL. Constructing biocatalytic cascades: in vitro and In vivo approaches to de novo multi-enzyme pathways. ACS Catal 2017; 7(1): 710-24.
[http://dx.doi.org/10.1021/acscatal.6b02979]
[58]
Rodríguez-Delgado MM, Alemán-Nava GS, Rodríguez-Delgado JM, et al. Laccase-based biosensors for detection of phenolic compounds. Trends Analyt Chem 2015; 74: 21-45.
[http://dx.doi.org/10.1016/j.trac.2015.05.008]
[59]
Shaikh S, Dixit P, Shaikh I. Screening, isolation and production of fungal laccase from saw mill soil of Osmanabad. Int J Adv Res 2020; 8: 626-32.
[http://dx.doi.org/10.21474/IJAR01/11699]
[60]
Kalra K, Chauhan R, Shavez M, Sachdeva S. Isolation of laccase producing Trichoderma spp. and effect of pH and temperature on its activity. Int J Chem Environ Technol 2013; 5: 2229-35.
[61]
Mani P, Fidal VT, Keshavarz T, Chandra TS, Kyazze G. Laccase immobilization strategies for application as a cathode catalyst in microbial fuel cells for azo dye decolourization. Front Microbiol 2021; 11: 620075.
[http://dx.doi.org/10.3389/fmicb.2020.620075]
[62]
Strong PJ, Claus H. Laccase: A review of its past and its future in bioremediation. Crit Rev Environ Sci Technol 2011; 41(4): 373-434.
[http://dx.doi.org/10.1080/10643380902945706]
[63]
Liu Y, Huang L, Guo W, et al. Cloning, expression, and characterization of a thermostable and pH-stable laccase from Klebsiella pneumoniae and its application to dye decolorization. Process Biochem 2017; 53: 125-34.
[http://dx.doi.org/10.1016/j.procbio.2016.11.015]
[64]
Chaurasia PK, Bharati SL, Sharma M, Singh SK, Yadav RSS, Yadava S. Fungal laccases and their biotechnological significances in the current perspective: a review. Curr Org Chem 2015; 19: 1916-34.
[http://dx.doi.org/10.2174/1385272819666150629175237]
[65]
Huang J, Yang Y, Wang Y, Zhang M, Liu Y. Immobilization of a laccase/2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid system to layered double hydroxide/alginate biohybrid beads for biodegradation of malachite green dye. BioMed Res Int 2018; 2018: 1-15.
[http://dx.doi.org/10.1155/2018/5471961]
[66]
Uthandi S, Saad B, Humbard MA, Maupin-Furlow JA. LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Appl Environ Microbiol 2010; 76(3): 733-43.
[http://dx.doi.org/10.1128/AEM.01757-09]
[67]
Rasheed T, Bilal M, Iqbal HMN, Hu H, Zhang X. Reaction mechanism and degradation pathway of rhodamine 6G by photocatalytic treatment. Water Air Soil Pollut 2017; 228(8): 291.
[http://dx.doi.org/10.1007/s11270-017-3458-6]
[68]
Chauhan PS, Goradia B, Saxena A. Bacterial laccase: recent update on production, properties and industrial applications. 3 Biotech 2017; 7(5): 323.
[http://dx.doi.org/10.1007/s13205-017-0955-7]
[69]
Subramanian J, Ramesh T, Kalaiselvam M. Fungal laccase properties and applications Int J Pharm Bio Arch 2014; 8: 8-16.
[70]
Zhu Y, Qiu F, Rong J, Zhang T, Mao K, Yang D. Covalent laccase immobilization on the surface of poly(vinylidene fluoride) polymer membrane for enhanced biocatalytic removal of dyes pollutants from aqueous environment. Colloids Surf B Biointerfaces 2020; 191: 111025.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111025]
[71]
Shraddha , Shekher R, Sehgal S, Kamthania M, Kumar A. Laccase: microbial source production, purification, potential biotechnological applications. Enzyme Res 2011; 2011: 1-11.
[http://dx.doi.org/10.4061/2011/217861]
[72]
Komori H, Miyazaki K, Higuchi Y. X-ray structure of a two-domain type laccase: A missing link in the evolution of multi-copper proteins. FEBS Lett 2009; 583(7): 1189-95.
[http://dx.doi.org/10.1016/j.febslet.2009.03.008]
[73]
Jamil F, Asgher M, Hussain F, Bhatti HN. Biodegradation of synthetic textile dyes by chitosan beads cross-linked laccase from Pleurotus ostreatus IBL-02. J Anim Plant Sci 2018; 28: 231-43.
[74]
Daâssi D, Rodríguez-Couto S, Nasri M, Mechichi T. Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads. Int Biodeterior Biodegradation 2014; 90: 71-8.
[http://dx.doi.org/10.1016/j.ibiod.2014.02.006]
[75]
Ravalason H, Bertaud F, Herpoël-Gimbert I, et al. Laccase/HBT and laccase-CBM/HBT treatment of softwood kraft pulp: Impact on pulp bleachability and physical properties. Bioresour Technol 2012; 121: 68-75.
[http://dx.doi.org/10.1016/j.biortech.2012.06.077]
[76]
Singh Arora D, Kumar Sharma R. Ligninolytic fungal laccases and their biotechnological applications. Appl Biochem Biotechnol 2010; 160(6): 1760-88.
[http://dx.doi.org/10.1007/s12010-009-8676-y]
[77]
Wu J, Xiao Y, Yu H. Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm. Bioresour Technol 2005; 96(12): 1357-63.
[http://dx.doi.org/10.1016/j.biortech.2004.11.019]
[78]
Naghdi M, Taheran M, Brar SK, Kermanshahi-pour A, Verma M, Surampalli RY. Pinewood nanobiochar: A unique carrier for the immobilization of crude laccase by covalent bonding. Int J Biol Macromol 2018; 115: 563-71.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.105]
[79]
Ismail N, Hossain K. Bioremediation and detoxification of pulp and paper mill effluent: a review. Research Journal of Environmental Toxicology 2015; 9(3): 113-34.
[http://dx.doi.org/10.3923/rjet.2015.113.134]
[80]
Singh G, Arya SK. Utility of laccase in pulp and paper industry: A progressive step towards the green technology. Int J Biol Macromol 2019; 134: 1070-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.168]
[81]
El-Sheekh MM, Ghareib MM. EL-Souod GWA. Biodegradation of phenolic and polycyclic aromatic compounds by some algae and cyanobacteria. J Bioremediat Biodegrad 2012; 3(1)
[http://dx.doi.org/10.4172/2155-6199.1000133]
[82]
Lopes AM, Ferreira Filho EX, Moreira LRS. An update on enzymatic cocktails for lignocellulose breakdown. J Appl Microbiol 2018; 125(3): 632-45.
[http://dx.doi.org/10.1111/jam.13923]
[83]
Risdianto H, Sugesty S. Pretreatment of Marasmius sp. on bio pulping of oil palm empty fruit bunches. Mod Appl Sci 2015; 9(7): 1.
[http://dx.doi.org/10.5539/mas.v9n7p1]
[84]
Singh P, Sulaiman O, Hashim R, Rupani PF, Peng LC. Biopulping of lignocellulosic material using different fungal species: A review. Rev Environ Sci Biotechnol 2010; 9(2): 141-51.
[http://dx.doi.org/10.1007/s11157-010-9200-0]
[85]
Singh G, Bhalla A, Kaur P, Capalash N, Sharma P. Laccase from prokaryotes: A new source for an old enzyme. Rev Environ Sci Biotechnol 2011; 10(4): 309-26.
[http://dx.doi.org/10.1007/s11157-011-9257-4]
[86]
Chaturvedi V, Verma P. Microbial fuel cell: A green approach for the utilization of waste for the generation of bioelectricity. Bioresour Bioprocess 2016; 3(1): 38.
[http://dx.doi.org/10.1186/s40643-016-0116-6]
[87]
Shao B, Liu Z, Zeng G, et al. Immobilization of laccase on hollow mesoporous carbon nanospheres: Noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal. J Hazard Mater 2019; 362: 318-26.
[http://dx.doi.org/10.1016/j.jhazmat.2018.08.069]
[88]
Wu R, Liu F, Dong Q, et al. Combination of adsorption and cellulose derivative membrane coating for efficient immobilization of laccase. Appl Biochem Biotechnol 2021; 193(2): 446-62.
[http://dx.doi.org/10.1007/s12010-020-03446-z]
[89]
Amin R, Khorshidi A, Shojaei AF, Rezaei S, Faramarzi MA. Immobilization of laccase on modified Fe3O4@SiO2@Kit-6 magnetite nanoparticles for enhanced delignification of olive pomace bio-waste. Int J Biol Macromol 2018; 114: 106-13.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.086]
[90]
Gasser CA, Ammann EM, Shahgaldian P, Corvini PFX. Laccases to take on the challenge of emerging organic contaminants in wastewater. Appl Microbiol Biotechnol 2014; 98(24): 9931-52.
[http://dx.doi.org/10.1007/s00253-014-6177-6]
[91]
Senthivelan T, Kanagaraj J, Panda RC. Recent trends in fungal laccase for various industrial applications: An eco-friendly approach: A review. Biotechnol Bioprocess Eng 2016; 21(1): 19-38.
[http://dx.doi.org/10.1007/s12257-015-0278-7]
[92]
Kurisawa M, Chung JE, Uyama H, Kobayashi S. Laccase-catalyzed synthesis and antioxidant property of poly(catechin). Macromol Biosci 2003; 3(12): 758-64.
[http://dx.doi.org/10.1002/mabi.200300038]
[93]
Ashraf F, Irfan M, Shakir HA, Ali S, Khan M. An overview of production and industrial exploitation of bacterial laccases. Punjab Uni JZoology 2020; 35(1): 147-56.
[http://dx.doi.org/10.17582/journal.pujz/2020.35.1.147.156]
[94]
Morel OJX, Christie RM. Current trends in the chemistry of permanent hair dyeing. Chem Rev 2011; 111(4): 2537-61.
[http://dx.doi.org/10.1021/cr1000145]
[95]
Upadhyay P, Shrivastava R, Agrawal PK. Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech 2016; 6: 15.
[96]
Sorrentino I, Giardina P, Piscitelli A. Development of a biosensing platform based on a laccase-hydrophobin chimera. Appl Microbiol Biotechnol 2019; 103(7): 3061-71.
[http://dx.doi.org/10.1007/s00253-019-09678-2]
[97]
Zebda A, Gondran C, Cinquin P, Cosnier S. Glucose biofuel cell construction based on enzyme, graphite particle and redox mediator compression. Sens Actuators B Chem 2012; 173: 760-4.
[http://dx.doi.org/10.1016/j.snb.2012.07.089]
[98]
Burton S. Laccases and phenol oxidases in organic synthesis:A review. Curr Org Chem 2003; 7(13): 1317-31.
[http://dx.doi.org/10.2174/1385272033486477]
[99]
Salvo-Comino C, Garcia-Hernandez C, Garcia-Cabezon C, Rodriguez-Mendez ML. Promoting laccase sensing activity for catechol detection using LBL assemblies of chitosan/ionic liquid/phthalocyanine as immobilization surfaces. Bioelectrochemistry 2020; 132: 107407.
[http://dx.doi.org/10.1016/j.bioelechem.2019.107407]
[100]
Liu Y, Dong S. A biofuel cell harvesting energy from glucose–air and fruit juice–air. Biosens Bioelectron 2007; 23(4): 593-7.
[http://dx.doi.org/10.1016/j.bios.2007.06.002]
[101]
Palanisamy S, Ramaraj SK, Chen SM, et al. A novel laccase biosensor based on laccase immobilized graphene-cellulose microfiber composite modified screen-printed carbon electrode for sensitive determination of catechol. Sci Rep 2017; 7(1): 41214.
[http://dx.doi.org/10.1038/srep41214]
[102]
Kavetskyy T, Smutok O, Demkiv O, et al. Microporous carbon fibers as electroconductive immobilization matrixes: Effect of their structure on operational parameters of laccase-based amperometric biosensor. Mater Sci Eng C 2020; 109: 110570.
[http://dx.doi.org/10.1016/j.msec.2019.110570]
[103]
Qiu X, Wang S, Miao S, Suo H, Xu H, Hu Y. Co-immobilization of laccase and ABTS onto amino-functionalized ionic liquid-modified magnetic chitosan nanoparticles for pollutants removal. J Hazard Mater 2021; 401: 123353.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123353]
[104]
Bassanini I, Ferrandi EE, Riva S, Monti D. Biocatalysis with laccases: An updated overview. Catalysts 2020; 11(1): 26-35.
[http://dx.doi.org/10.3390/catal11010026]
[105]
Mu’azu N, Jarrah N, Zubair M, Alagha O. Removal of phenolic compounds from water using sewage sludge-based activated carbon adsorption: A review. Int J Environ Res Public Health 2017; 14(10): 1094.
[http://dx.doi.org/10.3390/ijerph14101094]
[106]
Ahn MY, Dec J, Kim JE, Bollag JM. Treatment of 2,4-dichlorophenol polluted soil with free and immobilized laccase. J Environ Qual 2002; 31(5): 1509-15.
[http://dx.doi.org/10.2134/jeq2002.1509]
[107]
Johannes C, Majcherczyk A. Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 2000; 66(2): 524-8.
[http://dx.doi.org/10.1128/AEM.66.2.524-528.2000]
[108]
Unuofin JO, Falde AO, Aladekoyi OJ. Applications of microbial laccase in bioremediation of environmental pollutant potential issues, challenges, and prospects. Bioremediation for Environmental Sustainability 2021.
[http://dx.doi.org/10.1016/B978-0-12-820524-2.00021-3]
[109]
Zdarta J, Machałowski T, Degórska O, et al. Chitin scaffolds from the marine demosponge aplysina archeri as a support for laccase immobilization and its use in the removal of pharmaceuticals. Biomolecules 2020; 10(4): 646.
[http://dx.doi.org/10.3390/biom10040646]
[110]
Terrón MC, González T, Carbajo JM, et al. Structural close-related aromatic compounds have different effects on laccase activity and on lcc gene expression in the ligninolytic fungus Trametes sp. I-62. Fungal Genet Biol 2004; 41(10): 954-62.
[http://dx.doi.org/10.1016/j.fgb.2004.07.002]
[111]
Rocasalbas G, Francesko A, Touriño S, Fernández-Francos X, Guebitz GM, Tzanov T. Laccase-assisted formation of bioactive chitosan/gelatin hydrogel stabilized with plant polyphenols. Carbohydr Polym 2013; 92(2): 989-96.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.045]
[112]
Shraddha Shekher R, Sehgal S, Kamthania M, Kumar A. Laccase: Microbial sources, production, purification and potential biotechnological applications. Enzyme Res 2011; 2011: 1-11.
[http://dx.doi.org/10.4061/2011/217861]
[113]
Kang KH, Dec J, Park H, Bollag JM. Transformation of the fungicide cyprodinil by a laccase of Trametes villosa in the presence of phenolic mediators and humic acid. Water Res 2002; 36(19): 4907-15.
[http://dx.doi.org/10.1016/S0043-1354(02)00198-7]
[114]
Chen X, Li D, Li G, et al. Facile fabrication of gold nanoparticle on zein ultrafine fibers and their application for catechol biosensor. Appl Surf Sci 2015; 328: 444-52.
[http://dx.doi.org/10.1016/j.apsusc.2014.12.070]
[115]
Bebic J, Banjanac K, Corovic M, et al. Immobilization of laccase from myceliophthora thermophila on functionalized silica nanoparticles: optimization and application in lindane degradation. Chin J Chem Eng 2020; 28: 1136-44.
[116]
Rodríguez Couto S, Toca Herrera JL. Industrial and biotechnological applications of laccases: A review. Biotechnol Adv 2006; 24(5): 500-13.
[http://dx.doi.org/10.1016/j.biotechadv.2006.04.003]
[117]
Bourbonnais R, Paice MG. Oxidation of non-phenolic substrates. FEBS Lett 1990; 267(1): 99-102.
[http://dx.doi.org/10.1016/0014-5793(90)80298-W]
[118]
Archibald FS, Bourbonnais R, Jurasek L, Paice MG, Reid ID. Kraft pulp bleaching and delignification by Trametes versicolor. J Biotechnol 1997; 53(2-3): 215-36.
[http://dx.doi.org/10.1016/S0168-1656(97)01675-1]
[119]
Milstein O, Hüttermann A, Fründ R, Lüdemann H-D. Enzymatic co-polymerization of lignin with low-molecular mass compounds. Appl Microbiol Biotechnol 1994; 40(5): 760-7.
[http://dx.doi.org/10.1007/BF00173342]
[120]
Larsson S, Cassland P, Jönsson LJ. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 2001; 67(3): 1163-70.
[http://dx.doi.org/10.1128/AEM.67.3.1163-1170.2001]
[121]
Onuki T, Nogucji M, Mitamura J. Oxidative hair dye composition containing laccase. Chem Abstr 2000; 133: 789-94.
[122]
Kumar D, Kumar A, Sondhi S, Sharma P, Gupta N. An alkaline bacterial laccase for polymerization of natural precursors for hair dye synthesis. 3 Biotech 2018; 8: 12.
[123]
Minussi RC, Pastore GM, Durán N. Potential applications of laccase in the food industry. Trends Food Sci Technol 2002; 13(6-7): 205-16.
[http://dx.doi.org/10.1016/S0924-2244(02)00155-3]
[124]
Minussi RC, Miranda MA, Silva JA, et al. Purification, characterization and application of laccase from Trametes versicolor for color and phenolic removal of olive mill wastewater in the presence of 1-hydroxybenzotriazole. Afr J Biotechnol 2007; 6: 1248-54.
[125]
Osma JF, Toca-Herrera JL, Rodríguez-Couto S. Uses of laccases in the food industry. Enzyme Res 2010; 2010: 1-8.
[http://dx.doi.org/10.4061/2010/918761]
[126]
Schroeder M, Pöllinger-Zierler B, Aichernig N, Siegmund B, Guebitz GM. Enzymatic removal of off-flavors from apple juice. J Agric Food Chem 2008; 56(7): 2485-9.
[http://dx.doi.org/10.1021/jf073303m]
[127]
Liu L, Anwar S, Ding H, et al. Electrochemical sensor based on F,N-doped carbon dots decorated laccase for detection of catechol. J Electroanal Chem 2019; 840: 84-92.
[http://dx.doi.org/10.1016/j.jelechem.2019.03.071]
[128]
Sekretaryova AN, Volkov AV, Zozoulenko IV, Turner APF, Vagin MY, Eriksson M. Total phenol analysis of weakly supported water using a laccase-based microband biosensor. Anal Chim Acta 2016; 907: 45-53.
[http://dx.doi.org/10.1016/j.aca.2015.12.006]
[129]
Zhang Y, Lv Z, Zhou J, et al. Application of eukaryotic and prokaryotic laccases in biosensor and biofuel cells: Recent advances and electrochemical aspects. Appl Microbiol Biotechnol 2018; 102(24): 10409-23.
[http://dx.doi.org/10.1007/s00253-018-9421-7]
[130]
Kang S, Yoo KS, Chung Y, Kwon Y. Cathodic biocatalyst consisting of laccase and gold nanoparticle for improving oxygen reduction reaction rate and enzymatic biofuel cell performance. J Ind Eng Chem 2018; 62: 329-32.
[http://dx.doi.org/10.1016/j.jiec.2018.01.011]
[131]
Barton SC, Kim HH, Binyamin G, Zhang Y, Heller A. The wired laccase cathode: high current density electroreduction of O2 to water at +0.7 V (NHE) at pH 5. J Am Chem Soc 2001; 123(24): 5802-3.
[http://dx.doi.org/10.1021/ja010408b]
[132]
Ghosh B, Saha R, Bhattacharya D, Mukhopadhyay M. Laccase and its source of sustainability in an enzymatic biofuel cell. Bioresour Technol Rep 2019; 6: 268-78.
[http://dx.doi.org/10.1016/j.biteb.2019.03.013]
[133]
Hu M, Zhou X, Shi Y, Lin J, Irfan M, Tao Y. Essential role of the N- and C-terminals of laccase from Pleurotus florida on the laccase activity and stability. Appl Biochem Biotechnol 2014; 174(5): 2007-17.
[http://dx.doi.org/10.1007/s12010-014-1147-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy