Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

How can Fullerenes Help in the Treatment of Diseases? A Review Article on Pharmaceutical Usage of Fullerenes as Carriers

Author(s): Salar Masoomzadeh, Tooba Gholikhani, Paria Aminroaia, Arezou Taghvimi and Yousef Javadzadeh*

Volume 26, Issue 15, 2023

Published on: 25 July, 2023

Page: [2607 - 2613] Pages: 7

DOI: 10.2174/1386207326666230718100553

Price: $65

conference banner
Abstract

Drug degradation is a process that can render pharmaceuticals inactive without causing any visible distortion. This can disrupt the therapeutic process, and on occasion, when the process produces toxic metabolites, it can have much more fatal consequences. Light is one of the most significant components that might cause deterioration, and several attempts have been made to improve and increase the practical photosensitizing of nano-scaled pharmaceuticals. Considering this, the insolubility and aggregating qualities of fullerenes have received significant attention. Fullerene is considered to have a unique carbon structure. In order to gain improved water solubility and biocompatible properties, fullerenes have been combined with water-soluble, biodegradable, and adjustable polymers. More specifically, these linkers exhibit increased tumor cell identification and greater tumor cell suppression when linked to therapeutic ligands (tumor-targeting) or stimuliresponsive polymers. According to scientific studies, fullerene-drug combinations can be used in certain complex diseases, like infectious and viral types. Several studies have combined fullerenes into nano-emulsions or liposomes for various pharmacological objectives. In the current work, fullerene/polymer nanomaterials are discussed for potential therapeutic techniques for the treatment of various diseases, particularly cancer and AIDS. According to the research studies, fullerene is a suitable element with outstanding physical and chemical properties that has a wide range of potential applications in the pharmaceutical industry, including drug delivery system design, photodynamic cancer therapy, and antioxidant therapy.

Graphical Abstract

[1]
Schultz, H.P. Topological organic chemistry. polyhedranes and prismanes. J. Org. Chem., 1965, 30(5), 1361-1364.
[http://dx.doi.org/10.1021/jo01016a005]
[2]
Osawa, E. Super Aromaticity. Kagaku., 1970, 25(9), 854863.
[3]
Tahmasebi, E.; Shakerzadeh, E. Potential application of B40 fullerene as an innovative anode material for Ca-ion batteries: in silico investigation. Lab-in-Silico., 2020, 1(1), 16-20.
[4]
Gurney, R.S.; Lidzey, D.G.; Wang, T. A review of non-fullerene polymer solar cells: From device physics to morphology control. Rep. Prog. Phys., 2019, 82(3), 036601.
[http://dx.doi.org/10.1088/1361-6633/ab0530] [PMID: 30731432]
[5]
Stasyuk, A.J.; Stasyuk, O.A.; Solà, M.; Voityuk, A.A. Photoinduced electron transfer and unusual environmental effects in fullerene–Zn-porphyrin–BODIPY triads. Phys. Chem. Chem. Phys., 2019, 21(45), 25098-25107.
[http://dx.doi.org/10.1039/C9CP04104D] [PMID: 31690909]
[6]
Azadikhah, F.; Karimi, A.R.; Yousefi, G.H.; Hadizadeh, M. Dual antioxidant-photosensitizing hydrogel system: Cross-linking of chitosan with tannic acid for enhanced photodynamic efficacy. Int. J. Biol. Macromol., 2021, 188, 114-125.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.006] [PMID: 34358602]
[7]
Kraszewski, S.; Tarek, M.; Ramseyer, C. Uptake and translocation mechanisms of cationic amino derivatives functionalized on pristine C60 by lipid membranes: A molecular dynamics simulation study. ACS Nano, 2011, 5(11), 8571-8578.
[http://dx.doi.org/10.1021/nn201952c] [PMID: 21981729]
[8]
Mikheev, I.V.; Sozarukova, M.M.; Izmailov, D.Y.; Kareev, I.E.; Proskurnina, E.V.; Proskurnin, M.A. Antioxidant potential of aqueous dispersions of fullerenes C60, C70, and Gd@C82. Int. J. Mol. Sci., 2021, 22(11), 5838.
[http://dx.doi.org/10.3390/ijms22115838] [PMID: 34072504]
[9]
Xu, B.; Yuan, L.; Hu, Y.; Xu, Z.; Qin, J.J.; Cheng, X.D. Synthesis, characterization, cellular uptake, and in vitro anticancer activity of fullerenol-doxorubicin conjugates. Front. Pharmacol., 2021, 11, 598155.
[http://dx.doi.org/10.3389/fphar.2020.598155] [PMID: 33568999]
[10]
Zhang, Y.; Zhang, H.; Zou, Q.; Xing, R.; Jiao, T.; Yan, X. An injectable dipeptide–fullerene supramolecular hydrogel for photodynamic antibacterial therapy. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(44), 7335-7342.
[http://dx.doi.org/10.1039/C8TB01487F] [PMID: 32254642]
[11]
Kwag, D.S.; Oh, N.M.; Oh, Y.T.; Oh, K.T.; Youn, Y.S.; Lee, E.S. Photodynamic therapy using glycol chitosan grafted fullerenes. Int. J. Pharm., 2012, 431(1-2), 204-209.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.038] [PMID: 22537808]
[12]
Kwag, D.S.; Park, K.; Oh, K.T.; Lee, E.S. Hyaluronated fullerenes with photoluminescent and antitumoral activity. Chem. Commun., 2013, 49(3), 282-284.
[http://dx.doi.org/10.1039/C2CC36596K] [PMID: 23174913]
[13]
John, A.T.; Wadhwa, S.; Mathur, A. Nanotoxicology: Exposure, Mechanism, and Effects on Human Health. New Frontiers in Environmental Toxicology; Springer, 2022, pp. 35-77.
[http://dx.doi.org/10.1007/978-3-030-72173-2_5]
[14]
Montellano, A.; Da Ros, T.; Bianco, A.; Prato, M. Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale, 2011, 3(10), 4035-4041.
[http://dx.doi.org/10.1039/c1nr10783f] [PMID: 21897967]
[15]
Ye, L.; Kollie, L.; Liu, X.; Guo, W.; Ying, X.; Zhu, J.; Yang, S.; Yu, M. Antitumor activity and potential mechanism of novel fullerene derivative nanoparticles. Molecules, 2021, 26(11), 3252.
[http://dx.doi.org/10.3390/molecules26113252] [PMID: 34071369]
[16]
Wang, H.; Agarwal, P.; Zhao, S.; Yu, J.; Lu, X.; He, X. Combined cancer therapy with hyaluronan-decorated fullerene-silica multifunctional nanoparticles to target cancer stem-like cells. Biomaterials, 2016, 97, 62-73.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.030] [PMID: 27162075]
[17]
Wróbel, D.; Graja, A. Modification of electronic structure in supramolecular fullerene–porphyrin systems studied by fluorescence, photoacoustic and photothermal spectroscopy. J. Photochem. Photobiol. Chem., 2006, 183(1-2), 79-88.
[http://dx.doi.org/10.1016/j.jphotochem.2006.02.024]
[18]
Xiao, S.; Wang, Q.; Yu, F.; Peng, Y.; Yang, M.; Sollogoub, M.; Sinaÿ, P.; Zhang, Y.; Zhang, L.; Zhou, D. Conjugation of cyclodextrin with fullerene as a new class of HCV entry inhibitors. Bioorg. Med. Chem., 2012, 20(18), 5616-5622.
[http://dx.doi.org/10.1016/j.bmc.2012.07.029] [PMID: 22884577]
[19]
Xu, Y.; Qin, Z.; Ma, J.; Cao, W.; Zhang, P. Recent progress in nanotechnology based ferroptotic therapies for clinical applications. Eur. J. Pharmacol., 2020, 880, 173198.
[http://dx.doi.org/10.1016/j.ejphar.2020.173198] [PMID: 32473167]
[20]
Chaudhuri, P.; Paraskar, A.; Soni, S.; Mashelkar, R.A.; Sengupta, S. Fullerenol-cytotoxic conjugates for cancer chemotherapy. ACS Nano, 2009, 3(9), 2505-2514.
[http://dx.doi.org/10.1021/nn900318y] [PMID: 19681636]
[21]
Gonchar, O.O.; Maznychenko, A.V.; Bulgakova, N.V. C60 fullerene prevents restraint stress-induced oxidative disorders in rat tissues: Possible involvement of the Nrf2/ARE-antioxidant pathway. Oxid. Med. Cell. Longev., 2018, 2018, 1-17.
[22]
Youssef, Z.; Vanderesse, R.; Colombeau, L.; Baros, F.; Roques-Carmes, T.; Frochot, C.; Wahab, H.; Toufaily, J.; Hamieh, T.; Acherar, S.; Gazzali, A.M. The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy. Cancer Nanotechnol., 2017, 8(1), 6.
[http://dx.doi.org/10.1186/s12645-017-0032-2] [PMID: 29104699]
[23]
Yumita, N.; Iwase, Y.; Imaizumi, T.; Sakurazawa, A.; Kaya, Y.; Nishi, K.; Ikeda, T.; Umemura, S.; Chen, F.S.; Momose, Y. Sonodynamically-induced anticancer effects by functionalized fullerenes. Anticancer Res., 2013, 33(8), 3145-3151.
[PMID: 23898072]
[24]
Zhen, M.; Zheng, J.; Ye, L.; Li, S.; Jin, C.; Li, K.; Qiu, D.; Han, H.; Shu, C.; Yang, Y.; Wang, C. Maximizing the relaxivity of Gd-complex by synergistic effect of HSA and carboxylfullerene. ACS Appl. Mater. Interfaces, 2012, 4(7), 3724-3729.
[http://dx.doi.org/10.1021/am300817z] [PMID: 22704586]
[25]
Gharbi, N.; Pressac, M.; Hadchouel, M.; Szwarc, H.; Wilson, S.R.; Moussa, F. [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett., 2005, 5(12), 2578-2585.
[http://dx.doi.org/10.1021/nl051866b] [PMID: 16351219]
[26]
Anju, S.; Ashtami, J.; Mohanan, P. Effect of surface modified fullerene C70 on the ROS production and cellular integrity using Chinese hamster ovarian cells. Gen. Chem., 2020, 6(3), 190022.
[27]
Ma, H.; Zhao, J.; Meng, H.; Hu, D.; Zhou, Y.; Zhang, X.; Wang, C.; Li, J.; Yuan, J.; Wei, Y. Carnosine-modified fullerene as a highly enhanced ros scavenger for mitigating acute oxidative stress. ACS Appl. Mater. Interfaces, 2020, 12(14), 16104-16113.
[http://dx.doi.org/10.1021/acsami.0c01669] [PMID: 32186840]
[28]
Ngan, C.L.; Basri, M.; Tripathy, M.; Abedi Karjiban, R.; Abdul-Malek, E. Physicochemical characterization and thermodynamic studies of nanoemulsion-based transdermal delivery system for fullerene. Scientific World J., 2014, 2014, 219035.
[http://dx.doi.org/10.1155/2014/219035]
[29]
Fan, J.; Fang, G.; Zeng, F.; Wang, X.; Wu, S. Water-dispersible fullerene aggregates as a targeted anticancer prodrug with both chemo- and photodynamic therapeutic actions. Small, 2013, 9(4), 613-621.
[http://dx.doi.org/10.1002/smll.201201456] [PMID: 23117954]
[30]
Thakur, S.K.; Saha, S.; Guchhait, P.; Eswaran, S.V. “Fullarazirman” nano water soluble fullerene C 60 -manganese (II) tri-adduct complex with anti-cancer activity comparable to doxorubicin. J. Biomed. Nanotechnol., 2020, 16(4), 481-491.
[http://dx.doi.org/10.1166/jbn.2020.2908] [PMID: 32970980]
[31]
Asada, R.; Liao, F.; Saitoh, Y.; Miwa, N. Photodynamic anti-cancer effects of fullerene [C60]–PEG complex on fibrosarcomas preferentially over normal fibroblasts in terms of fullerene uptake and cytotoxicity. Mol. Cell. Biochem., 2014, 390(1-2), 175-184.
[http://dx.doi.org/10.1007/s11010-014-1968-8] [PMID: 24496749]
[32]
Grebinyk, A.; Prylutska, S.; Chepurna, O.; Grebinyk, S.; Prylutskyy, Y.; Ritter, U.; Ohulchanskyy, T.Y.; Matyshevska, O.; Dandekar, T.; Frohme, M. Synergy of chemo-and photodynamic therapies with C60 fullerene-doxorubicin nanocomplex. Nanomaterials (Basel), 2019, 9(11), 1540.
[http://dx.doi.org/10.3390/nano9111540] [PMID: 31671590]
[33]
Grobmyer, S.R.; Krishna, V. Minimally invasive cancer therapy using polyhydroxy fullerenes. Eur. J. Radiol., 2012, 81(Suppl. 1), S51-S53.
[http://dx.doi.org/10.1016/S0720-048X(12)70019-0] [PMID: 23083600]
[34]
Guan, M.; Ge, J.; Wu, J.; Zhang, G.; Chen, D.; Zhang, W.; Zhang, Y.; Zou, T.; Zhen, M.; Wang, C.; Chu, T.; Hao, X.; Shu, C. Fullerene/photosensitizer nanovesicles as highly efficient and clearable phototheranostics with enhanced tumor accumulation for cancer therapy. Biomaterials, 2016, 103, 75-85.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.023] [PMID: 27376559]
[35]
Li, X.; Watanabe, Y.; Yuba, E.; Harada, A.; Haino, T.; Kono, K. Facile construction of well-defined fullerene–dendrimer supramolecular nanocomposites for bioapplications. Chem. Commun., 2015, 51(14), 2851-2854.
[http://dx.doi.org/10.1039/C4CC09082A] [PMID: 25580012]
[36]
Blazkova, I.; Viet Nguyen, H.; Kominkova, M.; Konecna, R.; Chudobova, D.; Krejcova, L.; Kopel, P.; Hynek, D.; Zitka, O.; Beklova, M.; Adam, V.; Kizek, R. Fullerene as a transporter for doxorubicin investigated by analytical methods and in vivo imaging. Electrophoresis, 2014, 35(7), 1040-1049.
[http://dx.doi.org/10.1002/elps.201300393] [PMID: 24254731]
[37]
Dou, Z.; Xu, Y.; Sun, H.; Liu, Y. Synthesis of PEGylated fullerene–5-fluorouracil conjugates to enhance the antitumor effect of 5-fluorouracil. Nanoscale, 2012, 4(15), 4624-4630.
[http://dx.doi.org/10.1039/c2nr30380a] [PMID: 22706520]
[38]
Higashi, N.; Shosu, T.; Koga, T.; Niwa, M.; Tanigawa, T. pH-responsive, self-assembling nanoparticle from a fullerene-tagged poly(l-glutamic acid) and its superoxide dismutase mimetic property. J. Colloid Interface Sci., 2006, 298(1), 118-123.
[http://dx.doi.org/10.1016/j.jcis.2005.12.015] [PMID: 16412454]
[39]
Li, Q.; Liu, C.; Li, H. Induction of endogenous reactive oxygen species in mitochondria by fullerene-based photodynamic therapy. J. Nanosci. Nanotechnol., 2016, 16(6), 5592-5597.
[http://dx.doi.org/10.1166/jnn.2016.11717] [PMID: 27427601]
[40]
Liu, Q.; Xu, L.; Zhang, X.; Li, N.; Zheng, J.; Guan, M.; Fang, X.; Wang, C.; Shu, C. Enhanced photodynamic efficiency of an aptamer-guided fullerene photosensitizer toward tumor cells. Chem. Asian J., 2013, 8(10), 2370-2376.
[http://dx.doi.org/10.1002/asia.201300039] [PMID: 23907978]
[41]
Kim, S.; Lee, D.J.; Kwag, D.S.; Lee, U.Y.; Youn, Y.S.; Lee, E.S. Acid pH-activated glycol chitosan/fullerene nanogels for efficient tumor therapy. Carbohydr. Polym., 2014, 101, 692-698.
[http://dx.doi.org/10.1016/j.carbpol.2013.09.108] [PMID: 24299827]
[42]
Tan, L.; Wu, T.; Tang, Z.W.; Xiao, J.Y.; Zhuo, R.X.; Shi, B.; Liu, C.J. Water-soluble photoluminescent fullerene capped mesoporous silica for pH-responsive drug delivery and bioimaging. Nanotechnology, 2016, 27(31), 315104.
[http://dx.doi.org/10.1088/0957-4484/27/31/315104] [PMID: 27346782]
[43]
Shi, J.; Wang, B.; Wang, L.; Lu, T.; Fu, Y.; Zhang, H.; Zhang, Z. Fullerene (C 60)-based tumor-targeting nanoparticles with “off-on” state for enhanced treatment of cancer. J. Control. Release, 2016, 235, 245-258.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.010] [PMID: 27276066]
[44]
Minami, K.; Okamoto, K.; Doi, K.; Harano, K.; Noiri, E.; Nakamura, E. siRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene. Sci. Rep., 2014, 4(1), 4916.
[http://dx.doi.org/10.1038/srep04916] [PMID: 24814863]
[45]
Ohkita, H.; Ito, S. Transient absorption spectroscopy of polymer-based thin-film solar cells. Polymer, 2011, 52(20), 4397-4417.
[http://dx.doi.org/10.1016/j.polymer.2011.06.061]
[46]
Maeda-Mamiya, R.; Noiri, E.; Isobe, H.; Nakanishi, W.; Okamoto, K.; Doi, K.; Sugaya, T.; Izumi, T.; Homma, T.; Nakamura, E. In vivo gene delivery by cationic tetraamino fullerene. Proc. Natl. Acad. Sci., 2010, 107(12), 5339-5344.
[http://dx.doi.org/10.1073/pnas.0909223107] [PMID: 20194788]
[47]
Tanimoto, S.; Sakai, S.; Kudo, E.; Okada, S.; Matsumura, S.; Takahashi, D.; Toshima, K. Target-selective photodegradation of HIV-1 protease and inhibition of HIV-1 replication in living cells by designed fullerene-sugar hybrids. Chem. Asian J., 2012, 7(5), 911-914.
[http://dx.doi.org/10.1002/asia.201101043] [PMID: 22378594]
[48]
Agazzi, M.L.; Durantini, J.E.; Quiroga, E.D.; Alvarez, M.G.; Durantini, E.N. A novel tricationic fullerene C60 as broad-spectrum antimicrobial photosensitizer: Mechanisms of action and potentiation with potassium iodide. Photochem. Photobiol. Sci., 2021, 20(3), 327-341.
[http://dx.doi.org/10.1007/s43630-021-00021-1] [PMID: 33721278]
[49]
Sijbesma, R.; Srdanov, G.; Wudl, F.; Castoro, J.A.; Wilkins, C.; Friedman, S.H.; DeCamp, D.L.; Kenyon, G.L. Synthesis of a fullerene derivative for the inhibition of HIV enzymes. J. Am. Chem. Soc., 1993, 115(15), 6510-6512.
[http://dx.doi.org/10.1021/ja00068a006]
[50]
Friedman, S.H.; DeCamp, D.L.; Sijbesma, R.P.; Srdanov, G.; Wudl, F.; Kenyon, G.L. Inhibition of the HIV-1 protease by fullerene derivatives: Model building studies and experimental verification. J. Am. Chem. Soc., 1993, 115(15), 6506-6509.
[http://dx.doi.org/10.1021/ja00068a005]
[51]
Bosi, S.; Da Ros, T.; Spalluto, G.; Balzarini, J.; Prato, M. Synthesis and Anti-HIV properties of new water-soluble bis-functionalized[60]fullerene derivatives. Bioorg. Med. Chem. Lett., 2003, 13(24), 4437-4440.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.016] [PMID: 14643341]
[52]
Barzegar, A.; Jafari Mousavi, S.; Hamidi, H.; Sadeghi, M. 2D-QSAR study of fullerene nanostructure derivatives as potent HIV-1 protease inhibitors. Physica E, 2017, 93, 324-331.
[http://dx.doi.org/10.1016/j.physe.2017.06.016]
[53]
Voronov, I.I.; Martynenko, V.M.; Chernyak, A.V.; Godovikov, I.; Peregudov, A.S.; Balzarini, J.; Shestakov, A.F.; Schols, D.; Troshin, P.A. Synthesis, characterization and anti-HIV activity of polycarboxylic [60]fullerene derivatives obtained in the reaction of C60Cl6 with a hydroquinone ether. Tetrahedron Lett., 2020, 61(11), 151598.
[http://dx.doi.org/10.1016/j.tetlet.2020.151598]
[54]
Mashino, T.; Shimotohno, K.; Ikegami, N.; Nishikawa, D.; Okuda, K.; Takahashi, K.; Nakamura, S.; Mochizuki, M. Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg. Med. Chem. Lett., 2005, 15(4), 1107-1109.
[http://dx.doi.org/10.1016/j.bmcl.2004.12.030] [PMID: 15686922]
[55]
Marchesan, S.; Da Ros, T.; Spalluto, G.; Balzarini, J.; Prato, M. Anti-HIV properties of cationic fullerene derivatives. Bioorg. Med. Chem. Lett., 2005, 15(15), 3615-3618.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.069] [PMID: 15978810]
[56]
Yasuno, T.; Ohe, T.; Kataoka, H.; Hashimoto, K.; Ishikawa, Y.; Furukawa, K.; Tateishi, Y.; Kobayashi, T.; Takahashi, K.; Nakamura, S.; Mashino, T. Fullerene derivatives as dual inhibitors of HIV-1 reverse transcriptase and protease. Bioorg. Med. Chem. Lett., 2021, 31, 127675.
[http://dx.doi.org/10.1016/j.bmcl.2020.127675] [PMID: 33161121]
[57]
Ashtami, J.; Athira, S.; Mohanan, P. Fullerene C70: A promising carbon cage for biomedical applications. Trends Biomater. Artif. Organs, 2021, 35(1), 104.
[58]
Cherniavskyi, Y.K.; Ramseyer, C.; Yesylevskyy, S.O. Interaction of C 60 fullerenes with asymmetric and curved lipid membranes: A molecular dynamics study. Phys. Chem. Chem. Phys., 2016, 18(1), 278-284.
[http://dx.doi.org/10.1039/C5CP05838D] [PMID: 26608905]
[59]
Zhou, Z. Liposome formulation of fullerene-based molecular diagnostic and therapeutic agents. Pharmaceutics, 2013, 5(4), 525-541.
[http://dx.doi.org/10.3390/pharmaceutics5040525] [PMID: 24300561]
[60]
Manjón, F.; Santana-Magaña, M.; García-Fresnadillo, D.; Orellana, G. Are silicone-supported [C60]-fullerenes an alternative to Ru(ii) polypyridyls for photodynamic solar water disinfection? Photochem. Photobiol. Sci., 2014, 13(2), 397-406.
[http://dx.doi.org/10.1039/c3pp50361e] [PMID: 24395285]
[61]
Sun, M.; Kiourti, A.; Wang, H.; Zhao, S.; Zhao, G.; Lu, X.; Volakis, J.L.; He, X. Enhanced microwave hyperthermia of cancer cells with fullerene. Mol. Pharm., 2016, 13(7), 2184-2192.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00984] [PMID: 27195904]
[62]
Song, P.; Zhu, Y.; Tong, L.; Fang, Z.C. 60 reduces the flammability of polypropylene nanocomposites by in situ forming a gelled-ball network. Nanotechnology, 2008, 19(22), 225707.
[http://dx.doi.org/10.1088/0957-4484/19/22/225707] [PMID: 21825774]
[63]
Kuang, L.; Chen, Q.; Sargent, E.H.; Wang, Z.Y. [60]Fullerene-containing polyurethane films with large ultrafast nonresonant third-order nonlinearity at telecommunication wavelengths. J. Am. Chem. Soc., 2003, 125(45), 13648-13649.
[http://dx.doi.org/10.1021/ja0376240] [PMID: 14599188]
[64]
Sergio, M.; Behzadi, H.; Otto, A.; van der Spoel, D. Fullerenes toxicity and electronic properties. Environ. Chem. Lett., 2013, 11(2), 105-118.
[http://dx.doi.org/10.1007/s10311-012-0387-x]
[65]
Han, B.; Karim, M.N. Cytotoxicity of aggregated fullerene C60 particles on CHO and MDCK cells. Scanning, 2008, 30(2), 213-220.
[http://dx.doi.org/10.1002/sca.20081] [PMID: 18200537]
[66]
Trpkovic, A.; Todorovic-Markovic, B.; Trajkovic, V. Toxicity of pristine versusfunctionalized fullerenes: Mechanisms of cell damage and the role of oxidative stress. Arch. Toxicol., 2012, 86(12), 1809-1827.
[http://dx.doi.org/10.1007/s00204-012-0859-6] [PMID: 22562437]
[67]
Usenko, C.Y.; Harper, S.L.; Tanguay, R.L. In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon, 2007, 45(9), 1891-1898.
[http://dx.doi.org/10.1016/j.carbon.2007.04.021] [PMID: 18670586]
[68]
Liu, S.; Liu, H.; Yin, Z.; Guo, K.; Gao, X. Cytotoxicity of pristine C 60 fullerene on baby hamster kidney cells in solution. J. Biot. Nano., 2012, 3(3), 385-390.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy