Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

1,3-thiazole Derivatives: A Scaffold with Considerable Potential in the Treatment of Neurodegenerative Diseases

Author(s): Jasmine Chaudhary*, Akash Jain, Ashwani Dhingra, Bhawna Chopra, Vishal Sharma, Jatin Gupta and Aditi Kaushik

Volume 23, Issue 23, 2023

Published on: 03 August, 2023

Page: [2185 - 2196] Pages: 12

DOI: 10.2174/1568026623666230719124850

Price: $65

conference banner
Abstract

1,3-thiazoles, which contain nitrogen and a sulfur atom is an unsaturated five-membered heterocyclic ring, have achieved a unique significant place in drug design and development because of their versatile structure and a variety of pharmacological activities, viz. anticancer, antiviral, antimicrobial, anticonvulsant, antioxidant, antidiabetic, etc. They have inspired researchers to design novel thiazole with different biological activities. The presence of the thiazole moiety has resulted in a large number of clinically useful drugs with a wide range of activities, such as Ritonavir (antiviral), Sulfathiazole (antimicrobial antibiotic), Abafungin, Ravuconazole (antifungal), Meloxicam (NSAID), etc., that further verify this statement. The prevalence of neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington’s is increasing at a rapid pace but existing treatments mainly provide symptomatic relief and are associated with undesired effects. Consequently, designing novel compounds with more effectiveness and reduced toxicity are required. 1,3-thiazole derivatives have emerged as excellent candidate in this regard and have an important role for the treatment of neurodegenerative diseases. In the current review, we have gathered all the appropriate literature which demonstrate the remarkable role of 1,3-thiazole and its derivatives in these diseases that may help design new compounds with more desired characteristics. The literature was assessed through worldwide scientific databases like GOOGLE, SCOPUS, and PUBMED using different keywords, and only relevant information published in English was evaluated.

Next »
Graphical Abstract

[1]
Hajinejad, M.; Ghaddaripouri, M.; Dabzadeh, M.; Forouzanfar, F.; Sahab-Negah, S. Natural cinnamaldehyde and its derivatives ameliorate neuroinflammatory pathways in neurodegenerative diseases. BioMed Res. Int., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/1034325] [PMID: 33274192]
[2]
Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[3]
Alvarenga, M.O.P.; Frazão, D.R.; Matos, I.G.; Bittencourt, L.O.; Fagundes, N.C.F.; Rösing, C.K.; Maia, L.C.; Lima, R.R. Is there any association between neurodegenerative diseases and periodontitis? A systematic review. Front. Aging Neurosci., 2021, 13, 651437.
[http://dx.doi.org/10.3389/fnagi.2021.651437] [PMID: 34108875]
[4]
Hussain, R.; Zubair, H.; Pursell, S.; Shahab, M. Neurodegenerative diseases: Regenerative mechanisms and novel therapeutic approaches. Brain Sci., 2018, 8(9), 177.
[http://dx.doi.org/10.3390/brainsci8090177] [PMID: 30223579]
[5]
Przedborski, S.; Vila, M.; Jackson-Lewis, V. Series introduction: Neurodegeneration: What is it and where are we? J. Clin. Invest., 2003, 111(1), 3-10.
[http://dx.doi.org/10.1172/JCI200317522] [PMID: 12511579]
[6]
Zheng, Q.; Huang, T.; Zhang, L.; Zhou, Y.; Luo, H.; Xu, H.; Wang, X. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front. Aging Neurosci., 2016, 8, 303.
[http://dx.doi.org/10.3389/fnagi.2016.00303] [PMID: 28018215]
[7]
Dantuma, N.P.; Bott, L.C. The ubiquitin-proteasome system in neurodegenerative diseases: Precipitating factor, yet part of the solution. Front. Mol. Neurosci., 2014, 7, 70.
[http://dx.doi.org/10.3389/fnmol.2014.00070] [PMID: 25132814]
[8]
Misrani, A.; Tabassum, S.; Yang, L. Mitochondrial dysfunction and oxidative stress in alzheimer’s disease. Front. Aging Neurosci., 2021, 13, 617588.
[http://dx.doi.org/10.3389/fnagi.2021.617588] [PMID: 33679375]
[9]
Huang, Q.; Figueiredo-Pereira, M.E. Ubiquitin/proteasome pathway impairment in neurodegeneration: Therapeutic implications. Apoptosis, 2010, 15(11), 1292-1311.
[http://dx.doi.org/10.1007/s10495-010-0466-z] [PMID: 20131003]
[10]
Wassila, S.; Boukli, H.F.; Merad, M.; Ghalem, S. Theoretical study of quinoline derivatives involved in neurodegenerative disease. J. Microb. Biochem. Technol., 2020, 12(3), 1-6.
[http://dx.doi.org/10.35248/1948-5948.20.12.432]
[11]
Sheikh, S.; Safia; Haque, E.; Mir, S.S. Neurodegenerative diseases: Multifactorial conformational diseases and their therapeutic interventions. J. Neurodegener. Dis., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/563481] [PMID: 26316993]
[12]
Jellinger, K.A. Basic mechanisms of neurodegeneration: A critical update. J. Cell. Mol. Med., 2010, 14(3), 457-487.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01010.x] [PMID: 20070435]
[13]
Arbo, B.D.; André-Miral, C.; Nasre-Nasser, R.G.; Schimith, L.E.; Santos, M.G.; Costa-Silva, D.; Muccillo-Baisch, A.L.; Hort, M.A. Resveratrol derivatives as potential treatments for Alzheimer’s and Parkinson’s disease. Front. Aging Neurosci., 2020, 12, 103.
[http://dx.doi.org/10.3389/fnagi.2020.00103] [PMID: 32362821]
[14]
DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener., 2019, 14(1), 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[15]
Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2011, 1(1), a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[16]
Bush, A.I.; Tanzi, R.E. Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics, 2008, 5(3), 421-432.
[http://dx.doi.org/10.1016/j.nurt.2008.05.001] [PMID: 18625454]
[17]
Marucci, G.; Buccioni, M.; Ben, D.D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology, 2021, 190, 108352.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108352] [PMID: 33035532]
[18]
Bhatia, V.; Sharma, S. Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer’s disease. J. Neurol. Sci., 2021, 421, 117253.
[http://dx.doi.org/10.1016/j.jns.2020.117253] [PMID: 33476985]
[19]
Chakravorty, A.; Jetto, C.T.; Manjithaya, R. Dysfunctional mitochondria and mitophagy as drivers of alzheimer’s disease pathogenesis. Front. Aging Neurosci., 2019, 11, 311.
[http://dx.doi.org/10.3389/fnagi.2019.00311] [PMID: 31824296]
[20]
scarpini, E.; Schelterns, P.; Feldman, H. Treatment of Alzheimer’s disease; current status and new perspectives. Lancet Neurol., 2003, 2(9), 539-547.
[http://dx.doi.org/10.1016/S1474-4422(03)00502-7] [PMID: 12941576]
[21]
Talesa, V.N. Acetylcholinesterase in Alzheimer’s disease. Mech. Ageing Dev., 2001, 122(16), 1961-1969.
[http://dx.doi.org/10.1016/S0047-6374(01)00309-8] [PMID: 11589914]
[22]
Gella, A.; Durany, N. Oxidative stress in Alzheimer disease. Cell Adhes. Migr., 2009, 3(1), 88-93.
[http://dx.doi.org/10.4161/cam.3.1.7402] [PMID: 19372765]
[23]
Selkoe, D.J.; Podlisny, M.B. Deciphering the genetic basis of Alzheimer’s disease. Annu. Rev. Genomics Hum. Genet., 2002, 3(1), 67-99.
[http://dx.doi.org/10.1146/annurev.genom.3.022502.103022] [PMID: 12142353]
[24]
Bolea, I.; Juárez-Jiménez, J.; de los Ríos, C.; Chioua, M.; Pouplana, R.; Luque, F.J.; Unzeta, M.; Marco-Contelles, J.; Samadi, A. Synthesis, biological evaluation, and molecular modeling of donepezil and N-[(5-(benzyloxy)-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine hybrids as new multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease. J. Med. Chem., 2011, 54(24), 8251-8270.
[http://dx.doi.org/10.1021/jm200853t] [PMID: 22023459]
[25]
Long, J.M.; Holtzman, D.M. Alzheimer Disease: An update on pathobiology and treatment strategies. Cell, 2019, 179(2), 312-339.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[26]
Yiannopoulou, K.G.; Papageorgiou, S.G. Current and future treatments in alzheimer disease: An update. J. Cent. Nerv. Syst. Dis., 2020, 12
[http://dx.doi.org/10.1177/1179573520907397] [PMID: 32165850]
[27]
Guzior, N.; Wieckowska, A.; Panek, D.; Malawska, B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr. Med. Chem., 2015, 22(3), 373-404.
[http://dx.doi.org/10.2174/0929867321666141106122628] [PMID: 25386820]
[28]
Mhyre, T.R.; Boyd, J.T.; Hamill, R.W.; Maguire-Zeiss, K.A. Parkinson’s disease. Subcell. Biochem., 2012, 65, 389-455.
[http://dx.doi.org/10.1007/978-94-007-5416-4_16] [PMID: 23225012]
[29]
Maiti, P.; Manna, J.; Dunbar, G.L. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl. Neurodegener., 2017, 6(1), 28.
[http://dx.doi.org/10.1186/s40035-017-0099-z] [PMID: 29090092]
[30]
DeMaagd, G.; Philip, A. Parkinson’s disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P&T, 2015, 40(8), 504-532.
[PMID: 26236139]
[31]
Kim, C.H.; Leblanc, P.; Kim, K.S. 4-amino-7-chloroquinoline derivatives for treating Parkinson’s disease: implications for drug discovery. Expert Opin. Drug Discov., 2016, 11(4), 337-341.
[http://dx.doi.org/10.1517/17460441.2016.1154529] [PMID: 26924734]
[32]
Van Bulck, M.; Sierra-Magro, A.; Alarcon-Gil, J.; Perez-Castillo, A.; Morales-Garcia, J. Novel approaches for the treatment of alzheimer’s and parkinson’s disease. Int. J. Mol. Sci., 2019, 20(3), 719-725.
[http://dx.doi.org/10.3390/ijms20030719] [PMID: 30743990]
[33]
Oertel, W.; Schulz, J.B. Current and experimental treatments of parkinson disease: A guide for neuroscientists. J. Neurochem., 2016, 139(1)(1), 325-337.
[http://dx.doi.org/10.1111/jnc.13750] [PMID: 27577098]
[34]
Tabrizi, S.J.; Flower, M.D.; Ross, C.A.; Wild, E.J. Huntington's disease: New insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol., 2020, 16(10), 529-546.
[http://dx.doi.org/10.1038/s41582-020-0389-4] [PMID: 32796930]
[35]
Reiner, A.; Dragatsis, I.; Dietrich, P. Genetics and neuropathology of Huntington’s disease. Int. Rev. Neurobiol., 2011, 98, 325-372.
[http://dx.doi.org/10.1016/B978-0-12-381328-2.00014-6] [PMID: 21907094]
[36]
Jain, A.; Chaudhary, J.; Khaira, H.; Chopra, B.; Dhingra, A. Piperazine: A promising scaffold with analgesic and anti-inflammatory potential. Drug Res., 2021, 71(2), 62-72.
[http://dx.doi.org/10.1055/a-1323-2813] [PMID: 33336346]
[37]
Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res., 2012, 2012(9), 2947-2954.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.3(9).2947-54]
[38]
Chhabria, M.T.; Patel, S.; Modi, P.; Brahmkshatriya, P.S. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Curr. Top. Med. Chem., 2016, 16(26), 2841-2862.
[http://dx.doi.org/10.2174/1568026616666160506130731] [PMID: 27150376]
[39]
Linda, R.; Abdu, Rahem.; Ahmad, K. A.; Faris, T. A. Synthesis and medicinal attributes of thiazole derivatives: A Review. Sys Rev Pharm, 2021, 12(1), 290-295.
[40]
Ali, S.H.; Sayed, A.R. Review of the synthesis and biological activity of thiazoles. Synth. Commun., 2021, 51(5), 670-700.
[http://dx.doi.org/10.1080/00397911.2020.1854787]
[41]
Pola, S. Significance of Thiazole-based heterocycles for bioactive systems. in scope of selective heterocycles from organic and pharmaceutical perspective. InTech Open, 2016; pp. 1-48.
[42]
Turan-Zitouni, G.; Ozdemir, A.; Kaplancikli, Z.A.; Altintop, M.D.; Temel, H.E.; Çiftçi, G.A. Synthesis and biological evaluation of some thiazole derivatives as new cholinesterase inhibitors. J. Enzyme Inhib. Med. Chem., 2013, 28(3), 509-514.
[http://dx.doi.org/10.3109/14756366.2011.653355] [PMID: 22299580]
[43]
Shi, D.H.; Tang, Z.; Liu, Y.W.; Harjani, J.R.; Zhu, H.L.; Ma, X.D.; Song, X.K.; Liu, W.W.; Lu, C.; Yang, W.T.; Song, M.Q. Design, synthesis and biological evaluation of novel 2‐phenylthiazole derivatives for the treatment of Alzheimer’s disease. ChemistrySelect, 2017, 2(32), 10572-10579.
[http://dx.doi.org/10.1002/slct.201702087]
[44]
Mumtaz, A.; Shoaib, M.; Zaib, S.; Shah, M.S.; Bhatti, H.A.; Saeed, A.; Hussain, I.; Iqbal, J. Synthesis, molecular modelling and biological evaluation of tetrasubstituted thiazoles towards cholinesterase enzymes and cytotoxicity studies. Bioorg. Chem., 2018, 78, 141-148.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.024] [PMID: 29567428]
[45]
Sağlık, B.N.; Osmaniye, D.; Acar Çevik, U.; Levent, S.; Kaya Çavuşoğlu, B.; Özkay, Y.; Kaplancıklı, Z.A. Design, synthesis, and structure–activity relationships of thiazole analogs as anticholinesterase agents for alzheimer’s disease. Molecules, 2020, 25(18), 4312.
[http://dx.doi.org/10.3390/molecules25184312] [PMID: 32962239]
[46]
D’Ascenzio, M.; Chimenti, P.; Gidaro, M.C.; De Monte, C.; De Vita, D.; Granese, A.; Scipione, L.; Di Santo, R.; Costa, G.; Alcaro, S.; Yáñez, M.; Carradori, S. (Thiazol-2-yl)hydrazone derivatives from acetylpyridines as dual inhibitors of MAO and AChE: Synthesis, biological evaluation and molecular modeling studies. J. Enzyme Inhib. Med. Chem., 2015, 30(6), 908-919.
[http://dx.doi.org/10.3109/14756366.2014.987138] [PMID: 25807300]
[47]
Osmaniye, D.; Sağlık, B.N.; Acar Çevik, U.; Levent, S.; Kaya Çavuşoğlu, B.; Özkay, Y.; Kaplancıklı, Z.A.; Turan, G. Synthesis and AChE inhibitory activity of novel thiazolylhydrazone derivatives. Molecules, 2019, 24(13), 2392.
[http://dx.doi.org/10.3390/molecules24132392] [PMID: 31261693]
[48]
Mohsen, U.A. Biological evalution of thiazole derivatives bearing dithiocarbamate moiety as potential cholinesterase inhibitors. IJPPS, 2015, 7(2), 1-10.
[49]
Shidore, M.; Machhi, J.; Shingala, K.; Murumkar, P.; Sharma, M.K.; Agrawal, N.; Tripathi, A.; Parikh, Z.; Pillai, P.; Yadav, M.R. Benzylpiperidine-linked diarylthiazoles as potential anti-alzheimer’s agents-synthesis and biological evaluation. J. Med. Chem., 2016, 59(12), 5823-5846.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00426] [PMID: 27253679]
[50]
Hussain, R.; Ullah, H.; Rahim, F.; Sarfraz, M.; Taha, M.; Iqbal, R.; Rehman, W.; Khan, S.; Shah, S.A.A.; Hyder, S.; Alhomrani, M.; Alamri, A.S.; Abdulaziz, O.; Abdelaziz, M.A. Multipotent cholinesterase inhibitors for the treatment of alzheimer’s disease: Synthesis, biological analysis and molecular docking study of benzimidazole-based thiazole derivatives. Molecules, 2022, 27(18), 6087.
[http://dx.doi.org/10.3390/molecules27186087] [PMID: 36144820]
[51]
Xi, M.; Feng, C.; Du, K.; Lv, W.; Du, C.; Shen, R.; Sun, H. Design, synthesis, biological evaluation and molecular modeling of N-isobutyl-N-((2-(p-tolyloxymethyl)thiazol-4yl)methyl)benzo[d][1,3] dioxole-5-carboxamides as selective butyrylcholinesterase inhibitors. Bioorg. Med. Chem. Lett., 2022, 61, 128602.
[http://dx.doi.org/10.1016/j.bmcl.2022.128602] [PMID: 35124202]
[52]
Secci, D.; Carradori, S.; Petzer, A.; Guglielmi, P.; D’Ascenzio, M.; Chimenti, P.; Bagetta, D.; Alcaro, S.; Zengin, G.; Petzer, J.P.; Ortuso, F. 4-(3-Nitrophenyl)thiazol-2-ylhydrazone derivatives as antioxidants and selective hMAO-B inhibitors: synthesis, biological activity and computational analysis. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 597-612.
[http://dx.doi.org/10.1080/14756366.2019.1571272] [PMID: 30727777]
[53]
Turan-Zitouni, G.; Tabbi, A.; Hussein, W.; Karaduman, A.B.; Sağlık, B.N.; Özkay, Y. Synthesis and evaluation of N -[1-(((3,4-diphenylthiazol-2(3 H )-ylidene)amino)methyl)cyclopentyl]acetamide derivatives for the treatment of diseases belonging to MAOs. J. Chem., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/3547942]
[54]
Yurttaş, L.; Kaplancıklı, Z.A.; Özkay, Y. Design, synthesis and evaluation of new thiazole-piperazines as acetylcholinesterase inhibitors. J. Enzyme Inhib. Med. Chem., 2013, 28(5), 1040-1047.
[http://dx.doi.org/10.3109/14756366.2012.709242] [PMID: 22871134]
[55]
Azam, F.; El-gnidi, B.A.; Alkskas, I.A.; Ahmed, M.A. Design, synthesis and anti-Parkinsonian evaluation of 3-alkyl/aryl-8-(furan-2-yl)thiazolo[5,4- e ][1,2,4]triazolo[1,5- c ]pyrimidine-2(3 H )-thiones against neuroleptic-induced catalepsy and oxidative stress in mice. J. Enzyme Inhib. Med. Chem., 2010, 25(6), 818-826.
[http://dx.doi.org/10.3109/14756361003671052] [PMID: 20429782]
[56]
Leone, S.; Mutti, C.; Kazantsev, A.; Sturlese, M.; Moro, S.; Cattaneo, E.; Rigamonti, D.; Contini, A. SAR and QSAR study on 2-aminothiazole derivatives, modulators of transcriptional repression in Huntington’s disease. Bioorg. Med. Chem., 2008, 16(10), 5695-5703.
[http://dx.doi.org/10.1016/j.bmc.2008.03.067] [PMID: 18406155]
[57]
Zhang, X.; Smith, D.L.; Meriin, A.B.; Engemann, S.; Russel, D.E.; Roark, M.; Washington, S.L.; Maxwell, M.M.; Marsh, J.L.; Thompson, L.M.; Wanker, E.E.; Young, A.B.; Housman, D.E.; Bates, G.P.; Sherman, M.Y.; Kazantsev, A.G. A potent small molecule inhibits polyglutamine aggregation in Huntington’s disease neurons and suppresses neurodegeneration in vivo. Proc. Natl. Acad. Sci., 2005, 102(3), 892-897.
[http://dx.doi.org/10.1073/pnas.0408936102] [PMID: 15642944]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy