Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Synaptic Dysfunction in Dystonia: Update From Experimental Models

Author(s): Ilham El Atiallah, Paola Bonsi, Annalisa Tassone, Giuseppina Martella, Gerardo Biella, Antonio N. Castagno, Antonio Pisani* and Giulia Ponterio

Volume 21, Issue 11, 2023

Published on: 19 July, 2023

Page: [2310 - 2322] Pages: 13

DOI: 10.2174/1570159X21666230718100156

Price: $65

Abstract

Dystonia, the third most common movement disorder, refers to a heterogeneous group of neurological diseases characterized by involuntary, sustained or intermittent muscle contractions resulting in repetitive twisting movements and abnormal postures. In the last few years, several studies on animal models helped expand our knowledge of the molecular mechanisms underlying dystonia. These findings have reinforced the notion that the synaptic alterations found mainly in the basal ganglia and cerebellum, including the abnormal neurotransmitters signalling, receptor trafficking and synaptic plasticity, are a common hallmark of different forms of dystonia. In this review, we focus on the major contribution provided by rodent models of DYT-TOR1A, DYT-THAP1, DYT-GNAL, DYT/ PARK-GCH1, DYT/PARK-TH and DYT-SGCE dystonia, which reveal that an abnormal motor network and synaptic dysfunction represent key elements in the pathophysiology of dystonia.

Graphical Abstract

[1]
Albanese, A.; Bhatia, K.; Bressman, S.B.; DeLong, M.R.; Fahn, S.; Fung, V.S.C.; Hallett, M.; Jankovic, J.; Jinnah, H.A.; Klein, C.; Lang, A.E.; Mink, J.W.; Teller, J.K. Phenomenology and classification of dystonia: A consensus update. Mov. Disord., 2013, 28(7), 863-873.
[http://dx.doi.org/10.1002/mds.25475] [PMID: 23649720]
[2]
Balint, B.; Mencacci, N.E.; Valente, E.M.; Pisani, A.; Rothwell, J.; Jankovic, J.; Vidailhet, M.; Bhatia, K.P. Dystonia. Nat. Rev. Dis. Primers, 2018, 4(1), 25.
[http://dx.doi.org/10.1038/s41572-018-0023-6] [PMID: 30237473]
[3]
Schirinzi, T.; Sciamanna, G.; Mercuri, N.B.; Pisani, A. Dystonia as a network disorder: A concept in evolution. Curr. Opin. Neurol., 2018, 31(4), 498-503.
[http://dx.doi.org/10.1097/WCO.0000000000000580] [PMID: 29746398]
[4]
Brüggemann, N. Contemporary functional neuroanatomy and pathophysiology of dystonia. J. Neural Transm., 2021, 128(4), 499-508.
[http://dx.doi.org/10.1007/s00702-021-02299-y] [PMID: 33486625]
[5]
di Biase, L.; Di Santo, A.; Caminiti, M.L.; Pecoraro, P.M.; Di Lazzaro, V. Classification of dystonia. Life, 2022, 12(2), 206.
[http://dx.doi.org/10.3390/life12020206] [PMID: 35207493]
[6]
Downs, A.M.; Roman, K.M.; Campbell, S.A.; Pisani, A.; Hess, E.J.; Bonsi, P. The neurobiological basis for novel experimental therapeutics in dystonia. Neurobiol. Dis., 2019, 130, 104526.
[http://dx.doi.org/10.1016/j.nbd.2019.104526] [PMID: 31279827]
[7]
Imbriani, P.; Ponterio, G.; Tassone, A.; Sciamanna, G.; El Atiallah, I.; Bonsi, P.; Pisani, A. Models of dystonia: An update. J. Neurosci. Methods, 2020, 339, 108728.
[http://dx.doi.org/10.1016/j.jneumeth.2020.108728] [PMID: 32289333]
[8]
Sciamanna, G.; El Atiallah, I.; Montanari, M.; Pisani, A. Plasticity, genetics and epigenetics in dystonia: An update. Handb. Clin. Neurol., 2022, 184, 199-206.
[http://dx.doi.org/10.1016/B978-0-12-819410-2.00011-4] [PMID: 35034734]
[9]
Wilson, B.K.; Hess, E.J. Animal models for dystonia. Mov. Disord., 2013, 28(7), 982-989.
[http://dx.doi.org/10.1002/mds.25526] [PMID: 23893454]
[10]
Meringolo, M.; Tassone, A.; Imbriani, P.; Ponterio, G.; Pisani, A. Dystonia: Are animal models relevant in therapeutics? Rev. Neurol., 2018, 174(9), 608-614.
[http://dx.doi.org/10.1016/j.neurol.2018.07.003] [PMID: 30153948]
[11]
Verbeek, D.S.; Gasser, T. Unmet needs in dystonia: Genetics and molecular biology—how many dystonias? Front. Neurol., 2017, 7, 241.
[http://dx.doi.org/10.3389/fneur.2016.00241] [PMID: 28138320]
[12]
Mencacci, N.E.; Reynolds, R.H.; Ruiz, S.G.; Vandrovcova, J.; Forabosco, P.; Sánchez-Ferrer, A.; Volpato, V.; Botía, J.A.; D’Sa, K.; Forabosco, P.; Guelfi, S.; Hardy, J.; Vandrovcova, J.; Mackenzie, C-A.; Ramasamy, A.; Ryten, M.; Smith, C.; Trabzuni, D.; Weale, M.E.; Noyce, A.J.; Kaiyrzhanov, R.; Middlehurst, B.; Kia, D.A.; Tan, M.; Houlden, H.; Morris, H.R.; Plun-Favreau, H.; Holmans, P.; Hardy, J.; Trabzuni, D.; Bras, J.; Quinn, J.; Mok, K.Y.; Kinghorn, K.J.; Billingsley, K.; Wood, N.W.; Lewis, P.; Guerreiro, R.; Lovering, R.; R’Bibo, L.; Manzoni, C.; Rizig, M.; Ryten, M.; Guelfi, S.; Escott-Price, V.; Chelban, V.; Foltynie, T.; Williams, N.; Shashakin, C.; Zharkinbekova, N.; Zholdybayeva, E.; Aitkulova, A.; Harvey, K.; Weale, M.E.; Bhatia, K.P.; Webber, C.; Hardy, J.; Botía, J.A.; Ryten, M. Dystonia genes functionally converge in specific neurons and share neurobiology with psychiatric disorders. Brain, 2020, 143(9), 2771-2787.
[http://dx.doi.org/10.1093/brain/awaa217] [PMID: 32889528]
[13]
Gonzalez-Latapi, P.; Marotta, N.; Mencacci, N.E. Emerging and converging molecular mechanisms in dystonia. J. Neural Transm., 2021, 128(4), 483-498.
[http://dx.doi.org/10.1007/s00702-020-02290-z] [PMID: 33386558]
[14]
Cheng, F.; Walter, M.; Wassouf, Z.; Hentrich, T.; Casadei, N.; Schulze-Hentrich, J.; Barbuti, P.; Krueger, R.; Riess, O.; Grundmann-Hauser, K.; Ott, T. Unraveling molecular mechanisms of THAP1 missense mutations in DYT6 dystonia. J. Mol. Neurosci., 2020, 70(7), 999-1008.
[http://dx.doi.org/10.1007/s12031-020-01490-2] [PMID: 32112337]
[15]
Ponterio, G.; Faustini, G.; El Atiallah, I.; Sciamanna, G.; Meringolo, M.; Tassone, A.; Imbriani, P.; Cerri, S.; Martella, G.; Bonsi, P.; Bellucci, A.; Pisani, A. Alpha-synuclein is involved in DYT1 dystonia striatal synaptic dysfunction. Mov. Disord., 2022, 37(5), 949-961.
[http://dx.doi.org/10.1002/mds.29024] [PMID: 35420219]
[16]
Bonsi, P.; De Jaco, A.; Fasano, L.; Gubellini, P. Postsynaptic autism spectrum disorder genes and synaptic dysfunction. Neurobiol. Dis., 2022, 162, 105564.
[http://dx.doi.org/10.1016/j.nbd.2021.105564] [PMID: 34838666]
[17]
Abela, L.; Kurian, M.A. Postsynaptic movement disorders: Clinical phenotypes, genotypes, and disease mechanisms. J. Inherit. Metab. Dis., 2018, 41(6), 1077-1091.
[http://dx.doi.org/10.1007/s10545-018-0205-0] [PMID: 29948482]
[18]
Cortès-Saladelafont, E.; Tristán-Noguero, A.; Artuch, R.; Altafaj, X.; Bayès, A.; García-Cazorla, A. Diseases of the synaptic vesicle: A potential new group of neurometabolic disorders affecting neurotransmission. Semin. Pediatr. Neurol., 2016, 23(4), 306-320.
[http://dx.doi.org/10.1016/j.spen.2016.11.005] [PMID: 28284392]
[19]
Calabresi, P.; Pisani, A.; Rothwell, J.; Ghiglieri, V.; Obeso, J.A.; Picconi, B. Hyperkinetic disorders and loss of synaptic downscaling. Nat. Neurosci., 2016, 19(7), 868-875.
[http://dx.doi.org/10.1038/nn.4306] [PMID: 27351172]
[20]
Schirinzi, T.; Madeo, G.; Martella, G.; Maltese, M.; Picconi, B.; Calabresi, P.; Pisani, A. Early synaptic dysfunction in Parkinson’s disease: Insights from animal models. Mov. Disord., 2016, 31(6), 802-813.
[http://dx.doi.org/10.1002/mds.26620] [PMID: 27193205]
[21]
Imbriani, P.; Schirinzi, T.; Meringolo, M.; Mercuri, N.B.; Pisani, A. Centrality of early synaptopathy in parkinson’s disease. Front. Neurol., 2018, 9, 103.
[http://dx.doi.org/10.3389/fneur.2018.00103] [PMID: 29545770]
[22]
Smith-Dijak, A.I.; Sepers, M.D.; Raymond, L.A. Alterations in synaptic function and plasticity in Huntington disease. J. Neurochem., 2019, 150(4), 346-365.
[http://dx.doi.org/10.1111/jnc.14723] [PMID: 31095731]
[23]
Quartarone, A.; Pisani, A. Abnormal plasticity in dystonia: Disruption of synaptic homeostasis. Neurobiol. Dis., 2011, 42(2), 162-170.
[http://dx.doi.org/10.1016/j.nbd.2010.12.011] [PMID: 21168494]
[24]
Quartarone, A.; Hallett, M. Emerging concepts in the physiological basis of dystonia. Mov. Disord., 2013, 28(7), 958-967.
[http://dx.doi.org/10.1002/mds.25532] [PMID: 23893452]
[25]
Quartarone, A.; Ghilardi, M.F. Neuroplasticity in dystonia: Motor symptoms and beyond. Handb. Clin. Neurol., 2022, 184, 207-218.
[http://dx.doi.org/10.1016/B978-0-12-819410-2.00031-X] [PMID: 35034735]
[26]
Martella, G.; Tassone, A.; Sciamanna, G.; Platania, P.; Cuomo, D.; Viscomi, M.T.; Bonsi, P.; Cacci, E.; Biagioni, S.; Usiello, A.; Bernardi, G.; Sharma, N.; Standaert, D.G.; Pisani, A. Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: Role of endogenous acetylcholine. Brain, 2009, 132(9), 2336-2349.
[http://dx.doi.org/10.1093/brain/awp194] [PMID: 19641103]
[27]
Martella, G.; Maltese, M.; Nisticò, R.; Schirinzi, T.; Madeo, G.; Sciamanna, G.; Ponterio, G.; Tassone, A.; Mandolesi, G.; Vanni, V.; Pignatelli, M.; Bonsi, P.; Pisani, A. Regional specificity of synaptic plasticity deficits in a knock-in mouse model of DYT1 dystonia. Neurobiol. Dis., 2014, 65, 124-132.
[http://dx.doi.org/10.1016/j.nbd.2014.01.016] [PMID: 24503369]
[28]
Warner, T.T.; Granata, A.; Schiavo, G. TorsinA and DYT1 dystonia: A synaptopathy? Biochem. Soc. Trans., 2010, 38(2), 452-456.
[http://dx.doi.org/10.1042/BST0380452] [PMID: 20298201]
[29]
Shakkottai, V.G.; Batla, A.; Bhatia, K.; Dauer, W.T.; Dresel, C.; Niethammer, M.; Eidelberg, D.; Raike, R.S.; Smith, Y.; Jinnah, H.A.; Hess, E.J.; Meunier, S.; Hallett, M.; Fremont, R.; Khodakhah, K.; LeDoux, M.S.; Popa, T.; Gallea, C.; Lehericy, S.; Bostan, A.C.; Strick, P.L. Current opinions and areas of consensus on the role of the cerebellum in dystonia. Cerebellum, 2017, 16(2), 577-594.
[http://dx.doi.org/10.1007/s12311-016-0825-6] [PMID: 27734238]
[30]
Quartarone, A.; Cacciola, A.; Milardi, D.; Ghilardi, M.F.; Calamuneri, A.; Chillemi, G.; Anastasi, G.; Rothwell, J. New insights into cortico-basal-cerebellar connectome: Clinical and physiological considerations. Brain, 2020, 143(2), 396-406.
[PMID: 31628799]
[31]
Tewari, A.; Fremont, R.; Khodakhah, K. It’s not just the basal ganglia: Cerebellum as a target for dystonia therapeutics. Mov. Disord., 2017, 32(11), 1537-1545.
[http://dx.doi.org/10.1002/mds.27123] [PMID: 28843013]
[32]
Morigaki, R.; Miyamoto, R.; Matsuda, T.; Miyake, K.; Yamamoto, N.; Takagi, Y. Dystonia and cerebellum: From bench to bedside. Life, 2021, 11(8), 776.
[http://dx.doi.org/10.3390/life11080776] [PMID: 34440520]
[33]
Jimsheleishvili, S.; Dididze, M. Neuroanatomy, Cerebellum. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2023.
[34]
Carbon, M.; Argyelan, M.; Eidelberg, D. Functional imaging in hereditary dystonia. Eur J Neurol., 2010, 17(S1), 58-64.
[http://dx.doi.org/10.1111/j.1468-1331.2010.03054.x]
[35]
Hoshi, E.; Tremblay, L.; Féger, J.; Carras, P.L.; Strick, P.L. The cerebellum communicates with the basal ganglia. Nat. Neurosci., 2005, 8(11), 1491-1493.
[http://dx.doi.org/10.1038/nn1544] [PMID: 16205719]
[36]
Niethammer, M.; Carbon, M.; Argyelan, M.; Eidelberg, D. Hereditary dystonia as a neurodevelopmental circuit disorder: Evidence from neuroimaging. Neurobiol. Dis., 2011, 42(2), 202-209.
[http://dx.doi.org/10.1016/j.nbd.2010.10.010] [PMID: 20965251]
[37]
Lehéricy, S.; Tijssen, M.A.J.; Vidailhet, M.; Kaji, R.; Meunier, S. The anatomical basis of dystonia: Current view using neuroimaging. Mov. Disord., 2013, 28(7), 944-957.
[http://dx.doi.org/10.1002/mds.25527] [PMID: 23893451]
[38]
Horisawa, S.; Kohara, K.; Nonaka, T.; Mochizuki, T.; Kawamata, T.; Taira, T. Case report: Deep cerebellar stimulation for tremor and dystonia. Front. Neurol., 2021, 12, 642904.
[http://dx.doi.org/10.3389/fneur.2021.642904] [PMID: 33746894]
[39]
Deutschländer, A.B.; Wszolek, Z.K. DYT-GNAL. In: GeneReviews; Seattle (WA): University of Washington, Seattle, 2019; pp. 1993-2023.
[40]
Zadro, I.; Brinar, V.V.; Barun, B.; Ozretić, D.; Habek, M. Cervical dystonia due to cerebellar stroke. Mov. Disord., 2008, 23(6), 919-920.
[http://dx.doi.org/10.1002/mds.21981] [PMID: 18361471]
[41]
Waln, O.; LeDoux, M.S. Delayed-onset oromandibular dystonia after a cerebellar hemorrhagic stroke. Parkinsonism Relat. Disord., 2010, 16(9), 623-625.
[http://dx.doi.org/10.1016/j.parkreldis.2010.07.010] [PMID: 20692865]
[42]
Batla, A.; Sánchez, M.C.; Erro, R.; Ganos, C.; Stamelou, M.; Balint, B.; Brugger, F.; Antelmi, E.; Bhatia, K.P. The role of cerebellum in patients with late onset cervical/segmental dystonia?–Evidence from the clinic. Parkinsonism Relat. Disord., 2015, 21(11), 1317-1322.
[http://dx.doi.org/10.1016/j.parkreldis.2015.09.013] [PMID: 26385708]
[43]
Bologna, M.; Berardelli, A. The cerebellum and dystonia. Handb. Clin. Neurol., 2018, 155, 259-272.
[http://dx.doi.org/10.1016/B978-0-444-64189-2.00017-2] [PMID: 29891064]
[44]
Fremont, R.; Tewari, A.; Khodakhah, K. Aberrant Purkinje cell activity is the cause of dystonia in a shRNA-based mouse model of Rapid Onset Dystonia–Parkinsonism. Neurobiol. Dis., 2015, 82, 200-212.
[http://dx.doi.org/10.1016/j.nbd.2015.06.004] [PMID: 26093171]
[45]
Fremont, R.; Tewari, A.; Angueyra, C.; Khodakhah, K. A role for cerebellum in the hereditary dystonia DYT1. eLife, 2017, 6, e22775.
[http://dx.doi.org/10.7554/eLife.22775] [PMID: 28198698]
[46]
Zhang, L.; Yokoi, F.; Jin, Y.H.; DeAndrade, M.P.; Hashimoto, K.; Standaert, D.G.; Li, Y. Altered dendritic morphology of Purkinje cells in Dyt1 ΔGAG knock-in and purkinje cell-specific Dyt1 conditional knockout mice. PLoS One, 2011, 6(3), e18357.
[http://dx.doi.org/10.1371/journal.pone.0018357] [PMID: 21479250]
[47]
Song, C.H.; Bernhard, D.; Hess, E.J.; Jinnah, H.A. Subtle microstructural changes of the cerebellum in a knock-in mouse model of DYT1 dystonia. Neurobiol. Dis., 2014, 62, 372-380.
[http://dx.doi.org/10.1016/j.nbd.2013.10.003] [PMID: 24121114]
[48]
Ruiz, M.; Perez-Garcia, G.; Ortiz-Virumbrales, M.; Méneret, A.; Morant, A.; Kottwitz, J.; Fuchs, T.; Bonet, J.; Gonzalez-Alegre, P.; Hof, P.R.; Ozelius, L.J.; Ehrlich, M.E. Abnormalities of motor function, transcription and cerebellar structure in mouse models of THAP1 dystonia. Hum. Mol. Genet., 2015, 24(25), 7159-7170.
[http://dx.doi.org/10.1093/hmg/ddv384] [PMID: 26376866]
[49]
Washburn, S.; Fremont, R.; Moreno-Escobar, M.C.; Angueyra, C.; Khodakhah, K. Acute cerebellar knockdown of Sgce reproduces salient features of myoclonus-dystonia (DYT11) in mice. eLife, 2019, 8, e52101.
[http://dx.doi.org/10.7554/eLife.52101] [PMID: 31868164]
[50]
Aïssa, H.B.; Sala, R.W.; Georgescu Margarint, E.L.; Frontera, J.L.; Varani, A.P.; Menardy, F.; Pelosi, A.; Hervé, D.; Léna, C.; Popa, D. Functional abnormalities in the cerebello-thalamic pathways in a mouse model of DYT25 dystonia. eLife, 2022, 11, e79135.
[http://dx.doi.org/10.7554/eLife.79135] [PMID: 35699413]
[51]
Bhatia, K.P.; Marsden, C.D. The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain, 1994, 117(4), 859-876.
[http://dx.doi.org/10.1093/brain/117.4.859] [PMID: 7922471]
[52]
Goodchild, R.E.; Grundmann, K.; Pisani, A. New genetic insights highlight ‘old’ ideas on motor dysfunction in dystonia. Trends Neurosci., 2013, 36(12), 717-725.
[http://dx.doi.org/10.1016/j.tins.2013.09.003] [PMID: 24144882]
[53]
Quartarone, A.; Ruge, D. How many types of dystonia? pathophysiological considerations. Front. Neurol., 2018, 9, 12.
[http://dx.doi.org/10.3389/fneur.2018.00012] [PMID: 29527184]
[54]
Lanciego, J.L.; Luquin, N.; Obeso, J.A. Functional neuroanatomy of the basal ganglia. Cold Spring Harb. Perspect. Med., 2012, 2(12), a009621.
[http://dx.doi.org/10.1101/cshperspect.a009621] [PMID: 23071379]
[55]
Aosaki, T.; Miura, M.; Suzuki, T.; Nishimura, K.; Masuda, M. Acetylcholine-dopamine balance hypothesis in the striatum: An update. Geriatr. Gerontol. Int., 2010, 10(S1), S148-S157.
[http://dx.doi.org/10.1111/j.1447-0594.2010.00588.x] [PMID: 20590830]
[56]
Simonyan, K.; Cho, H.; Hamzehei Sichani, A.; Rubien-Thomas, E.; Hallett, M. The direct basal ganglia pathway is hyperfunctional in focal dystonia. Brain, 2017, 140(12), 3179-3190.
[http://dx.doi.org/10.1093/brain/awx263] [PMID: 29087445]
[57]
Ribot, B.; Aupy, J.; Vidailhet, M.; Mazère, J.; Pisani, A.; Bezard, E.; Guehl, D.; Burbaud, P. Dystonia and dopamine: From phenomenology to pathophysiology. Prog. Neurobiol., 2019, 182, 101678.
[http://dx.doi.org/10.1016/j.pneurobio.2019.101678] [PMID: 31404592]
[58]
Jankovic, J. Treatment of dystonia. Lancet Neurol., 2006, 5(10), 864-872.
[http://dx.doi.org/10.1016/S1474-4422(06)70574-9] [PMID: 16987733]
[59]
Jankovic, J. Medical treatment of dystonia. Mov. Disord., 2013, 28(7), 1001-1012.
[http://dx.doi.org/10.1002/mds.25552] [PMID: 23893456]
[60]
Richter, F.; Richter, A. Genetic animal models of dystonia: Common features and diversities. Prog. Neurobiol., 2014, 121, 91-113.
[http://dx.doi.org/10.1016/j.pneurobio.2014.07.002] [PMID: 25034123]
[61]
Eskow Jaunarajs, K.L.; Bonsi, P.; Chesselet, M.F.; Standaert, D.G.; Pisani, A. Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Prog. Neurobiol., 2015, 127-128, 91-107.
[http://dx.doi.org/10.1016/j.pneurobio.2015.02.002] [PMID: 25697043]
[62]
Eskow Jaunarjas, K.L.; Scarduzio, M.; Ehrlich, M.E.; McMahon, L.L.; Standaert, D.G. Diverse mechanisms lead to common dysfunction of striatal cholinergic interneurons in distinct genetic mouse models of dystonia. J Neurosci., 2019, 39(36), 0407-04019.
[http://dx.doi.org/10.1523/JNEUROSCI.0407-19.2019]
[63]
Tassone, A.; Martella, G.; Meringolo, M.; Vanni, V.; Sciamanna, G.; Ponterio, G.; Imbriani, P.; Bonsi, P.; Pisani, A. Vesicular acetylcholine transporter alters cholinergic tone and synaptic plasticity in DYT1 dystonia. Mov. Disord., 2021, 36(12), 2768-2779.
[http://dx.doi.org/10.1002/mds.28698] [PMID: 34173686]
[64]
Wichmann, T.; Dostrovsky, J.O. Pathological basal ganglia activity in movement disorders. Neuroscience, 2011, 198, 232-244.
[http://dx.doi.org/10.1016/j.neuroscience.2011.06.048] [PMID: 21723919]
[65]
Wichmann, T.; DeLong, M.R. Deep brain stimulation for movement disorders of basal ganglia origin: Restoring function or functionality? Neurotherapeutics, 2016, 13(2), 264-283.
[http://dx.doi.org/10.1007/s13311-016-0426-6] [PMID: 26956115]
[66]
Tisch, S.; Kumar, K.R. Pallidal deep brain stimulation for monogenic dystonia: The effect of gene on outcome. Front. Neurol., 2021, 11, 630391.
[http://dx.doi.org/10.3389/fneur.2020.630391] [PMID: 33488508]
[67]
Welter, M.L.; Grabli, D.; Karachi, C.; Jodoin, N.; Fernandez-Vidal, S.; Brun, Y.; Navarro, S.; Rogers, A.; Cornu, P.; Pidoux, B.; Yelnik, J.; Roze, E.; Bardinet, E.; Vidailhet, M. Pallidal activity in myoclonus dystonia correlates with motor signs. Mov. Disord., 2015, 30(7), 992-996.
[http://dx.doi.org/10.1002/mds.26244] [PMID: 25880339]
[68]
Sarva, H.; Trosch, R.; Kiss, Z.H.T.; Furtado, S.; Luciano, M.S.; Glickman, A.; Raymond, D.; Ozelius, L.J.; Bressman, S.B.; Saunders-Pullman, R. Deep brain stimulation in isolated dystonia with a GNAL mutation. Mov. Disord., 2019, 34(2), 301-303.
[http://dx.doi.org/10.1002/mds.27585] [PMID: 30536916]
[69]
Vidailhet, M.; Jutras, M.F.; Grabli, D.; Roze, E. Deep brain stimulation for dystonia. J. Neurol. Neurosurg. Psychiatry, 2013, 84(9), 1029-1042.
[http://dx.doi.org/10.1136/jnnp-2011-301714] [PMID: 23154125]
[70]
Danielsson, A.; Carecchio, M.; Cif, L.; Koy, A.; Lin, J.P.; Solders, G.; Romito, L.; Lohmann, K.; Garavaglia, B.; Reale, C.; Zorzi, G.; Nardocci, N.; Coubes, P.; Gonzalez, V.; Roubertie, A.; Collod-Beroud, G.; Lind, G.; Tedroff, K. Pallidal deep brain stimulation in DYT6 dystonia: Clinical outcome and predictive factors for motor improvement. J. Clin. Med., 2019, 8(12), 2163.
[http://dx.doi.org/10.3390/jcm8122163] [PMID: 31817799]
[71]
LeDoux, M.S.; Dauer, W.T.; Warner, T.T. Emerging common molecular pathways for primary dystonia. Mov. Disord., 2013, 28(7), 968-981.
[http://dx.doi.org/10.1002/mds.25547] [PMID: 23893453]
[72]
Scarduzio, M.; Hess, E.J.; Standaert, D.G.; Eskow Jaunarajs, K.L. Striatal synaptic dysfunction in dystonia and levodopa-induced dyskinesia. Neurobiol. Dis., 2022, 166, 105650.
[http://dx.doi.org/10.1016/j.nbd.2022.105650] [PMID: 35139431]
[73]
Ozelius, L.J.; Hewett, J.W.; Page, C.E.; Bressman, S.B.; Kramer, P.L.; Shalish, C.; de Leon, D.; Brin, M.F.; Raymond, D.; Corey, D.P.; Fahn, S.; Risch, N.J.; Buckler, A.J.; Gusella, J.F.; Breakefield, X.O. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat. Genet., 1997, 17(1), 40-48.
[http://dx.doi.org/10.1038/ng0997-40] [PMID: 9288096]
[74]
Ozelius, L.J.; Page, C.E.; Klein, C.; Hewett, J.W.; Mineta, M.; Leung, J.; Shalish, C.; Bressman, S.B.; de Leon, D.; Brin, M.F.; Fahn, S.; Corey, D.P.; Breakefield, X.O. The TOR1A (DYT1) gene family and its role in early onset torsion dystonia. Genomics, 1999, 62(3), 377-384.
[http://dx.doi.org/10.1006/geno.1999.6039] [PMID: 10644435]
[75]
Yokoi, F.; Cheetham, C.C.; Campbell, S.L.; Sweatt, J.D.; Li, Y. Pre-synaptic release deficits in a DYT1 dystonia mouse model. PLoS One, 2013, 8(8), e72491.
[http://dx.doi.org/10.1371/journal.pone.0072491] [PMID: 23967309]
[76]
Kakazu, Y.; Koh, J.Y.; Ho, K.W.D.; Gonzalez-Alegre, P.; Harata, N.C. Synaptic vesicle recycling is enhanced by torsinA that harbors the DYT1 dystonia mutation. Synapse, 2012, 66(5), 453-464.
[http://dx.doi.org/10.1002/syn.21534] [PMID: 22213465]
[77]
Granata, A.; Watson, R.; Collinson, L.M.; Schiavo, G.; Warner, T.T. The dystonia-associated protein torsinA modulates synaptic vesicle recycling. J. Biol. Chem., 2008, 283(12), 7568-7579.
[http://dx.doi.org/10.1074/jbc.M704097200] [PMID: 18167355]
[78]
Konakova, M.; Pulst, S.M. Immunocytochemical characterization of torsin proteins in mouse brain. Brain Res., 2001, 922(1), 1-8.
[http://dx.doi.org/10.1016/S0006-8993(01)03014-1] [PMID: 11730696]
[79]
Sciamanna, G.; Bonsi, P.; Tassone, A.; Cuomo, D.; Tscherter, A.; Viscomi, M.T.; Martella, G.; Sharma, N.; Bernardi, G.; Standaert, D.G.; Pisani, A. Impaired striatal D2 receptor function leads to enhanced GABA transmission in a mouse model of DYT1 dystonia. Neurobiol. Dis., 2009, 34(1), 133-145.
[http://dx.doi.org/10.1016/j.nbd.2009.01.001] [PMID: 19187797]
[80]
Sciamanna, G.; Tassone, A.; Mandolesi, G.; Puglisi, F.; Ponterio, G.; Martella, G.; Madeo, G.; Bernardi, G.; Standaert, D.G.; Bonsi, P.; Pisani, A. Cholinergic dysfunction alters synaptic integration between thalamostriatal and corticostriatal inputs in DYT1 dystonia. J. Neurosci., 2012, 32(35), 11991-12004.
[http://dx.doi.org/10.1523/JNEUROSCI.0041-12.2012] [PMID: 22933784]
[81]
Ponterio, G.; Tassone, A.; Sciamanna, G.; Vanni, V.; Meringolo, M.; Santoro, M.; Mercuri, N.B.; Bonsi, P.; Pisani, A. Enhanced mu opioid receptor–dependent opioidergic modulation of striatal cholinergic transmission in DYT1 dystonia. Mov. Disord., 2018, 33(2), 310-320.
[http://dx.doi.org/10.1002/mds.27212] [PMID: 29150865]
[82]
D’Angelo, V.; Castelli, V.; Giorgi, M.; Cardarelli, S.; Saverioni, I.; Palumbo, F.; Bonsi, P.; Pisani, A.; Giampà, C.; Sorge, R.; Biagioni, S.; Fusco, F.R.; Sancesario, G. Phosphodiesterase-10A inverse changes in striatopallidal and striatoentopeduncular pathways of a transgenic mouse model of DYT1 dystonia. J. Neurosci., 2017, 37(8), 2112-2124.
[http://dx.doi.org/10.1523/JNEUROSCI.3207-15.2016] [PMID: 28115486]
[83]
D’Angelo, V.; Paldino, E.; Cardarelli, S.; Sorge, R.; Fusco, F.R.; Biagioni, S.; Mercuri, N.B.; Giorgi, M.; Sancesario, G. Dystonia: Sparse synapses for D2 receptors in striatum of a DYT1 knock-out mouse model. Int. J. Mol. Sci., 2020, 21(3), 1073.
[http://dx.doi.org/10.3390/ijms21031073] [PMID: 32041188]
[84]
Goodchild, R.E.; Kim, C.E.; Dauer, W.T. Loss of the dystonia-associated protein torsinA selectively disrupts the neuronal nuclear envelope. Neuron, 2005, 48(6), 923-932.
[http://dx.doi.org/10.1016/j.neuron.2005.11.010] [PMID: 16364897]
[85]
Bonsi, P.; Ponterio, G.; Vanni, V.; Tassone, A.; Sciamanna, G.; Migliarini, S.; Martella, G.; Meringolo, M.; Dehay, B.; Doudnikoff, E.; Zachariou, V.; Goodchild, R.E.; Mercuri, N.B.; D’Amelio, M.; Pasqualetti, M.; Bezard, E.; Pisani, A. RGS 9‐2 rescues dopamine D2 receptor levels and signaling inDYT 1 dystonia mouse models. EMBO Mol. Med., 2019, 11(1), e9283.
[http://dx.doi.org/10.15252/emmm.201809283] [PMID: 30552094]
[86]
Oleas, J.; Yokoi, F.; DeAndrade, M.P.; Pisani, A.; Li, Y. Engineering animal models of dystonia. Mov. Disord., 2013, 28(7), 990-1000.
[http://dx.doi.org/10.1002/mds.25583] [PMID: 23893455]
[87]
Pisani, A.; Martella, G.; Tscherter, A.; Bonsi, P.; Sharma, N.; Bernardi, G.; Standaert, D.G. Altered responses to dopaminergic D2 receptor activation and N-type calcium currents in striatal cholinergic interneurons in a mouse model of DYT1 dystonia. Neurobiol. Dis., 2006, 24(2), 318-325.
[http://dx.doi.org/10.1016/j.nbd.2006.07.006] [PMID: 16934985]
[88]
Sciamanna, G.; Tassone, A.; Martella, G.; Mandolesi, G.; Puglisi, F.; Cuomo, D.; Madeo, G.; Ponterio, G.; Standaert, D.G.; Bonsi, P.; Pisani, A. Developmental profile of the aberrant dopamine D2 receptor response in striatal cholinergic interneurons in DYT1 dystonia. PLoS One, 2011, 6(9), e24261.
[http://dx.doi.org/10.1371/journal.pone.0024261] [PMID: 21912682]
[89]
Sciamanna, G.; Ponterio, G.; Tassone, A.; Maltese, M.; Madeo, G.; Martella, G.; Poli, S.; Schirinzi, T.; Bonsi, P.; Pisani, A. Negative allosteric modulation of mGlu5 receptor rescues striatal D2 dopamine receptor dysfunction in rodent models of DYT1 dystonia. Neuropharmacology, 2014, 85, 440-450.
[http://dx.doi.org/10.1016/j.neuropharm.2014.06.013] [PMID: 24951854]
[90]
Scarduzio, M.; Zimmerman, C.N.; Jaunarajs, K.L.; Wang, Q.; Standaert, D.G.; McMahon, L.L. Strength of cholinergic tone dictates the polarity of dopamine D2 receptor modulation of striatal cholinergic interneuron excitability in DYT1 dystonia. Exp. Neurol., 2017, 295, 162-175.
[http://dx.doi.org/10.1016/j.expneurol.2017.06.005] [PMID: 28587876]
[91]
Maltese, M.; Stanic, J.; Tassone, A.; Sciamanna, G.; Ponterio, G.; Vanni, V.; Martella, G.; Imbriani, P.; Bonsi, P.; Mercuri, N.B.; Gardoni, F.; Pisani, A. Early structural and functional plasticity alterations in a susceptibility period of DYT1 dystonia mouse striatum. eLife, 2018, 7, e33331.
[http://dx.doi.org/10.7554/eLife.33331] [PMID: 29504938]
[92]
Rittiner, J.E.; Caffall, Z.F.; Hernández-Martinez, R.; Sanderson, S.M.; Pearson, J.L.; Tsukayama, K.K.; Liu, A.Y.; Xiao, C.; Tracy, S.; Shipman, M.K.; Hickey, P.; Johnson, J.; Scott, B.; Stacy, M.; Saunders-Pullman, R.; Bressman, S.; Simonyan, K.; Sharma, N.; Ozelius, L.J.; Cirulli, E.T.; Calakos, N. Functional genomic analyses of mendelian and sporadic disease identify impaired eif2α signaling as a generalizable mechanism for dystonia. Neuron, 2016, 92(6), 1238-1251.
[http://dx.doi.org/10.1016/j.neuron.2016.11.012] [PMID: 27939583]
[93]
Beauvais, G.; Rodriguez-Losada, N.; Ying, L.; Zakirova, Z.; Watson, J.L.; Readhead, B.; Gadue, P.; French, D.L.; Ehrlich, M.E.; Gonzalez-Alegre, P. Exploring the interaction between eIF2α dysregulation, acute endoplasmic reticulum stress and DYT1 dystonia in the mammalian brain. Neuroscience, 2018, 371, 455-468.
[http://dx.doi.org/10.1016/j.neuroscience.2017.12.033] [PMID: 29289717]
[94]
Ip, C.W.; Isaias, I.U.; Kusche-Tekin, B.B.; Klein, D.; Groh, J.; O’Leary, A.; Knorr, S.; Higuchi, T.; Koprich, J.B.; Brotchie, J.M.; Toyka, K.V.; Reif, A.; Volkmann, J. Tor1a+/- mice develop dystonia-like movements via a striatal dopaminergic dysregulation triggered by peripheral nerve injury. Acta Neuropathol. Commun., 2016, 4(1), 108.
[http://dx.doi.org/10.1186/s40478-016-0375-7] [PMID: 27716431]
[95]
Knorr, S.; Rauschenberger, L.; Pasos, U.R.; Friedrich, M.U.; Peach, R.L.; Grundmann-Hauser, K.; Ott, T.; O’Leary, A.; Reif, A.; Tovote, P.; Volkmann, J.; Ip, C.W. The evolution of dystonia-like movements in TOR1A rats after transient nerve injury is accompanied by dopaminergic dysregulation and abnormal oscillatory activity of a central motor network. Neurobiol. Dis., 2021, 154, 105337.
[http://dx.doi.org/10.1016/j.nbd.2021.105337] [PMID: 33753289]
[96]
Downs, A.M.; Fan, X.; Kadakia, R.F.; Donsante, Y.; Jinnah, H.A.; Hess, E.J. Cell-intrinsic effects of TorsinA(ΔE) disrupt dopamine release in a mouse model of TOR1A dystonia. Neurobiol. Dis., 2021, 155, 105369.
[http://dx.doi.org/10.1016/j.nbd.2021.105369] [PMID: 33894367]
[97]
Puglisi, F.; Vanni, V.; Ponterio, G.; Tassone, A.; Sciamanna, G.; Bonsi, P.; Pisani, A.; Mandolesi, G.; Torsin, A. Torsin a localization in the mouse cerebellar synaptic circuitry. PLoS One, 2013, 8(6), e68063.
[http://dx.doi.org/10.1371/journal.pone.0068063] [PMID: 23840813]
[98]
Vanni, V.; Puglisi, F.; Bonsi, P.; Ponterio, G.; Maltese, M.; Pisani, A.; Mandolesi, G. Cerebellar synaptogenesis is compromised in mouse models of DYT1 dystonia. Exp. Neurol., 2015, 271, 457-467.
[http://dx.doi.org/10.1016/j.expneurol.2015.07.005] [PMID: 26183317]
[99]
Bressman, S.B.; Raymond, D.; Fuchs, T.; Heiman, G.A.; Ozelius, L.J.; Saunders-Pullman, R. Mutations in THAP1 (DYT6) in earlyonset dystonia: A genetic screening study. Lancet Neurol., 2009, 8(5), 441-446.
[http://dx.doi.org/10.1016/S1474-4422(09)70081-X] [PMID: 19345147]
[100]
Fuchs, T.; Gavarini, S.; Saunders-Pullman, R.; Raymond, D.; Ehrlich, M.E.; Bressman, S.B.; Ozelius, L.J. Mutations in the THAP1 gene are responsible for DYT6 primary torsion dystonia. Nat. Genet., 2009, 41(3), 286-288.
[http://dx.doi.org/10.1038/ng.304] [PMID: 19182804]
[101]
Zakirova, Z.; Fanutza, T.; Bonet, J.; Readhead, B.; Zhang, W.; Yi, Z.; Beauvais, G.; Zwaka, T.P.; Ozelius, L.J.; Blitzer, R.D.; Gonzalez-Alegre, P.; Ehrlich, M.E. Mutations in THAP1/DYT6 reveal that diverse dystonia genes disrupt similar neuronal pathways and functions. PLoS Genet., 2018, 14(1), e1007169.
[http://dx.doi.org/10.1371/journal.pgen.1007169] [PMID: 29364887]
[102]
Domingo, A.; Yadav, R.; Shah, S.; Hendriks, W.T.; Erdin, S.; Gao, D.; O’Keefe, K.; Currall, B.; Gusella, J.F.; Sharma, N.; Ozelius, L.J.; Ehrlich, M.E.; Talkowski, M.E.; Bragg, D.C. Dystonia-specific mutations in THAP1 alter transcription of genes associated with neurodevelopment and myelin. Am. J. Hum. Genet., 2021, 108(11), 2145-2158.
[http://dx.doi.org/10.1016/j.ajhg.2021.09.017] [PMID: 34672987]
[103]
Frederick, N.M.; Shah, P.V.; Didonna, A.; Langley, M.R.; Kanthasamy, A.G.; Opal, P. Loss of the dystonia gene Thap1 leads to transcriptional deficits that converge on common pathogenic pathways in dystonic syndromes. Hum. Mol. Genet., 2019, 28(8), 1343-1356.
[http://dx.doi.org/10.1093/hmg/ddy433] [PMID: 30590536]
[104]
Yellajoshyula, D.; Liang, C.C.; Pappas, S.S.; Penati, S.; Yang, A.; Mecano, R.; Kumaran, R.; Jou, S.; Cookson, M.R.; Dauer, W.T. The DYT6 dystonia protein THAP1 regulates myelination within the oligodendrocyte lineage. Dev. Cell, 2017, 42(1), 52-67.e4.
[http://dx.doi.org/10.1016/j.devcel.2017.06.009] [PMID: 28697333]
[105]
Cheng, F.; Zheng, W.; Barbuti, P.A.; Bonsi, P.; Liu, C.; Casadei, N.; Ponterio, G.; Meringolo, M.; Admard, J.; Dording, C.M.; Yu-Taeger, L.; Nguyen, H.P.; Grundmann-Hauser, K.; Ott, T.; Houlden, H.; Pisani, A.; Krüger, R.; Riess, O. DYT6 mutated THAP1 is a cell type dependent regulator of the SP1 family. Brain, 2022, 145(11), 3968-3984.
[http://dx.doi.org/10.1093/brain/awac001] [PMID: 35015830]
[106]
Heijden, M.E.; Kizek, D.J.; Perez, R.; Ruff, E.K.; Ehrlich, M.E.; Sillitoe, R.V. Abnormal cerebellar function and tremor in a mouse model for non‐manifesting partially penetrant dystonia type 6. J. Physiol., 2021, 599(7), 2037-2054.
[http://dx.doi.org/10.1113/JP280978] [PMID: 33369735]
[107]
Fuchs, T.; Saunders-Pullman, R.; Masuho, I.; Luciano, M.S.; Raymond, D.; Factor, S.; Lang, A.E.; Liang, T.W.; Trosch, R.M.; White, S.; Ainehsazan, E.; Hervé, D.; Sharma, N.; Ehrlich, M.E.; Martemyanov, K.A.; Bressman, S.B.; Ozelius, L.J. Mutations in GNAL cause primary torsion dystonia. Nat. Genet., 2013, 45(1), 88-92.
[http://dx.doi.org/10.1038/ng.2496] [PMID: 23222958]
[108]
Vemula, S.R.; Puschmann, A.; Xiao, J.; Zhao, Y.; Rudzińska, M.; Frei, K.P.; Truong, D.D.; Wszolek, Z.K.; LeDoux, M.S. Role of Gα(olf) in familial and sporadic adult-onset primary dystonia. Hum. Mol. Genet., 2013, 22(12), 2510-2519.
[http://dx.doi.org/10.1093/hmg/ddt102] [PMID: 23449625]
[109]
Kumar, K.R.; Lohmann, K.; Masuho, I.; Miyamoto, R.; Ferbert, A.; Lohnau, T.; Kasten, M.; Hagenah, J.; Brüggemann, N.; Graf, J.; Münchau, A.; Kostic, V.S.; Sue, C.M.; Domingo, A.R.; Rosales, R.L.; Lee, L.V.; Freimann, K.; Westenberger, A.; Mukai, Y.; Kawarai, T.; Kaji, R.; Klein, C.; Martemyanov, K.A.; Schmidt, A. Mutations in GNAL. JAMA Neurol., 2014, 71(4), 490-494.
[http://dx.doi.org/10.1001/jamaneurol.2013.4677] [PMID: 24535567]
[110]
Erro, R.; Di Fonzo, A.; Percetti, M.; Monfrini, E.; Scannapieco, S.; Picillo, M.; Barone, P. Childhood‐onset dystonia with cerebellar signs: Expanding the spectrum of GNAL mutations. Eur. J. Neurol., 2020, 27(11), e66-e67.
[http://dx.doi.org/10.1111/ene.14220] [PMID: 32180288]
[111]
Corvol, J.C.; Studler, J.M.; Schonn, J.S.; Girault, J.A.; Hervé, D. Gαolf is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J. Neurochem., 2001, 76(5), 1585-1588.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00201.x] [PMID: 11238742]
[112]
Cui, G.; Jun, S.B.; Jin, X.; Pham, M.D.; Vogel, S.S.; Lovinger, D.M.; Costa, R.M. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature, 2013, 494(7436), 238-242.
[http://dx.doi.org/10.1038/nature11846] [PMID: 23354054]
[113]
Pelosi, A.; Menardy, F.; Popa, D.; Girault, J.A.; Hervé, D. Heterozygous gnal mice are a novel animal model with which to study dystonia pathophysiology. J. Neurosci., 2017, 37(26), 6253-6267.
[http://dx.doi.org/10.1523/JNEUROSCI.1529-16.2017] [PMID: 28546310]
[114]
Belluscio, L.; Gold, G.H.; Nemes, A.; Axel, R. Mice deficient in G(olf) are anosmic. Neuron, 1998, 20(1), 69-81.
[http://dx.doi.org/10.1016/S0896-6273(00)80435-3] [PMID: 9459443]
[115]
Melis, C.; Beauvais, G.; Muntean, B.S.; Cirnaru, M.D.; Otrimski, G.; Creus-Muncunill, J.; Martemyanov, K.A.; Gonzalez-Alegre, P.; Ehrlich, M.E. Striatal dopamine induced ERK phosphorylation is altered in mouse models of monogenic dystonia. Mov. Disord., 2021, 36(5), 1147-1157.
[http://dx.doi.org/10.1002/mds.28476] [PMID: 33458877]
[116]
Yu-Taeger, L.; Ott, T.; Bonsi, P.; Tomczak, C.; Wassouf, Z.; Martella, G.; Sciamanna, G.; Imbriani, P.; Ponterio, G.; Tassone, A.; Schulze-Hentrich, J.M.; Goodchild, R.; Riess, O.; Pisani, A.; Grundmann-Hauser, K.; Nguyen, H.P. Impaired dopamine- and adenosine-mediated signaling and plasticity in a novel rodent model for DYT25 dystonia. Neurobiol. Dis., 2020, 134, 104634.
[http://dx.doi.org/10.1016/j.nbd.2019.104634] [PMID: 31678405]
[117]
Martella, G.; Bonsi, P.; Imbriani, P.; Sciamanna, G.; Nguyen, H.; Yu-Taeger, L.; Schneider, M.; Poli, S.M.; Lütjens, R.; Pisani, A. Rescue of striatal long-term depression by chronic mGlu5 receptor negative allosteric modulation in distinct dystonia models. Neuropharmacology, 2021, 192, 108608.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108608] [PMID: 33991565]
[118]
Bonsi, P.; Cuomo, D.; De Persis, C.; Centonze, D.; Bernardi, G.; Calabresi, P.; Pisani, A. Modulatory action of metabotropic glutamate receptor (mGluR) 5 on mGluR1 function in striatal cholinergic interneurons. Neuropharmacology., 2005, 49(S1), 104-113.
[http://dx.doi.org/10.1016/j.neuropharm.2005.05.012] [PMID: 16005029]
[119]
Khan, M.M.; Xiao, J.; Hollingsworth, T.J.; Patel, D.; Selley, D.E.; Ring, T.L.; LeDoux, M.S. Gnal haploinsufficiency causes genomic instability and increased sensitivity to haloperidol. Exp. Neurol., 2019, 318, 61-70.
[http://dx.doi.org/10.1016/j.expneurol.2019.04.014] [PMID: 31034808]
[120]
Hervé, D.; Le Moine, C.; Corvol, J.C.; Belluscio, L.; Ledent, C.; Fienberg, A.A.; Jaber, M.; Studler, J.M.; Girault, J.A. Galpha(olf) levels are regulated by receptor usage and control dopamine and adenosine action in the striatum. J. Neurosci., 2001, 21(12), 4390-4399.
[http://dx.doi.org/10.1523/JNEUROSCI.21-12-04390.2001] [PMID: 11404425]
[121]
Zimprich, A.; Grabowski, M.; Asmus, F.; Naumann, M.; Berg, D.; Bertram, M.; Scheidtmann, K.; Kern, P.; Winkelmann, J.; Müller-Myhsok, B.; Riedel, L.; Bauer, M.; Müller, T.; Castro, M.; Meitinger, T.; Strom, T.M.; Gasser, T. Mutations in the gene encoding ɛ-sarcoglycan cause myoclonus–dystonia syndrome. Nat. Genet., 2001, 29(1), 66-69.
[http://dx.doi.org/10.1038/ng709] [PMID: 11528394]
[122]
Wu, J.; Tang, H.; Chen, S.; Cao, L. Mechanisms and pharmacotherapy for ethanol-responsive movement disorders. Front. Neurol., 2020, 11, 892.
[http://dx.doi.org/10.3389/fneur.2020.00892] [PMID: 32982923]
[123]
Xiao, J.; Vemula, S.R.; Xue, Y.; Khan, M.M.; Carlisle, F.A.; Waite, A.J.; Blake, D.J.; Dragatsis, I.; Zhao, Y.; LeDoux, M.S. Role of major and brain-specific Sgce isoforms in the pathogenesis of myoclonus-dystonia syndrome. Neurobiol. Dis., 2017, 98, 52-65.
[http://dx.doi.org/10.1016/j.nbd.2016.11.003] [PMID: 27890709]
[124]
Kosutzka, Z.; Tisch, S.; Bonnet, C.; Ruiz, M.; Hainque, E.; Welter, M.L.; Viallet, F.; Karachi, C.; Navarro, S.; Jahanshahi, M.; Rivaud-Pechoux, S.; Grabli, D.; Roze, E.; Vidailhet, M. Long‐term GPi‐DBS improves motor features in myoclonus‐dystonia and enhances social adjustment. Mov. Disord., 2019, 34(1), 87-94.
[http://dx.doi.org/10.1002/mds.27474] [PMID: 30302819]
[125]
Beukers, R.J.; van der Meer, J.N.; van der Salm, S.M.; Foncke, E.M.; Veltman, D.J.; Tijssen, M.A.J. Severity of dystonia is correlated with putaminal gray matter changes in Myoclonus-Dystonia. Eur. J. Neurol., 2011, 18(6), 906-912.
[http://dx.doi.org/10.1111/j.1468-1331.2010.03321.x] [PMID: 21219543]
[126]
Popa, T.; Milani, P.; Richard, A.; Hubsch, C.; Brochard, V.; Tranchant, C.; Sadnicka, A.; Rothwell, J.; Vidailhet, M.; Meunier, S.; Roze, E. The neurophysiological features of myoclonus-dystonia and differentiation from other dystonias. JAMA Neurol., 2014, 71(5), 612-619.
[http://dx.doi.org/10.1001/jamaneurol.2014.99] [PMID: 24638021]
[127]
Zhang, L.; Yokoi, F.; Parsons, D.S.; Standaert, D.G.; Li, Y. Alteration of striatal dopaminergic neurotransmission in a mouse model of DYT11 myoclonus-dystonia. PLoS One, 2012, 7(3), e33669.
[http://dx.doi.org/10.1371/journal.pone.0033669] [PMID: 22438980]
[128]
Sadnicka, A.; Galea, J.M.; Chen, J.C.; Warner, T.T.; Bhatia, K.P.; Rothwell, J.C.; Edwards, M.J. Delineating cerebellar mechanisms in DYT11 myoclonus-dystonia. Mov. Disord., 2018, 33(12), 1956-1961.
[http://dx.doi.org/10.1002/mds.27517] [PMID: 30334277]
[129]
Yokoi, F.; Dang, M.T.; Yang, G.; Li, J.; Doroodchi, A.; Zhou, T.; Li, Y. Abnormal nuclear envelope in the cerebellar Purkinje cells and impaired motor learning in DYT11 myoclonus-dystonia mouse models. Behav. Brain Res., 2012, 227(1), 12-20.
[http://dx.doi.org/10.1016/j.bbr.2011.10.024] [PMID: 22040906]
[130]
Yokoi, F.; Dang, M.T.; Zhou, T.; Li, Y. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models. Hum. Mol. Genet., 2012, 21(4), 916-925.
[http://dx.doi.org/10.1093/hmg/ddr528] [PMID: 22080833]
[131]
Maltese, M.; Martella, G.; Imbriani, P.; Schuermans, J.; Billion, K.; Sciamanna, G.; Farook, F.; Ponterio, G.; Tassone, A.; Santoro, M.; Bonsi, P.; Pisani, A.; Goodchild, R.E. Abnormal striatal plasticity in a DYT11/SGCE myoclonus dystonia mouse model is reversed by adenosine A2A receptor inhibition. Neurobiol. Dis., 2017, 108, 128-139.
[http://dx.doi.org/10.1016/j.nbd.2017.08.007] [PMID: 28823931]
[132]
Yokoi, F.; Dang, M.T.; Li, J.; Li, Y. Myoclonus, motor deficits, alterations in emotional responses and monoamine metabolism in epsilon-sarcoglycan deficient mice. J. Biochem., 2006, 140(1), 141-146.
[http://dx.doi.org/10.1093/jb/mvj138] [PMID: 16815860]
[133]
Beukers, R.J.; Booij, J.; Weisscher, N.; Zijlstra, F.; van Amelsvoort, T.A.M.J.; Tijssen, M.A.J. Reduced striatal D2 receptor binding in myoclonus–dystonia. Eur. J. Nucl. Med. Mol. Imaging, 2009, 36(2), 269-274.
[http://dx.doi.org/10.1007/s00259-008-0924-9] [PMID: 18719906]
[134]
Carbon, M.; Raymond, D.; Ozelius, L.; Saunders-Pullman, R.; Frucht, S.; Dhawan, V.; Bressman, S.; Eidelberg, D. Metabolic changes in DYT11 myoclonus-dystonia. Neurology, 2013, 80(4), 385-391.
[http://dx.doi.org/10.1212/WNL.0b013e31827f0798] [PMID: 23284065]
[135]
Menozzi, E.; Balint, B.; Latorre, A.; Valente, E.M.; Rothwell, J.C.; Bhatia, K.P. Twenty years on: Myoclonus‐dystonia and ε‐sarcoglycan — neurodevelopment, channel, and signaling dysfunction. Mov. Disord., 2019, 34(11), 1588-1601.
[http://dx.doi.org/10.1002/mds.27822] [PMID: 31449710]
[136]
Pilgram, G.S.K.; Potikanond, S.; Baines, R.A.; Fradkin, L.G.; Noordermeer, J.N. The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol. Neurobiol., 2010, 41(1), 1-21.
[http://dx.doi.org/10.1007/s12035-009-8089-5] [PMID: 19899002]
[137]
Waite, A.; Tinsley, C.L.; Locke, M.; Blake, D.J. The neurobiology of the dystrophin-associated glycoprotein complex. Ann. Med., 2009, 41(5), 344-359.
[http://dx.doi.org/10.1080/07853890802668522] [PMID: 19172427]
[138]
Knuesel, I.; Mastrocola, M.; Zuellig, R.A.; Bornhauser, B.; Schaub, M.C.; Fritschy, J.M. Altered synaptic clustering of GABA A receptors in mice lacking dystrophin (mdx mice). Eur. J. Neurosci., 1999, 11(12), 4457-4462.
[http://dx.doi.org/10.1046/j.1460-9568.1999.00887.x] [PMID: 10594673]
[139]
Imbriani, P.; Sciamanna, G.; El Atiallah, I.; Cerri, S.; Hess, E.J.; Pisani, A. Synaptic effects of ethanol on striatal circuitry: therapeutic implications for dystonia. FEBS J., 2022, 289(19), 5834-5849.
[http://dx.doi.org/10.1111/febs.16106] [PMID: 34217152]
[140]
Yin, H.H.; Park, B.S.; Adermark, L.; Lovinger, D.M. Ethanol reverses the direction of long-term synaptic plasticity in the dorsomedial striatum. Eur. J. Neurosci., 2007, 25(11), 3226-3232.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05606.x] [PMID: 17552991]
[141]
Blomeley, C.P.; Cains, S.; Smith, R.; Bracci, E. Ethanol affects striatal interneurons directly and projection neurons through a reduction in cholinergic tone. Neuropsychopharmacology, 2011, 36(5), 1033-1046.
[http://dx.doi.org/10.1038/npp.2010.241] [PMID: 21289603]
[142]
Frucht, S.J.; Riboldi, G.M. Alcohol-responsive hyperkinetic movement disorders-a mechanistic hypothesis. Tremor Other Hyperkinet. Mov., 2020, 10(1), 47.
[http://dx.doi.org/10.5334/tohm.560] [PMID: 33178485]
[143]
Segawa, M.; Hosaka, A.; Miyagawa, F.; Nomura, Y.; Imai, H. Hereditary progressive dystonia with marked diurnal fluctuation. Adv. Neurol., 1976, 14, 215-233.
[PMID: 945938]
[144]
Nygaard, T.G.; Marsden, C.D.; Duvoisin, R.C. Dopa-responsive dystonia. Advances in Neurology; Fahn, S.; Marsden, C.D.; Calne, D.B., Eds.; Raven Press: NY, USA, 1988, 50, pp. 377-384.
[145]
Marras, C.; Lang, A.; van de Warrenburg, B.P.; Sue, C.M.; Tabrizi, S.J.; Bertram, L.; Mercimek-Mahmutoglu, S.; Ebrahimi-Fakhari, D.; Warner, T.T.; Durr, A.; Assmann, B.; Lohmann, K.; Kostic, V.; Klein, C. Nomenclature of genetic movement disorders: Recommendations of the international Parkinson and movement disorder society task force. Mov. Disord., 2016, 31(4), 436-457.
[http://dx.doi.org/10.1002/mds.26527] [PMID: 27079681]
[146]
Weissbach, A.; Pauly, M.G.; Herzog, R.; Hahn, L.; Halmans, S.; Hamami, F.; Bolte, C.; Camargos, S.; Jeon, B.; Kurian, M.A.; Opladen, T.; Brüggemann, N.; Huppertz, H.J.; König, I.R.; Klein, C.; Lohmann, K. Relationship of genotype, phenotype, and treatment in dopa‐responsive dystonia: MDSGENE review. Mov. Disord., 2022, 37(2), 237-252.
[http://dx.doi.org/10.1002/mds.28874] [PMID: 34908184]
[147]
Charlesworth, G.; Bhatia, K.P.; Wood, N.W. The genetics of dystonia: New twists in an old tale. Brain, 2013, 136(7), 2017-2037.
[http://dx.doi.org/10.1093/brain/awt138] [PMID: 23775978]
[148]
Wijemanne, S.; Jankovic, J. Dopa-responsive dystonia—clinical and genetic heterogeneity. Nat. Rev. Neurol., 2015, 11(7), 414-424.
[http://dx.doi.org/10.1038/nrneurol.2015.86] [PMID: 26100751]
[149]
Tanabe, L.M.; Kim, C.E.; Alagem, N.; Dauer, W.T. Primary dystonia: Molecules and mechanisms. Nat. Rev. Neurol., 2009, 5(11), 598-609.
[http://dx.doi.org/10.1038/nrneurol.2009.160] [PMID: 19826400]
[150]
Weisheit, C.E.; Pappas, S.S.; Dauer, W.T. Inherited dystonias: Clinical features and molecular pathways. Handb. Clin. Neurol., 2018, 147, 241-254.
[http://dx.doi.org/10.1016/B978-0-444-63233-3.00016-6] [PMID: 29325615]
[151]
Rose, S.J.; Hess, E.J. A commentary on the utility of a new L-DOPA-responsive dystonia mouse model. Rare Dis., 2016, 4(1), e1128617.
[http://dx.doi.org/10.1080/21675511.2015.1128617] [PMID: 27141408]
[152]
Rose, S.J.; Yu, X.Y.; Heinzer, A.K.; Harrast, P.; Fan, X.; Raike, R.S.; Thompson, V.B.; Pare, J.F.; Weinshenker, D.; Smith, Y.; Jinnah, H.A.; Hess, E.J. A new knock-in mouse model of l-DOPA-responsive dystonia. Brain, 2015, 138(10), 2987-3002.
[http://dx.doi.org/10.1093/brain/awv212] [PMID: 26220941]
[153]
Jiang, X.; Liu, H.; Shao, Y.; Peng, M.; Zhang, W.; Li, D.; Li, X.; Cai, Y.; Tan, T.; Lu, X.; Xu, J.; Su, X.; Lin, Y.; Liu, Z.; Huang, Y.; Zeng, C.; Tang, Y.; Liu, L. A novel GTPCH deficiency mouse model exhibiting tetrahydrobiopterin-related metabolic disturbance and infancy-onset motor impairments. Metabolism, 2019, 94, 96-104.
[http://dx.doi.org/10.1016/j.metabol.2019.02.001] [PMID: 30742839]
[154]
Kim, R.; Jeon, B.; Lee, W.W. A systematic review of treatment outcome in patients with dopa-responsive dystonia (DRD) and DRD-plus. Mov. Disord. Clin. Pract., 2016, 3(5), 435-442.
[http://dx.doi.org/10.1002/mdc3.12361] [PMID: 30363598]
[155]
Yalcin-Cakmakli, G.; Rose, S.J.; Villalba, R.M.; Williams, L.; Jinnah, H.A.; Hess, E.J.; Smith, Y. Striatal cholinergic interneurons in a knock-in mouse model of L-DOPA-responsive dystonia. Front. Syst. Neurosci., 2018, 12, 28.
[http://dx.doi.org/10.3389/fnsys.2018.00028] [PMID: 29997483]
[156]
Rose, S.J.; Harrast, P.; Donsante, C.; Fan, X.; Joers, V.; Tansey, M.G.; Jinnah, H.A.; Hess, E.J. Parkinsonism without dopamine neuron degeneration in aged L -dopa-responsive dystonia knockin mice. Mov. Disord., 2017, 32(12), 1694-1700.
[http://dx.doi.org/10.1002/mds.27169] [PMID: 28949038]
[157]
Sato, K.; Sumi-Ichinose, C.; Kaji, R.; Ikemoto, K.; Nomura, T.; Nagatsu, I.; Ichinose, H.; Ito, M.; Sako, W.; Nagahiro, S.; Graybiel, A.M.; Goto, S. Differential involvement of striosome and matrix dopamine systems in a transgenic model of dopa-responsive dystonia. Proc. Natl. Acad. Sci., 2008, 105(34), 12551-12556.
[http://dx.doi.org/10.1073/pnas.0806065105] [PMID: 18713855]
[158]
Denayer, T.; Stöhr, T.; Roy, M.V. Animal models in translational medicine: Validation and prediction. Eur. J. Mol. Clin. Med., 2014, 2(1), 5-11.
[http://dx.doi.org/10.1016/j.nhtm.2014.08.001]
[159]
Carbon, M.; Niethammer, M.; Peng, S.; Raymond, D.; Dhawan, V.; Chaly, T.; Ma, Y.; Bressman, S.; Eidelberg, D. Abnormal striatal and thalamic dopamine neurotransmission: Genotype-related features of dystonia. Neurology, 2009, 72(24), 2097-2103.
[http://dx.doi.org/10.1212/WNL.0b013e3181aa538f] [PMID: 19528516]
[160]
Asanuma, K.; Carbon-Correll, M.; Eidelberg, D. Neuroimaging in human dystonia. J Med Invest., 2005, 52, 272-279.
[http://dx.doi.org/10.2152/jmi.52.272]
[161]
Shawky, R.M. Reduced penetrance in human inherited disease. Egypt. J. Med. Hum. Genet., 2014, 15(2), 103-111.
[http://dx.doi.org/10.1016/j.ejmhg.2014.01.003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy