Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Systems Pharmacology Strategy for the Investigation of Action Mechanisms of Qin Herb Libanotis Buchtormensis (Fisch.) DC. in Bone Diseases

Author(s): Rundong Feng, Lifang Wang, Hu Chai, Jie Jiao, Peng Zhang, Xu Zheng, Haijing Liu*, Wenjuan Zhang* and Suli Wu*

Volume 24, Issue 1, 2024

Published on: 29 August, 2023

Page: [142 - 152] Pages: 11

DOI: 10.2174/1871530323666230720143415

Price: $65

Abstract

Introduction: Qin medicines are medicinal plants growing in habitat around the peak of Qinling Mountain. Their unique curative effects on bone metabolic diseases and pain diseases have been favoured by the local people in clinical trials for thousands of years. Libanotis buchtormensis (Fisch.) DC. (LBD), is one of the popular Qin herbs, which has been widely used for the treatment of various diseases, such as osteoporosis, rheumatic, and cardiovascular diseases. However, due to the multiple compounds in LBD, the underlying molecular mechanisms of LBD remain unclear.

Objective: This study aimed to systemically investigate the underlying mechanisms of LBD against bone diseases.

Methods: In this study, a systems pharmacology platform included the potential active compound screening, target fishing, and network pharmacological analysis was employed to decipher the action mechanisms of LBD.

Results: As a result, 12 potential active compounds and 108 targets were obtained. Furthermore, compound-target network and target-pathway network analysis showed that multi-components interacted with multi-targets and multi-pathways, i.e., MARK signalling pathway, mTORC1 signalling pathway, etc., involved in the regulation of the immune system and circulatory system. These results suggested the mechanisms of the therapeutic effects of LBD on various diseases through most compounds targeted by multiple targets.

Conclusion: In conclusion, we successfully predicted the LBD bioactive compounds and potential targets, implying that LBD could be applied as a novel therapeutic herb in osteoporosis, rheumatic, and cardiovascular diseases. This work provides insight into the therapeutic mechanisms of LBD for treating various diseases.

Graphical Abstract

[1]
Wang, X; Xu, X; Li, Y; Li, X; Tao, W; Li, B Systems pharmacology uncovers Janus functions of botanical drugs: Activation of host defense system and inhibition of influenza virus replication. Integr. Biol., 2013, 5, 351-371.
[http://dx.doi.org/10.1039/c2ib20204b]
[2]
Ma, E.; Jin, L.; Qian, C.; Feng, C.; Zhao, Z.; Tian, H.; Yang, D. Bioinformatics-guided identification of ethyl acetate extract of citri reticulatae pericarpium as a functional food ingredient with anti-inflammatory potential. Molecules, 2022, 27(17), 5435.
[http://dx.doi.org/10.3390/molecules27175435] [PMID: 36080202]
[3]
Guo, W.; Yao, X.; Lan, S.; Zhang, C.; Li, H.; Chen, Z.; Yu, L.; Liu, G.; Lin, Y.; Liu, S.; Chen, H. Metabolomics and integrated network pharmacology analysis reveal SNKAF decoction suppresses cell proliferation and induced cell apoptisis in hepatocellular carcinoma via PI3K/Akt/P53/FoxO signaling axis. Chin. Med., 2022, 17(1), 76.
[http://dx.doi.org/10.1186/s13020-022-00628-1] [PMID: 35725485]
[4]
Tao, W.; Xu, X.; Wang, X.; Li, B.; Wang, Y.; Li, Y.; Yang, L. Network pharmacology-based prediction of the active ingredients and potential targets of chinese herbal radix curcumae formula for application to cardiovascular disease. J. Ethnopharmacol., 2013, 145(1), 1-10.
[http://dx.doi.org/10.1016/j.jep.2012.09.051] [PMID: 23142198]
[5]
Huang, C.; Zheng, C.; Li, Y.; Wang, Y.; Lu, A.; Yang, L. Systems pharmacology in drug discovery and therapeutic insight for herbal medicines. Brief. Bioinform., 2014, 15(5), 710-733.
[http://dx.doi.org/10.1093/bib/bbt035] [PMID: 23736100]
[6]
Li, B.; Xu, X.; Wang, X.; Yu, H.; Li, X.; Tao, W.; Wang, Y.; Yang, L. A systems biology approach to understanding the mechanisms of action of chinese herbs for treatment of cardiovascular disease. Int. J. Mol. Sci., 2012, 13(12), 13501-13520.
[http://dx.doi.org/10.3390/ijms131013501] [PMID: 23202964]
[7]
Zhang, W.; Huai, Y.; Miao, Z.; Chen, C.; Shahen, M.; Rahman, S.U.; Alagawany, M.; El-Hack, M.E.A.; Zhao, H.; Qian, A. Systems pharmacology approach to investigate the molecular mechanisms of herb Rhodiola rosea L. radix. Drug Dev. Ind. Pharm., 2019, 45(3), 456-464.
[http://dx.doi.org/10.1080/03639045.2018.1546316] [PMID: 30449200]
[8]
Li, X.; Xu, X.; Wang, J.; Yu, H.; Wang, X.; Yang, H.; Xu, H.; Tang, S.; Li, Y.; Yang, L.; Huang, L.; Wang, Y.; Yang, S. A system-level investigation into the mechanisms of chinese traditional medicine: Compound danshen formula for cardiovascular disease treatment. PLoS One, 2012, 7(9), e43918.
[http://dx.doi.org/10.1371/journal.pone.0043918] [PMID: 22962593]
[9]
Liu, H.; Wang, J.; Zhou, W.; Wang, Y.; Yang, L. Systems approaches and polypharmacology for drug discovery from herbal medicines: An example using licorice. J. Ethnopharmacol., 2013, 146(3), 773-793.
[http://dx.doi.org/10.1016/j.jep.2013.02.004] [PMID: 23415946]
[10]
Feng, S.; Wang, T.; Fan, L.; An, X.; Ding, X.; Wang, M.; Zhai, X.; Cao, Y.; He, J.; Li, Y. Exploring the potential therapeutic effect of Eucommia ulmoides – Dipsaci Radix herbal pair on osteoporosis based on network pharmacology and molecular docking technology. RSC Advances, 2022, 12(4), 2181-2195.
[http://dx.doi.org/10.1039/D1RA05799E] [PMID: 35425231]
[11]
Zhang, W.; Tao, Q.; Guo, Z.; Fu, Y.; Chen, X.; Shar, P.A.; Shahen, M.; Zhu, J.; Xue, J.; Bai, Y.; Wu, Z.; Wang, Z.; Xiao, W.; Wang, Y. Systems pharmacology dissection of the integrated treatment for cardiovascular and gastrointestinal disorders by traditional chinese medicine. Sci. Rep., 2016, 6(1), 32400.
[http://dx.doi.org/10.1038/srep32400] [PMID: 27597117]
[12]
Raza, H.; Abbas, Q.; Hassan, M.; Eo, S.H.; Ashraf, Z.; Kim, D.; Phull, A.R.; Kim, S.J.; Kang, S.K.; Seo, S.Y. Isolation, characterization, and in silico, in vitro and in vivo antiulcer studies of isoimperatorin crystallized from Ostericum koreanum. Pharm. Biol., 2017, 55(1), 218-226.
[http://dx.doi.org/10.1080/13880209.2016.1257641] [PMID: 27927061]
[13]
Liu, J; He, L; Hu, J; Li, K; Zhou, F; Hu, M Isoimperatorin induces apoptosis of nasopharyngeal carcinoma cells via the mapk/erk1/2 signaling pathway. evidence-based complementary and alternative medicine. eCAM., 2020, 2020, 2138186.
[14]
Shen, C.Y.; Wang, T.X.; Jiang, J.G.; Huang, C.L.; Zhu, W. Bergaptol from blossoms of Citrus aurantium L. var. amara Engl inhibits LPS-induced inflammatory responses and ox-LDL-induced lipid deposition. Food Funct., 2020, 11(6), 4915-4926.
[http://dx.doi.org/10.1039/C9FO00255C] [PMID: 32432251]
[15]
Wang, Y.R.; Zhang, Y.; Qin, Q.B.; Wang, P.; Tan, L. Analysis of medication regularity of traditional Chinese medicine prescriptions for gastropyretic excessiveness diabetes based on data mining. Zhongguo Zhongyao Zazhi, 2020, 45(1), 196-201.
[PMID: 32237430]
[16]
Sampietro, D.A.; Lizarraga, E.F.; Ibatayev, Z.A.; Omarova, A.B.; Suleimen, Y.M.; Catalán, C.A.N. Chemical composition and antimicrobial activity of essential oils from Acantholippia deserticola, Artemisia proceriformis, Achillea micrantha and Libanotis buchtormensis against phytopathogenic bacteria and fungi. Nat. Prod. Res., 2016, 30(17), 1950-1955.
[http://dx.doi.org/10.1080/14786419.2015.1091453] [PMID: 26404704]
[17]
Shi, J.; Fu, Q.; Chen, W.; Yang, H.P.; Liu, J.; Wang, X.M.; He, X. Comparative study of pharmacokinetics and tissue distribution of osthole in rats after oral administration of pure osthole and Libanotis buchtormensis supercritical extract. J. Ethnopharmacol., 2013, 145(1), 25-31.
[http://dx.doi.org/10.1016/j.jep.2012.10.028] [PMID: 23142197]
[18]
Alqurashi, A.S.; Al Masoudi, L.M.; Hamdi, H.; Abu Zaid, A. Chemical composition and antioxidant, antiviral, antifungal, antibacterial and anticancer potentials of opuntia ficus-indica seed oil. Molecules, 2022, 27(17), 5453.
[http://dx.doi.org/10.3390/molecules27175453] [PMID: 36080220]
[19]
Shi, H.; Chang, Y.Q.; Feng, X.; Yang, G.Y.; Zheng, Y.G.; Zheng, Q.; Zhang, L.L.; Zhang, D.; Guo, L. Chemical comparison and discrimination of two plant sources of Angelicae dahuricae Radix, Angelica dahurica and Angelica dahurica var. formosana, by HPLC‐Q/TOFMS and quantitative analysis of multiple components by a single marker. Phytochem. Anal., 2022, 33(5), 776-791.
[http://dx.doi.org/10.1002/pca.3129] [PMID: 35470493]
[20]
Tkachev, A.V.; Korolyuk, E.A.; König, W.; Kuleshova, Y.V.; Letchamo, W. Chemical screening of volatile oil-bearing flora of siberia viii.: variations in chemical composition of the essential oil of wild growing Seseli buchtormense (Fisch. ex Sprengel) W. koch from different altitudes of altai region. J. Essent. Oil Res., 2006, 18(1), 100-103.
[http://dx.doi.org/10.1080/10412905.2006.9699399]
[21]
Durhan, B.; Yalçın, E.; Çavuşoğlu, K.; Acar, A. Molecular docking assisted biological functions and phytochemical screening of Amaranthus lividus L. extract. Sci. Rep., 2022, 12(1), 4308.
[http://dx.doi.org/10.1038/s41598-022-08421-8] [PMID: 35279686]
[22]
Khan, Z.; Nath, N.; Rauf, A.; Emran, T.B.; Mitra, S.; Islam, F.; Chandran, D.; Barua, J.; Khandaker, M.U.; Idris, A.M.; Wilairatana, P.; Thiruvengadam, M. Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications. Chem. Biol. Interact., 2022, 365, 110117.
[http://dx.doi.org/10.1016/j.cbi.2022.110117] [PMID: 35995256]
[23]
Hah, Y.S.; Lee, W.K.; Lee, S.; Kim, E.J.; Lee, J.H.; Lee, S.J.; Ji, Y.H.; Kim, S.G.; Lee, H.H.; Hong, S.Y.; Yoo, J.I. β-sitosterol attenuates dexamethasone-induced muscle atrophy via regulating FoxO1-dependent signaling in C2C12 Cell and mice model. Nutrients, 2022, 14(14), 2894.
[http://dx.doi.org/10.3390/nu14142894] [PMID: 35889851]
[24]
Yang, S.; Chen, C.; Liu, X.; Kang, Q.; Ma, Q.; Li, P.; Hu, Y.; Li, J.; Gao, J.; Wang, T.; Wang, W. Xiongshao zhitong recipe attenuates nitroglycerin-induced migraine-like behaviors via the inhibition of inflammation mediated by nitric oxide synthase. Front. Pharmacol., 2022, 13, 920201.
[http://dx.doi.org/10.3389/fphar.2022.920201] [PMID: 35928284]
[25]
Yu, H.; Chen, J.; Xu, X.; Li, Y.; Zhao, H.; Fang, Y.; Li, X.; Zhou, W.; Wang, W.; Wang, Y. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One, 2012, 7(5), e37608.
[http://dx.doi.org/10.1371/journal.pone.0037608] [PMID: 22666371]
[26]
Lai, X.; Wang, X.; Hu, Y.; Su, S.; Li, W.; Li, S. Editorial: Network pharmacology and traditional medicine. Front. Pharmacol., 2020, 11, 1194.
[http://dx.doi.org/10.3389/fphar.2020.01194] [PMID: 32848794]
[27]
Qiao, X.; Hou, T.; Zhang, W.; Guo, S.; Xu, X. A 3D structure database of components from chinese traditional medicinal herbs. J. Chem. Inf. Comput. Sci., 2002, 42(3), 481-489.
[http://dx.doi.org/10.1021/ci010113h] [PMID: 12086505]
[28]
Lehár, J.; Krueger, A.S.; Avery, W.; Heilbut, A.M.; Johansen, L.M.; Price, E.R.; Rickles, R.J.; Short, G.F., III; Staunton, J.E.; Jin, X.; Lee, M.S.; Zimmermann, G.R.; Borisy, A.A. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol., 2009, 27(7), 659-666.
[http://dx.doi.org/10.1038/nbt.1549] [PMID: 19581876]
[29]
Chen, M.L.; Shah, V.; Patnaik, R.; Adams, W.; Hussain, A.; Conner, D.; Mehta, M.; Malinowski, H.; Lazor, J.; Huang, S.M.; Hare, D.; Lesko, L.; Sporn, D.; Williams, R. Bioavailability and bioequivalence: An FDA regulatory overview. Pharm. Res., 2001, 18(12), 1645-1650.
[http://dx.doi.org/10.1023/A:1013319408893] [PMID: 11785681]
[30]
Willett, P.; Barnard, J.M.; Downs, G.M. Chemical similarity searching. J. Chem. Inf. Comput. Sci., 1998, 38(6), 983-996.
[http://dx.doi.org/10.1021/ci9800211]
[31]
Luo, T.; Lu, Y.; Yan, S.; Xiao, X.; Rong, X.; Guo, J. Network pharmacology in research of chinese medicine formula: Methodology, application and prospective. Chin. J. Integr. Med., 2020, 26(1), 72-80.
[http://dx.doi.org/10.1007/s11655-019-3064-0] [PMID: 30941682]
[32]
Xu, X.; Zhang, W.; Huang, C.; Li, Y.; Yu, H.; Wang, Y.; Duan, J.; Ling, Y. A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci., 2012, 13(6), 6964-6982.
[http://dx.doi.org/10.3390/ijms13066964] [PMID: 22837674]
[33]
Yamanishi, Y.; Kotera, M.; Kanehisa, M.; Goto, S. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics, 2010, 26(12), i246-i254.
[http://dx.doi.org/10.1093/bioinformatics/btq176] [PMID: 20529913]
[34]
Verbavatz, V; Barthelemy, M Betweenness centrality in dense spatial networks. Physical review E., 2022, 105(5-1), 054303.
[http://dx.doi.org/10.1103/PhysRevE.105.054303]
[35]
Gursoy, A.; Keskin, O.; Nussinov, R. Topological properties of protein interaction networks from a structural perspective. Biochem. Soc. Trans., 2008, 36(6), 1398-1403.
[http://dx.doi.org/10.1042/BST0361398] [PMID: 19021563]
[36]
Gene Ontology Consortium. Gene Ontology Consortium:. Going forward. Nucleic Acids Res., 2015, 43(Database issue), D1049-D1056.
[PMID: 25428369]
[37]
Moon, L.; Ha, Y.M.; Jang, H.J.; Kim, H.S.; Jun, M.S.; Kim, Y.M.; Lee, Y.S.; Lee, D.H.; Son, K.H.; Kim, H.J.; Seo, H.G.; Lee, J.H.; Kim, Y.S.; Chang, K.C. Isoimperatorin, cimiside E and 23-O-acetylshengmanol-3-xyloside from Cimicifugae Rhizome inhibit TNF-α-induced VCAM-1 expression in human endothelial cells: Involvement of PPAR-γ upregulation and PI3K, ERK1/2, and PKC signal pathways. J. Ethnopharmacol., 2011, 133(2), 336-344.
[http://dx.doi.org/10.1016/j.jep.2010.10.004] [PMID: 20937376]
[38]
Ranjbar, S.; Shokoohinia, Y.; Ghobadi, S.; Bijari, N.; Gholamzadeh, S.; Moradi, N.; Ashrafi-Kooshk, M.R.; Aghaei, A.; Khodarahmi, R. Studies of the interaction between isoimperatorin and human serum albumin by multispectroscopic method: Identification of possible binding site of the compound using esterase activity of the protein. ScientificWorldJournal, 2013, 2013, 1-13.
[http://dx.doi.org/10.1155/2013/305081] [PMID: 24319355]
[39]
Bond, C.A.; Grant, K.; Boh, L. Photochemotherapy of psoriasis with methoxsalen and longwave ultraviolet light (PUVA). Am. J. Health Syst. Pharm., 1981, 38(7), 990-995.
[http://dx.doi.org/10.1093/ajhp/38.7.990] [PMID: 7020414]
[40]
Kim, H.J.; Kim, H.M.; Ryu, B.; Lee, W.S.; Shin, J.S.; Lee, K.T.; Jang, D.S. Constituents of PG201 (Layla®), a multi-component phytopharmaceutical, with inhibitory activity on LPS-induced nitric oxide and prostaglandin E2 productions in macrophages. Arch. Pharm. Res., 2016, 39(2), 231-239.
[http://dx.doi.org/10.1007/s12272-015-0654-z] [PMID: 26306655]
[41]
Lee, S.B.; Lee, W.S.; Shin, J.S.; Jang, D.S.; Lee, K.T. Xanthotoxin suppresses LPS-induced expression of iNOS, COX-2, TNF-α, and IL-6 via AP-1, NF-κB, and JAK-STAT inactivation in RAW 264.7 macrophages. Int. Immunopharmacol., 2017, 49, 21-29.
[http://dx.doi.org/10.1016/j.intimp.2017.05.021] [PMID: 28550731]
[42]
Peng, Y.; Liu, W.; Xiong, J.; Gui, H.Y.; Feng, X.M.; Chen, R.N.; Hu, G.; Yang, J. Down regulation of differentiated embryonic chondrocytes 1 (DEC1) is involved in 8-methoxypsoralen-induced apoptosis in HepG2 cells. Toxicology, 2012, 301(1-3), 58-65.
[http://dx.doi.org/10.1016/j.tox.2012.06.022] [PMID: 22796345]
[43]
Song-Jiang, W.U.; Liu, Z.J.; Xiang, Y.P. Effect of NB-UVB combined with psoralen injection on the cell proliferation and the synthesis of melanin in human melanoma A375 cells; The Chinese J. Dermatovenereology, 2015.
[44]
Mirzaei, S.A.; Gholamian Dehkordi, N.; Ghamghami, M.; Amiri, A.H.; Dalir Abdolahinia, E.; Elahian, F. ABC-transporter blockage mediated by xanthotoxin and bergapten is the major pathway for chemosensitization of multidrug-resistant cancer cells. Toxicol. Appl. Pharmacol., 2017, 337, 22-29.
[http://dx.doi.org/10.1016/j.taap.2017.10.018] [PMID: 29079042]
[45]
Balamurugan, R.; Stalin, A.; Ignacimuthu, S. Molecular docking of γ-sitosterol with some targets related to diabetes. Eur. J. Med. Chem., 2012, 47(1), 38-43.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.007] [PMID: 22078765]
[46]
Sundarraj, S. Thangam, R.; Sreevani, V.; Kaveri, K.; Gunasekaran, P.; Achiraman, S.; Kannan, S. γ-Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. J. Ethnopharmacol., 2012, 141(3), 803-809.
[http://dx.doi.org/10.1016/j.jep.2012.03.014] [PMID: 22440953]
[47]
Elebiyo, T.C.; Rotimi, D.; Evbuomwan, I.O.; Maimako, R.F.; Iyobhebhe, M.; Ojo, O.A.; Oluba, O.M.; Adeyemi, O.S. Reassessing vascular endothelial growth factor (VEGF) in anti-angiogenic cancer therapy. In: Cancer Treat. Res. Commun; , 2022; pp. 32-100620.
[http://dx.doi.org/10.1016/j.ctarc.2022.100620] [PMID: 35964475]
[48]
Wang, L.; Sheng, G.; Cui, J.; Yao, Y.; Bai, X.; Chen, F.; Yu, W. Electroacupuncture attenuates ischemic injury after stroke and promotes angiogenesis via activation of EPO mediated Src and VEGF signaling pathways. PLoS One, 2022, 17(9), e0274620.
[http://dx.doi.org/10.1371/journal.pone.0274620] [PMID: 36108080]
[49]
Talks, K.L.; Turley, H.; Gatter, K.C.; Maxwell, P.H.; Pugh, C.W.; Ratcliffe, P.J.; Harris, A.L. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol., 2000, 157(2), 411-421.
[http://dx.doi.org/10.1016/S0002-9440(10)64554-3] [PMID: 10934146]
[50]
Birner, P.; Obermair, A.; Schindl, M.; Kowalski, H.; Breitenecker, G.; Oberhuber, G. Selective immunohistochemical staining of blood and lymphatic vessels reveals independent prognostic influence of blood and lymphatic vessel invasion in early-stage cervical cancer. Clin. Cancer Res., 2001, 7(1), 93-97.
[PMID: 11205924]
[51]
Wang, Y.; Chen, M.; Yu, H.; Yuan, G.; Luo, L.; Xu, X.; Xu, Y.; Sui, X.; Leung, E.L.H.; Wu, Q. The role and mechanisms of action of natural compounds in the prevention and treatment of cancer and cancer metastasis. Frontiers in Bioscience-Landmark, 2022, 27(6), 192.
[http://dx.doi.org/10.31083/j.fbl2706192] [PMID: 35748268]
[52]
Sala-Vila, A.; Fleming, J.; Kris-Etherton, P.; Ros, E. Impact of α-Linolenic Acid, the Vegetable ω-3 fatty acid, on cardiovascular disease and cognition. Adv. Nutr., 2022, 13(5), 1584-1602.
[http://dx.doi.org/10.1093/advances/nmac016]
[53]
Li, Y.; Zhang, Y.; Meng, W.; Li, Y.; Huang, T.; Wang, D.; Hu, M. The antiosteoporosis effects of yishen bugu ye based on its regulation on the differentiation of osteoblast and osteoclast. BioMed Res. Int., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/9467683] [PMID: 32149147]
[54]
Sohn, E.J. PIK3R3, a regulatory subunit of PI3K, modulates ovarian cancer stem cells and ovarian cancer development and progression by integrative analysis. BMC Cancer, 2022, 22(1), 708.
[http://dx.doi.org/10.1186/s12885-022-09807-7] [PMID: 35761259]
[55]
Fischer, V.; Haffner-Luntzer, M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis. Semin. Cell Dev. Biol., 2022, 123, 14-21.
[http://dx.doi.org/10.1016/j.semcdb.2021.05.014] [PMID: 34024716]
[56]
Ouyang, J.; Jiang, H.; Fang, H.; Cui, W.; Cai, D. Isoimperatorin ameliorates osteoarthritis by downregulating the mammalian target of rapamycin C1 signaling pathway. Mol. Med. Rep., 2017, 16(6), 9636-9644.
[http://dx.doi.org/10.3892/mmr.2017.7777] [PMID: 29039501]
[57]
Zheng, M.; Ge, Y.; Li, H.; Yan, M.; Zhou, J.; Zhang, Y. Bergapten prevents lipopolysaccharide mediated osteoclast formation, bone resorption and osteoclast survival. Int. Orthop., 2014, 38(3), 627-634.
[http://dx.doi.org/10.1007/s00264-013-2184-y] [PMID: 24305787]
[58]
Galibert, L.; Tometsko, M.E.; Anderson, D.M.; Cosman, D.; Dougall, W.C. The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily. J. Biol. Chem., 1998, 273(51), 34120-34127.
[http://dx.doi.org/10.1074/jbc.273.51.34120] [PMID: 9852070]
[59]
Chen, G.; Xu, Q.; Dai, M.; Liu, X. Bergapten suppresses RANKL-induced osteoclastogenesis and ovariectomy-induced osteoporosis via suppression of NF-κB and JNK signaling pathways. Biochem. Biophys. Res. Commun., 2019, 509(2), 329-334.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.112] [PMID: 30579598]
[60]
Li, X.J.; Zhu, Z.; Han, S.L.; Zhang, Z.L. Bergapten exerts inhibitory effects on diabetes-related osteoporosis via the regulation of the PI3K/AKT, JNK/MAPK and NF-κB signaling pathways in osteoprotegerin knockout mice. Int. J. Mol. Med., 2016, 38(6), 1661-1672.
[http://dx.doi.org/10.3892/ijmm.2016.2794] [PMID: 27840967]
[61]
Wang, T.; Li, S.; Yi, C.; Wang, X.; Han, X. Protective role of β-sitosterol in glucocorticoid-induced osteoporosis in rats via the RANKL/OPG Pathway. Altern. Ther. Health Med., 2022, 28(7), 18-25.
[PMID: 35648689]
[62]
Dou, C; Chen, Y; Ding, N; Li, N; Jiang, H; Zhao, C Xanthotoxin prevents bone loss in ovariectomized mice through the inhibition of RANKL-induced osteoclastogenesis. Osteoporosis. Int., 2016, 27(7), 2335-2344.
[63]
Bellissimo, MP.; Ziegler, TR.; Jones, DP.; Liu, KH.; Fernandes, J; Roberts, JL Plasma high-resolution metabolomics identifies linoleic acid and linked metabolic pathways associated with bone mineral density., Clin. Nut., 2021, 40(2), 467-475.
[http://dx.doi.org/10.1016/j.clnu.2020.05.041]
[64]
Jeong, JB; Shin, YK; Lee, SH Anti-inflammatory activity of patchouli alcohol in RAW264.7 and HT-29 cells. Food Chem Toxicol., 2013, 55, 229-233.
[65]
Nair, S.P.; Meghji, S.; Wilson, M.; Reddi, K.; White, P.; Henderson, B. Bacterially induced bone destruction: Mechanisms and misconceptions. Infect. Immun., 1996, 64(7), 2371-2380.
[http://dx.doi.org/10.1128/iai.64.7.2371-2380.1996] [PMID: 8698454]
[66]
Xian, Y.; Su, Y.; Liang, J.; Long, F.; Feng, X.; Xiao, Y.; Lian, H.; Xu, J.; Zhao, J.; Liu, Q.; Song, F. Oroxylin A reduces osteoclast formation and bone resorption via suppressing RANKL-induced ROS and NFATc1 activation. Biochem. Pharmacol., 2021, 193, 114761.
[http://dx.doi.org/10.1016/j.bcp.2021.114761] [PMID: 34492273]
[67]
Zhang, W.; Jiang, G.; Zhou, X.; Huang, L.; Meng, J.; He, B.; Qi, Y. α-Mangostin inhibits LPS-induced bone resorption by restricting osteoclastogenesis via NF-κB and MAPK signaling. Chin. Med., 2022, 17(1), 34.
[http://dx.doi.org/10.1186/s13020-022-00589-5] [PMID: 35248101]
[68]
Kikuchi, T; Matsuguchi, T; Tsuboi, N; Mitani, A; Tanaka, S; Matsuoka, M Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via Toll-like receptors. J. Immunol., 2001, 166(5), 3574-3579.
[http://dx.doi.org/10.4049/jimmunol.166.5.3574]
[69]
Kappelmann-Fenzl, M.; Gebhard, C.; Matthies, A.O.; Kuphal, S.; Rehli, M.; Bosserhoff, A.K. C-Jun drives melanoma progression in PTEN wild type melanoma cells. Cell Death Dis., 2019, 10(8), 584.
[http://dx.doi.org/10.1038/s41419-019-1821-9] [PMID: 31378787]
[70]
Valentina, T. D.; Bâldea, I.; Lupu, M.; Kacso, T.; Kutasi, E.; Hopârtean, A.; Stretea, R.; Gabriela F., A. COX-2 as a potential biomarker and therapeutic target in melanoma. Cancer Biol. Med., 2020, 17(1), 20-31.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2019.0339] [PMID: 32296574]
[71]
Abu-Amer, Y. Osteoporosis international: A journal established as result of cooperation between the european foundation for osteoporosis and the national osteoporosis foundation of the usa. Osteoporos Int, 2013, 24(9), 2377-86.
[72]
Xiang, C.; Liao, Y.; Chen, Z.; Xiao, B.; Zhao, Z.; Li, A.; Xia, Y.; Wang, P.; Li, H.; Xiao, T. Network pharmacology and molecular docking to elucidate the potential mechanism of ligusticum chuanxiong against osteoarthritis. Front. Pharmacol., 2022, 13, 854215.
[http://dx.doi.org/10.3389/fphar.2022.854215] [PMID: 35496280]
[73]
Hu, Y.; Yuan, W.; Cai, N.; Jia, K.; Meng, Y.; Wang, F.; Ge, Y.; Lu, H. Exploring quercetin anti-osteoporosis pharmacological mechanisms with in silico and in vivo Models. Life, 2022, 12(7), 980.
[http://dx.doi.org/10.3390/life12070980] [PMID: 35888070]
[74]
Zhu, C.; Shen, S.; Zhang, S.; Huang, M.; Zhang, L.; Chen, X. Autophagy in bone remodeling: A regulator of oxidative stress. Front. Endocrinol., 2022, 13, 898634.
[http://dx.doi.org/10.3389/fendo.2022.898634] [PMID: 35846332]
[75]
Wang, S.; Feng, W.; Liu, J.; Wang, X.; Zhong, L.; Lv, C.; Feng, M.; An, N.; Mao, Y. Alginate oligosaccharide alleviates senile osteoporosis via the RANKL–RANK pathway in D-galactose-induced C57BL/6J mice. Chem. Biol. Drug Des., 2022, 99(1), 46-55.
[http://dx.doi.org/10.1111/cbdd.13904] [PMID: 34145772]
[76]
Takayanagi, H.; Kim, S.; Koga, T.; Nishina, H.; Isshiki, M.; Yoshida, H.; Saiura, A.; Isobe, M.; Yokochi, T.; Inoue, J.; Wagner, E.F.; Mak, T.W.; Kodama, T.; Taniguchi, T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell, 2002, 3(6), 889-901.
[http://dx.doi.org/10.1016/S1534-5807(02)00369-6] [PMID: 12479813]
[77]
Pearson, G.; Robinson, F.; Beers Gibson, T.; Xu, B.E.; Karandikar, M.; Berman, K.; Cobb, M.H. Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr. Rev., 2001, 22(2), 153-183.
[PMID: 11294822]
[78]
Matsumoto, M.; Sudo, T.; Saito, T.; Osada, H.; Tsujimoto, M. Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J. Biol. Chem., 2000, 275(40), 31155-31161.
[http://dx.doi.org/10.1074/jbc.M001229200] [PMID: 10859303]
[79]
Zhang, X.; Wei, C.; He, L.; An, J. Xanthotoxin induces apoptosis in SGC-7901 cells through death receptor pathway. Chin. Herb. Med., 2018, 10(4), 437-444.
[http://dx.doi.org/10.1016/j.chmed.2018.08.009]
[80]
Shen, Q.K.; Liu, C.F.; Zhang, H.J.; Tian, Y.S.; Quan, Z.S. Design and synthesis of new triazoles linked to xanthotoxin for potent and highly selective anti-gastric cancer agents. Bioorg. Med. Chem. Lett., 2017, 27(21), 4871-4875.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.040] [PMID: 28947149]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy