Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Potential Drugs in COVID-19 Management

Author(s): Amin Gasmi, Sadaf Noor, Alain Menzel, Nataliia Khanyk, Yuliya Semenova, Roman Lysiuk, Nataliya Beley, Liliia Bolibrukh, Asma Gasmi Benahmed, Olha Storchylo and Geir Bjørklund*

Volume 31, Issue 22, 2024

Published on: 15 August, 2023

Page: [3245 - 3264] Pages: 20

DOI: 10.2174/0929867331666230717154101

Price: $65

Abstract

The SARS-CoV-2 virus first emerged in China in December 2019 and quickly spread worldwide. Despite the absence of a vaccination or authorized drug specifically developed to combat this infection, certain medications recommended for other diseases have shown potential effectiveness in treating COVID-19, although without definitive confirmation. This review aims to evaluate the existing literature on the efficacy of these medications against COVID-19. The review encompasses various potential treatments, including antiviral medications, anti-malaria and anti-rheumatic drugs, vaccines, corticosteroids, non-steroidal anti-inflammatory drugs (NSAIDs), antipyretic and analgesic medicines, antiparasitic drugs, and statins. The analysis also addresses the potential benefits and drawbacks of these medications, as well as their effects on hypertension and diabetes. Although these therapies hold promise against COVID-19, further research, including suitable product production or clinical testing, is needed to establish their therapeutic efficacy.

Next »
[1]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[2]
Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA, 2020, 323(13), 1239-1242.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[3]
Mahase, E. Long covid could be four different syndromes, review suggests. BMJ, 2020, 371, m3981.
[http://dx.doi.org/10.1136/bmj.m3981] [PMID: 33055076]
[4]
Liu, J.; Liu, Y.; Xiang, P.; Pu, L.; Xiong, H.; Li, C.; Zhang, M.; Tan, J.; Xu, Y.; Song, R. Neutrophil-to-lymphocyte ratio predicts severe illness patients with 2019 novel coronavirus in the early stage. J. Transl. Med., 2020, 18(1), 206.
[http://dx.doi.org/10.1186/s12967-020-02374-0] [PMID: 32434518]
[5]
Cao, Q.; Chen, Y.C.; Chen, C.L.; Chiu, C.H. SARS-CoV-2 infection in children: Transmission dynamics and clinical characteristics. J. Formos. Med. Assoc., 2020, 119(3), 670-673.
[http://dx.doi.org/10.1016/j.jfma.2020.02.009] [PMID: 32139299]
[6]
Peiris, J.S.M.; Chu, C.M.; Cheng, V.C.C.; Chan, K.S.; Hung, I.F.N.; Poon, L.L.M.; Law, K.I.; Tang, B.S.F.; Hon, T.Y.W.; Chan, C.S.; Chan, K.H.; Ng, J.S.C.; Zheng, B.J.; Ng, W.L.; Lai, R.W.M.; Guan, Y.; Yuen, K.Y. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study. Lancet, 2003, 361(9371), 1767-1772.
[http://dx.doi.org/10.1016/S0140-6736(03)13412-5] [PMID: 12781535]
[7]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[8]
Huang, W.H.; Teng, L.C.; Yeh, T.K.; Chen, Y.J.; Lo, W.J.; Wu, M.J.; Chin, C.S.; Tsan, Y.T.; Lin, T.C.; Chai, J.W.; Lin, C.F.; Tseng, C.H.; Liu, C.W.; Wu, C.M.; Chen, P.Y.; Shi, Z.Y.; Liu, P.Y. 2019 novel coronavirus disease (COVID-19) in Taiwan: Reports of two cases from Wuhan, China. J. Microbiol. Immunol. Infect., 2020, 53(3), 481-484.
[http://dx.doi.org/10.1016/j.jmii.2020.02.009] [PMID: 32111449]
[9]
Lee, P.I.; Hu, Y.L.; Chen, P.Y.; Huang, Y.C.; Hsueh, P.R. Are children less susceptible to COVID-19? J. Microbiol. Immunol. Infect., 2020, 53(3), 371-372.
[http://dx.doi.org/10.1016/j.jmii.2020.02.011] [PMID: 32147409]
[10]
Zamorano Cuervo, N.; Grandvaux, N. ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. eLife, 2020, 9, e61390.
[http://dx.doi.org/10.7554/eLife.61390] [PMID: 33164751]
[11]
Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; Xu, Y.; Cao, Z.; Gao, Z. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care, 2020, 24(1), 422.
[http://dx.doi.org/10.1186/s13054-020-03120-0] [PMID: 32660650]
[12]
Hofmann, H.; Pyrc, K.; van der Hoek, L.; Geier, M.; Berkhout, B.; Pöhlmann, S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci., 2005, 102(22), 7988-7993.
[http://dx.doi.org/10.1073/pnas.0409465102] [PMID: 15897467]
[13]
Lee, K.H.; Yoo, S.G.; Cho, Y.; Kwon, D.E.; La, Y.; Han, S.H.; Kim, M.S.; Choi, J.S.; Kim, S.I.; Kim, Y.S.; Min, Y.H.; Cheong, J.W.; Kim, J.S.; Song, Y.G. Characteristics of community-acquired respiratory viruses infections except seasonal influenza in transplant recipients and non-transplant critically ill patients. J. Microbiol. Immunol. Infect., 2021, 54(2), 253-260.
[http://dx.doi.org/10.1016/j.jmii.2019.05.007] [PMID: 31262511]
[14]
Lee, P.I.; Hsueh, P.R. Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV. J. Microbiol. Immunol. Infect., 2020, 53(3), 365-367.
[http://dx.doi.org/10.1016/j.jmii.2020.02.001] [PMID: 32035811]
[15]
To, K.K.W.; Tsang, O.T.Y.; Leung, W.S.; Tam, A.R.; Wu, T.C.; Lung, D.C.; Yip, C.C.Y.; Cai, J.P.; Chan, J.M.C.; Chik, T.S.H.; Lau, D.P.L.; Choi, C.Y.C.; Chen, L.L.; Chan, W.M.; Chan, K.H.; Ip, J.D.; Ng, A.C.K.; Poon, R.W.S.; Luo, C.T.; Cheng, V.C.C.; Chan, J.F.W.; Hung, I.F.N.; Chen, Z.; Chen, H.; Yuen, K.Y. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis., 2020, 20(5), 565-574.
[http://dx.doi.org/10.1016/S1473-3099(20)30196-1] [PMID: 32213337]
[16]
Peeri, N.C.; Shrestha, N.; Rahman, M.S.; Zaki, R.; Tan, Z.; Bibi, S.; Baghbanzadeh, M.; Aghamohammadi, N.; Zhang, W.; Haque, U. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: What lessons have we learned? Int. J. Epidemiol., 2020, 49(3), 717-726.
[http://dx.doi.org/10.1093/ije/dyaa033] [PMID: 32086938]
[17]
Semenova, Y.; Trenina, V.; Pivina, L.; Glushkova, N.; Zhunussov, Y.; Ospanov, E.; Bjørklund, G. The lessons of COVID-19, SARS, and MERS: Implications for preventive strategies. Int. J. Healthc. Manag., 2022, 15(4), 314-324.
[http://dx.doi.org/10.1080/20479700.2022.2051126]
[18]
Lui, G.; Guaraldi, G. Drug treatment of COVID-19 infection. Curr. Opin. Pulm. Med., 2023, 29(3), 174-183.
[http://dx.doi.org/10.1097/MCP.0000000000000953] [PMID: 36917228]
[19]
Yuan, Y.; Jiao, B.; Qu, L.; Yang, D.; Liu, R. The development of COVID-19 treatment. Front. Immunol., 2023, 14, 1125246.
[http://dx.doi.org/10.3389/fimmu.2023.1125246] [PMID: 36776881]
[20]
Chu, C.M.; Cheng, V.C.; Hung, I.F.; Wong, M.M.; Chan, K.H.; Chan, K.S.; Kao, R.Y.; Poon, L.L.; Wong, C.L.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax, 2004, 59(3), 252-256.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[21]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[22]
Lim, J.; Jeon, S.; Shin, H-Y.; Kim, M.J.; Seong, Y.M.; Lee, W.J.; Choe, K-W.; Kang, Y.M.; Lee, B.; Park, S-J. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J. Korean Med. Sci., 2020, 35(6), e79.
[http://dx.doi.org/10.3346/jkms.2020.35.e79] [PMID: 32056407]
[23]
Kim, U.J.; Won, E.J.; Kee, S.J.; Jung, S.I.; Jang, H.C. Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome. Antivir. Ther., 2016, 21(5), 455-459.
[http://dx.doi.org/10.3851/IMP3002] [PMID: 26492219]
[24]
Rosa, S.G.V.; Santos, W.C. Clinical trials on drug repositioning for COVID-19 treatment. Rev. Panam. Salud Publica, 2020, 44, 1.
[http://dx.doi.org/10.26633/RPSP.2020.40] [PMID: 32256547]
[25]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[26]
Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y.; Shen, C.; Li, X.; Peng, L.; Huang, D.; Zhang, J.; Zhang, S.; Wang, F.; Liu, J.; Chen, L.; Chen, S.; Wang, Z.; Zhang, Z.; Cao, R.; Zhong, W.; Liu, Y.; Liu, L. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering, 2020, 6(10), 1192-1198.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[27]
Cyranoski, D.; Abbott, A. Virus detectives seek source of SARS in China’s wild animals. Nature, 2003, 423(6939), 467.
[http://dx.doi.org/10.1038/423467a] [PMID: 12774078]
[28]
Morgenstern, B.; Michaelis, M.; Baer, P.C.; Doerr, H.W.; Cinatl, J., Jr Ribavirin and interferon-β synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines. Biochem. Biophys. Res. Commun., 2005, 326(4), 905-908.
[http://dx.doi.org/10.1016/j.bbrc.2004.11.128] [PMID: 15607755]
[29]
Khalili, J.S.; Zhu, H.; Mak, N.S.A.; Yan, Y.; Zhu, Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID-19. J. Med. Virol., 2020, 92(7), 740-746.
[http://dx.doi.org/10.1002/jmv.25798] [PMID: 32227493]
[30]
Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci., 2020, 253, 117592.
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[31]
Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; Diaz, G.; Cohn, A.; Fox, L.; Patel, A.; Gerber, S.I.; Kim, L.; Tong, S.; Lu, X.; Lindstrom, S.; Pallansch, M.A.; Weldon, W.C.; Biggs, H.M.; Uyeki, T.M.; Pillai, S.K. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med., 2020, 382(10), 929-936.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[32]
Agostini, M.L.; Andres, E.L.; Sims, A.C.; Graham, R.L.; Sheahan, T.P.; Lu, X.; Smith, E.C.; Case, J.B.; Feng, J.Y.; Jordan, R.; Ray, A.S.; Cihlar, T.; Siegel, D.; Mackman, R.L.; Clarke, M.O.; Baric, R.S.; Denison, M.R. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio, 2018, 9(2), e00221-18.
[http://dx.doi.org/10.1128/mBio.00221-18] [PMID: 29511076]
[33]
Lim, S.Y.; Guo, Z.; Liu, P.; McKay, L.G.A.; Storm, N.; Griffiths, A.; Qu, M.D.; Finberg, R.W.; Somasundaran, M.; Wang, J.P. Anti-SARS-CoV-2 activity of adamantanes in vitro and in animal models of infection. COVID, 2022, 2(11), 1551-1563.
[http://dx.doi.org/10.3390/covid2110111] [PMID: 37274537]
[34]
deVries, T.; Dentiste, A.; Handiwala, L.; Jacobs, D. Bioavailability and pharmacokinetics of once-daily amantadine extended-release tablets in healthy volunteers: results from three randomized, crossover, open-label, phase 1 studies. Neurol. Ther., 2019, 8(2), 449-460.
[http://dx.doi.org/10.1007/s40120-019-0144-1] [PMID: 31372936]
[35]
Zhou, Y.; Gammeltoft, K.A.; Galli, A.; Offersgaard, A.; Fahnøe, U.; Ramirez, S.; Bukh, J.; Gottwein, J.M. Efficacy of ion-channel inhibitors amantadine, memantine and rimantadine for the treatment of SARS-CoV-2 in vitro. Viruses, 2021, 13(10), 2082.
[http://dx.doi.org/10.3390/v13102082] [PMID: 34696509]
[36]
Rejdak, K.; Fiedor, P.; Bonek, R.; Goch, A.; Gala-Błądzińska, A.; Chełstowski, W.; Łukasiak, J.; Kiciak, S.; Dąbrowski, P.; Dec, M.; Król, Z.J.; Papuć, E.; Zasybska, A.; Segiet, A.; Grieb, P. The use of amantadine in the prevention of progression and treatment of COVID-19 symptoms in patients infected with the SARS-CoV-2 virus (COV-PREVENT): Study rationale and design. Contemp. Clin. Trials, 2022, 116, 106755.
[http://dx.doi.org/10.1016/j.cct.2022.106755] [PMID: 35390511]
[37]
Barczyk, A.; Czajkowska-Malinowska, M.; Farnik, M.; Barczyk, M.; Boda, Ł.; Cofta, S.; Duława, J.; Dyrbuś, M.; Harat, R.; Huk, M.; Kotecka, S.; Nahorecki, A.; Nasiłowski, J.; Naumnik, W.; Przybylski, G.; Słaboń-Willand, M.; Skoczyński, S.; Wita, K.; Zioło, G.; Kuna, P. Efficacy of oral amantadine among patients hospitalised with COVID-19: A randomised, double-blind, placebo-controlled, multicentre study. Respir. Med., 2023, 212, 107198.
[http://dx.doi.org/10.1016/j.rmed.2023.107198] [PMID: 36931576]
[38]
Keyser, L.A.; Karl, M.; Nafziger, A.N.; Bertino, J.S., Jr Comparison of central nervous system adverse effects of amantadine and rimantadine used as sequential prophylaxis of influenza A in elderly nursing home patients. Arch. Intern. Med., 2000, 160(10), 1485-1488.
[http://dx.doi.org/10.1001/archinte.160.10.1485] [PMID: 10826462]
[39]
Hayden, F.G.; Hoffman, H.E.; Spyker, D.A. Differences in side effects of amantadine hydrochloride and rimantadine hydrochloride relate to differences in pharmacokinetics. Antimicrob. Agents Chemother., 1983, 23(3), 458-464.
[http://dx.doi.org/10.1128/AAC.23.3.458] [PMID: 6847173]
[40]
Touret, F.; de Lamballerie, X. Of chloroquine and COVID-19. Antiviral Res., 2020, 177, 104762.
[http://dx.doi.org/10.1016/j.antiviral.2020.104762] [PMID: 32147496]
[41]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[42]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2(1), 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[43]
Boulware, D.R.; Pullen, M.F.; Bangdiwala, A.S.; Pastick, K.A.; Lofgren, S.M.; Okafor, E.C.; Skipper, C.P.; Nascene, A.A.; Nicol, M.R.; Abassi, M.; Engen, N.W.; Cheng, M.P.; LaBar, D.; Lother, S.A.; MacKenzie, L.J.; Drobot, G.; Marten, N.; Zarychanski, R.; Kelly, L.E.; Schwartz, I.S.; McDonald, E.G.; Rajasingham, R.; Lee, T.C.; Hullsiek, K.H. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N. Engl. J. Med., 2020, 383(6), 517-525.
[http://dx.doi.org/10.1056/NEJMoa2016638] [PMID: 32492293]
[44]
Bhimraj, A.; Morgan, R.L.; Shumaker, A.H.; Baden, L.; Cheng, V.C.C.; Edwards, K.M.; Gallagher, J.C.; Gandhi, R.T.; Muller, W.J.; Nakamura, M.M.; O’Horo, J.C.; Shafer, R.W.; Shoham, S.; Murad, M.H.; Mustafa, R.A.; Sultan, S.; Falck-Ytter, Y. Infectious diseases society of America guidelines on the treatment and management of patients with COVID-19. Clin. Infect. Dis., 2022, ciac724.
[http://dx.doi.org/10.1093/cid/ciac724] [PMID: 36063397]
[45]
Luo, P.; Liu, Y.; Qiu, L.; Liu, X.; Liu, D.; Li, J. Tocilizumab treatment in COVID-19: A single center experience. J. Med. Virol., 2020, 92(7), 814-818.
[http://dx.doi.org/10.1002/jmv.25801] [PMID: 32253759]
[46]
Stone, J.H.; Frigault, M.J.; Serling-Boyd, N.J.; Fernandes, A.D.; Harvey, L.; Foulkes, A.S.; Horick, N.K.; Healy, B.C.; Shah, R.; Bensaci, A.M.; Woolley, A.E.; Nikiforow, S.; Lin, N.; Sagar, M.; Schrager, H.; Huckins, D.S.; Axelrod, M.; Pincus, M.D.; Fleisher, J.; Sacks, C.A.; Dougan, M.; North, C.M.; Halvorsen, Y.D.; Thurber, T.K.; Dagher, Z.; Scherer, A.; Wallwork, R.S.; Kim, A.Y.; Schoenfeld, S.; Sen, P.; Neilan, T.G.; Perugino, C.A.; Unizony, S.H.; Collier, D.S.; Matza, M.A.; Yinh, J.M.; Bowman, K.A.; Meyerowitz, E.; Zafar, A.; Drobni, Z.D.; Bolster, M.B.; Kohler, M.; D’Silva, K.M.; Dau, J.; Lockwood, M.M.; Cubbison, C.; Weber, B.N.; Mansour, M.K. Efficacy of tocilizumab in patients hospitalized with Covid-19. N. Engl. J. Med., 2020, 383(24), 2333-2344.
[http://dx.doi.org/10.1056/NEJMoa2028836] [PMID: 33085857]
[47]
Salvarani, C.; Dolci, G.; Massari, M.; Merlo, D.F.; Cavuto, S.; Savoldi, L.; Bruzzi, P.; Boni, F.; Braglia, L.; Turrà, C.; Ballerini, P.F.; Sciascia, R.; Zammarchi, L.; Para, O.; Scotton, P.G.; Inojosa, W.O.; Ravagnani, V.; Salerno, N.D.; Sainaghi, P.P.; Brignone, A.; Codeluppi, M.; Teopompi, E.; Milesi, M.; Bertomoro, P.; Claudio, N.; Salio, M.; Falcone, M.; Cenderello, G.; Donghi, L.; Del Bono, V.; Colombelli, P.L.; Angheben, A.; Passaro, A.; Secondo, G.; Pascale, R.; Piazza, I.; Facciolongo, N.; Costantini, M. Effect of tocilizumab vs. standard care on clinical worsening in patients hospitalized with COVID-19 pneumonia: A randomized clinical trial. JAMA Intern. Med., 2021, 181(1), 24-31.
[http://dx.doi.org/10.1001/jamainternmed.2020.6615] [PMID: 33080005]
[48]
Hermine, O.; Mariette, X.; Tharaux, P.L.; Resche-Rigon, M.; Porcher, R.; Ravaud, P.; Bureau, S.; Dougados, M.; Tibi, A.; Azoulay, E.; Cadranel, J.; Emmerich, J.; Fartoukh, M.; Guidet, B.; Humbert, M.; Lacombe, K.; Mahevas, M.; Pene, F.; Pourchet-Martinez, V.; Schlemmer, F.; Yazdanpanah, Y.; Baron, G.; Perrodeau, E.; Vanhoye, D.; Kedzia, C.; Demerville, L.; Gysembergh-Houal, A.; Bourgoin, A.; Dalibey, S.; Resche-Rigon, M.; Raked, N.; Mameri, L.; Alary, S.; Hamiria, S.; Bariz, T.; Semri, H.; Hai, D.M.; Benafla, M.; Belloul, M.; Vauboin, P.; Flamand, S.; Pacheco, C.; Walter-Petrich, A.; Stan, E.; Benarab, S.; Nyanou, C.; Montlahuc, C.; Biard, L.; Charreteur, R.; Dupré, C.; Cardet, K.; Lehmann, B.; Baghli, K.; Madeleine, C.; D’Ortenzio, E.; Puéchal, O.; Semaille, C.; Savale, L.; Harrois, A.; Figueiredo, S.; Duranteau, J.; Anguel, N.; Monnet, X.; Richard, C.; Teboul, J-L.; Durand, P.; Tissieres, P.; Jevnikar, M.; Montani, D.; Pavy, S.; Noel, N.; Lambotte, O.; Escaut, L.; Jauréguiberry, S.; Baudry, E.; Verny, C.; Lefèvre, E.; Zaidan, M.; Le Tiec, C.L.T.; Verstuyft, C.V.; Roques, A-M.; Grimaldi, L.; Molinari, D.; Leprun, G.; Fourreau, A.; Cylly, L.; Virlouvet, M.; Meftali, R.; Fabre, S.; Licois, M.; Mamoune, A.; Boudali, Y.; Georgin-Lavialle, S.; Senet, P.; Soria, A.; Parrot, A.; François, H.; Rozensztajn, N.; Blin, E.; Choinier, P.; Camuset, J.; Rech, J-S.; Canellas, A.; Rolland-Debord, C.; Lemarié, N.; Belaube, N.; Nadal, M.; Siguier, M.; Petit-Hoang, C.; Chas, J.; Drouet, E.; Lemoine, M.; Phibel, A.; Aunay, L.; Bertrand, E.; Ravato, S.; Vayssettes, M.; Adda, A.; Wilpotte, C.; Thibaut, P.; Fillon, J.; Debrix, I.; Fellahi, S.; Bastard, J-P.; Lefèvre, G.; Fallet, V.; Gottenberg, J-E.; Hansmann, Y.; Andres, E.; Bayer, S.; Becker, G.; Blanc, F.; Brin, S.; Castelain, V.; Chatelus, E.; Chatron, E.; Collange, O.; Danion, F.; De Blay, F.; Demonsant, E.; Diemunsch, P.; Diemunsch, S.; Felten, R.; Goichot, B.; Greigert, V.; Guffroy, A.; Heger, B.; Hutt, A.; Kaeuffer, C.; Kassegne, L.; Korganow, A.S.; Le Borgne, P.; Lefebvre, N.; Martin, T.; Mertes, P.M.; Metzger, C.; Meyer, N.; Nisand, G.; Noll, E.; Oberlin, M.; Ohlmann-Caillard, S.; Poindron, V.; Pottecher, J.; Ruch, Y.; Sublon, C.; Tayebi, H.; Weill, F.; Mekinian, A.; Chopin, D.; Fain, O.; Garnier, M.; Krause Le Garrec, J.; Morgand, M.; Pacanowski, J.; Urbina, T.; Mcavoy, C.; Pereira, M.; Aratus, G.; Berard, L.; Simon, T.; Daguenel Nguyen, A.; Antignac, M.; Leplay, C.; Arlet, J-B.; Diehl, J-L.; Bellenfant, F.; Blanchard, A.; Buffet, A.; Cholley, B.; Fayol, A.; Flamarion, E.; Godier, A.; Gorget, T.; Hamada, S-R.; Hauw-Berlemont, C.; Hulot, J-S.; Lebeaux, D.; Livrozet, M.; Michon, A.; Neuschwander, A.; Penet, M-A.; Planquette, B.; Ranque, B.; Sanchez, O.; Volle, G.; Briois, S.; Cornic, M.; Elisee, V.; Jesuthasan, D.; Djadi-Prat, J.; Jouany, P.; Junquera, R.; Henriques, M.; Kebir, A.; Lehir, I.; Meunier, J.; Patin, F.; Paquet, V.; TréHan, A.; Vigna, V.; Sabatier, B.; Bergerot, D.; Jouve, C.; Knosp, C.; Lenoir, O.; Mahtal, N.; Resmini, L.; Lescure, X.; Ghosn, J.; Bachelard, A.; Bironne, T.; Borie, R.; Bounhiol, A.; Boussard, C.; Chauffier, J.; Chalal, S.; Chalal, L.; Chansombat, M.; Crespin, P.; Crestani, B.; Daconceicao, O.; Deconinck, L.; Dieude; Dossier, A.; Dubert, M.; Ducrocq, G.; Fuentes, A.; Gervais, A.; Gilbert, M.; Isernia, V.; Ismael, S.; Joly, V.; Julia, Z.; Lariven, S.; Le Gac, S.; Le Pluart, D.; Louni, F.; Ndiaye, A.; Papo, T.; Parisey, M.; Phung, B.; Pourbaix, A.; Rachline, A.; Rioux, C.; Sautereau, A.; Steg, G.; Tharini, H.; Valayer, S.; Vallois, D.; Vermes, P.; Volpe, T.; Nguyen, Y.; Honsel, V.; Weiss, E.; Codorniu, A.; Zarrouk, V.; De Lastours, V.; Uzzan, M.; Gamany, N.; Rahli, R.; Louis, Z.; Boutboul, D.; Galicier, L.; Amara, Y.; Archer, G.; Benattia, A.; Bergeron, A.; Bondeelle, L.; De Castro, N.; Clément, M.; Darmont, M.; Denis, B.; Dupin, C.; Feredj, E.; Feyeux, D.; Joseph, A.; Lengliné, E.; Le Guen, P.; Liégeon, G.; Lorillon, G.; Mabrouki, A.; Mariotte, E.; Martin De Frémont, G.; Mirouse, A.; Molina, J-M.; Peffault De Latour, R.; Oksenhendler, E.; Saussereau, J.; Tazi, A.; Tudesq, J-J.; Zafrani, L.; Brindele, I.; Bugnet, E.; Celli Lebras, K.; Chabert, J.; Djaghout, L.; Fauvaux, C.; Jegu, A.L.; Kozaliewicz, E.; Meunier, M.; Tremorin, M-T.; Davoine, C.; Madeleine, I.; Caillat-Zucman, S.; Delaugerre, C.; Morin, F.; Sene, D.; Burlacu, R.; Chousterman, B.; Megarbane, B.; Richette, P.; Riveline, J-P.; Frazier, A.; Vicaut, E.; Berton, L.; Hadjam, T.; Vasquez-Ibarra, M.A.; Jourdaine, C.; Jacob, A.; Smati, J.; Renaud, S.; Manivet, P.; Pernin, C.; Suarez, L.; Semerano, L.; Abad, S.; Benainous, R.; Bloch Queyrat, C.; Bonnet, N.; Brahmi, S.; Cailhol; Cohen, Y.; Comparon, C.; Cordel, H.; Dhote, R.; Dournon, N.; Duchemann, B.; Ebstein, N.; Giroux-Leprieur, B.; Goupil De Bouille, J.; Jacolot, A.; Nunes, H.; Oziel, J.; Rathouin, V.; Rigal, M.; Roulot, D.; Tantet, C.; Uzunhan, Y.; Costedoat-Chalumeau, N.; Ait Hamou, Z.; Benghanem, S.; Blanche, P.; Canoui, E.; Carlier, N.; Chaigne, B.; Contejean, A.; Dunogue, B.; Dupland, P.; Durel - Maurisse, A.; Gauzit, R.; Jaubert, P.; Joumaa, H.; Jozwiak, M.; Kerneis, S.; Lachatre, M.; Lafoeste, H.; Legendre, P.; Luong Nguyen, L.B.; Marey, J.; Morbieu, C.; Mouthon, L.; Nguyen, L.; Palmieri, L-J.; Regent, A.; Szwebel, T-A.; Terrier, B.; Guerin, C.; Zerbit, J.; Cheref, K.; Chitour, K.; Cisse, M.S.; Clarke, A.; Clavere, G.; Dusanter, I.; Gaudefroy, C.; Jallouli, M.; Kolta, S.; Le Bourlout, C.; Marin, N.; Menage, N.; Moores, A.; Peigney, I.; Pierron, C.; Saleh-Mghir, S.; Vallet, M.; Michel, M.; Melica, G.; Lelievre, J-D.; Fois, E.; Lim, P.; Matignon, M.; Guillaud, C.; Thiemele, A.; Schmitz, D.; Bouhris, M.; Belazouz, S.; Languille, L.; Mekontso-Dessaps, A.; Sadaoui, T.; Mayaux, J.; Cacoub, P.; Corvol, J-C.; Louapre, C.; Sambin, S.; Mariani, L-L.; Karachi, C.; Tubach, F.; Estellat, C.; Gimeno, L.; Martin, K.; Bah, A.; Keo, V.; Ouamri, S.; Messaoudi, Y.; Yelles, N.; Faye, P.; Cavelot, S.; Larcheveque, C.; Annonay, L.; Benhida, J.; Zahrate-Ghoul, A.; Hammal, S.; Belilita, R.; Lecronier, M.; Beurton, A.; Haudebourg, L.; Deleris, R.; Le Marec, J.; Virolle, S.; Nemlaghi, S.; Bureau, C.; Mora, P.; De Sarcus, M.; Clovet, O.; Duceau, B.; Grisot, P.H.; Pari, M.; Arzoine, J.; Clarac, U.; Faure, M.; Delemazure, J.; Decavele, M.; Morawiec, E.; Demoule, A.; Dres, M.; Vautier, M.; Allenbach, Y.; Benveniste, O.; Leroux, G.; Rigolet, A.; Guillaume-Jugnot, P.; Domont, F.; Desbois, A.C.; Comarmond, C.; Champtiaux, N.; Toquet, S.; Ghembaza, A.; Vieira, M.; Maalouf, G.; Boleto, G.; Ferfar, Y.; Charbonnier, F.; Aguilar, C.; Alby-Laurent, F.; Alyanakian, M-A.; Bakouboula, P.; Broissand, C.; Burger, C.; Campos-Vega, C.; Chavarot, N.; Choupeaux, L.; Elie, C.; Fournier, B.; Granville, S.; Issorat, E.; Rouzaud, C.; Vimpere, D.; Geri, G.; Derridj, N.; Sguiouar, N.; Meddah, H.; Djadel, M.; Chambrin-Lauvray, H.; Duclos-Vallée, J-C.; Saliba, F.; Sacleux, S-C.; Koumis, I.; Michot, J-M.; Stoclin, A.; Colomba, E.; Pommeret, F.; Willekens, C.; Da Silva, R.; Dejean, V.; Mekid, Y.; Ben-Mabrouk, I.; Pradon, C.; Drouard, L.; Camara-Clayette, V.; Morel, A.; Garcia, G.; Mohebbi, A.; Berbour, F.; Dehais, M.; Pouliquen, A-L.; Klasen, A.; Soyez-Herkert, L.; London, J.; Keroumi, Y.; Guillot, E.; Grailles, G.; El Amine, Y.; Defrancq, F.; Fodil, H.; Bouras, C.; Dautel, D.; Gambier, N.; Dieye, T.; Bienvenu, B.; Lancon, V.; Lecomte, L.; Beziriganyan, K.; Asselate, B.; Allanic, L.; Kiouris, E.; Legros, M-H.; Lemagner, C.; Martel, P.; Provitolo, V.; Ackermann, F.; Le Marchand, M.; Clan Hew Wai, A.; Fremont, D.; Coupez, E.; Adda, M.; Duée, F.; Bernard, L.; Gros, A.; Henry, E.; Courtin, C.; Pattyn, A.; Guinot, P-G.; Bardou, M.; Maurer, A.; Jambon, J.; Cransac, A.; Pernot, C.; Mourvillier, B.; Servettaz, A.; Deslée, G.; Wynckel, A.; Benoit, P.; Marquis, E.; Roux, D.; Gernez, C.; Yelnik, C.; Poissy, J.; Nizard, M.; Denies, F.; Gros, H.; Mourad, J-J.; Sacco, E.; Renet, S. Effect of tocilizumab vs usual care in adults hospitalized with COVID-19 and moderate or severe pneumonia: A randomized clinical trial. JAMA Intern. Med., 2021, 181(1), 32-40.
[http://dx.doi.org/10.1001/jamainternmed.2020.6820] [PMID: 33080017]
[49]
Gordon, A.C.; Angus, D.C.; Derde, L.P.G. Interleukin-6 receptor antagonists in critically Ill patients with Covid-19. N. Engl. J. Med., 2021, 385(12), 1147-1149.
[http://dx.doi.org/10.1056/NEJMc2108482] [PMID: 34407335]
[50]
Jeronimo, C.M.P.; Farias, M.E.L.; Val, F.F.A.; Sampaio, V.S.; Alexandre, M.A.A.; Melo, G.C.; Safe, I.P.; Borba, M.G.S.; Netto, R.L.A.; Maciel, A.B.S.; Neto, J.R.S.; Oliveira, L.B.; Figueiredo, E.F.G.; Oliveira Dinelly, K.M.; de Almeida Rodrigues, M.G.; Brito, M.; Mourão, M.P.G.; Pivoto João, G.A.; Hajjar, L.A.; Bassat, Q.; Romero, G.A.S.; Naveca, F.G.; Vasconcelos, H.L.; de Araújo Tavares, M.; Brito-Sousa, J.D.; Costa, F.T.M.; Nogueira, M.L.; Baía-da-Silva, D.C.; Xavier, M.S.; Monteiro, W.M.; Lacerda, M.V.G.; de Lemos Vasconcelos, A.; Praia Marins, A.F.; de Oliveira Trindade, A.; Mendes Záu, A.S.; de Oliveira, A.C.; Azevedo Furtado, A.C.; Coelho Rocha, A.P.; da Silva Souza, A.; de Souza Dias, A.; Belém, A.; dos Santos, A.G.R.; da Silva Sousa, A.M.; da Silva, B.F.; Franco, B.L.; da Silva, B.M.; da Costa, B.L.G.; Sato Barros do Amaral, C.M.S.; Judice, C.C.; de Morais, C.E.P.; Camilo, C.C.; Sena da Silva, D.S.; Gomes Duarte, D.C.; da Silva, E.G.N.; da Silva Lemos, E.; de Fátima Ponte Frota, E.; do Nascimento, E.F.; de Almeida, E.S.; Marques, E.A.; de Almeida, E.M.M.; da Silva, E.L.; dos Santos, E.G.; da Silva Oliveira, E.; Martins Shimizu, F.M.; de Souza, F.R.F.; da Silva do Vale, F.; dos Santos de Almeida Lima, F.; da Fonseca, F.H.J.; Fontenelle, F.A.; de Azevedo Furtado, F.; Da Silva Pereira, G.; Bezerra, G.A.; Maciel Salazar, G.K.; da Silva Pereira, H.; de Melo, H.F.; Oliveira, I.N.; Pereira Filho, I.V.; Gomes, J.V.; e Silva Rosa, J.; Lemos, J.M.; Brutus, J.N.; Pessoa, K.P.; Costa Rodrigues, L.D.; Barros Cirino, L.E.; Mourão Filho, L.F.; Moura, L.; Barbosa, L.R.P.; de Souza, L.P.; Oliveira, L.B.; de Lima Ferreira, L.C.; dos Santos, M.M.; da Silva, M.V.R.; Rodrigues, M.P.; de Menezes, M.T.; dos Santos Mota, M.M.; Freire, M.; Corrêa, N.F.; Rocha, N.M.; Bittencourt, N.; de Melo Silva, N.G.; de Oliveira Saraiva, P.; de Sousa Monteiro, Q.; dos Santos, R.T.; Freire, R.S.; de Araújo Pinto, R.A.; Ferreira, R.B.; de Lima, R.S.; de Melo, R.F.T.; Saenz, S.T.; Alvarez Fernandes, S.S.; Vítor-Silva, S.; de Oliveira, T.M.R.; Tavella, T.A.; Câmara, T.T.; Santos, T.C.; Pinto, T.S.; dos Santos, T.W.R.; do Nascimento, V.A.; Sousa, B.W.P.; de Melo, W.F.; Salgado, S.W.B. Methylprednisolone as adjunctive therapy for patients hospitalized with coronavirus disease 2019 (COVID-19; Metcovid): A randomized, double-blind, phase IIb, placebo-controlled trial. Clin. Infect. Dis., 2021, 72(9), e373-e381.
[http://dx.doi.org/10.1093/cid/ciaa1177] [PMID: 32785710]
[51]
Favalli, E.G.; Ingegnoli, F.; De Lucia, O.; Cincinelli, G.; Cimaz, R.; Caporali, R. COVID-19 infection and rheumatoid arthritis: Faraway, so close! Autoimmun. Rev., 2020, 19(5), 102523.
[http://dx.doi.org/10.1016/j.autrev.2020.102523] [PMID: 32205186]
[52]
Ma, J.; Muheem, A.; Rizvi, M. Coronavirus (COVID-19): History, current knowledge and pipeline medications. Int. J. Pharm., 2020, 4(1), 1-9.
[http://dx.doi.org/10.31531/2581-3080.1000140]
[53]
Pei, J.; Sekellick, M.J.; Marcus, P.I.; Choi, I.S.; Collisson, E.W. Chicken interferon type I inhibits infectious bronchitis virus replication and associated respiratory illness. J. Interferon Cytokine Res., 2001, 21(12), 1071-1077.
[http://dx.doi.org/10.1089/107999001317205204] [PMID: 11798465]
[54]
Chen, F.; Chan, K.H.; Jiang, Y.; Kao, R.Y.T.; Lu, H.T.; Fan, K.W.; Cheng, V.C.C.; Tsui, W.H.W.; Hung, I.F.N.; Lee, T.S.W.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J. Clin. Virol., 2004, 31(1), 69-75.
[http://dx.doi.org/10.1016/j.jcv.2004.03.003] [PMID: 15288617]
[55]
Kuri, T.; Zhang, X.; Habjan, M.; Martínez-Sobrido, L.; García-Sastre, A.; Yuan, Z.; Weber, F. Interferon priming enables cells to partially overturn the SARS coronavirus-induced block in innate immune activation. J. Gen. Virol., 2009, 90(11), 2686-2694.
[http://dx.doi.org/10.1099/vir.0.013599-0] [PMID: 19625461]
[56]
Tan, E.L.C.; Ooi, E.E.; Lin, C.Y.; Tan, H.C.; Ling, A.E.; Lim, B.; Stanton, L.W. Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. Emerg. Infect. Dis., 2004, 10(4), 581-586.
[http://dx.doi.org/10.3201/eid1004.030458] [PMID: 15200845]
[57]
Manns, M.P.; McHutchison, J.G.; Gordon, S.C.; Rustgi, V.K.; Shiffman, M.; Reindollar, R.; Goodman, Z.D.; Koury, K.; Ling, M.H.; Albrecht, J.K. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: A randomised trial. Lancet, 2001, 358(9286), 958-965.
[http://dx.doi.org/10.1016/S0140-6736(01)06102-5] [PMID: 11583749]
[58]
Deng, X.; Yu, X.; Pei, J. Regulation of interferon production as a potential strategy for COVID-19 treatment. arXiv, 2020, 2003.00751.
[59]
Omrani, A.S.; Saad, M.M.; Baig, K.; Bahloul, A.; Abdul-Matin, M.; Alaidaroos, A.Y.; Almakhlafi, G.A.; Albarrak, M.M.; Memish, Z.A.; Albarrak, A.M. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: A retrospective cohort study. Lancet Infect. Dis., 2014, 14(11), 1090-1095.
[http://dx.doi.org/10.1016/S1473-3099(14)70920-X] [PMID: 25278221]
[60]
Kalil, A.C. Treating COVID-19—off-label drug use, compassionate use, and randomized clinical trials during pandemics. JAMA, 2020, 323(19), 1897-1898.
[http://dx.doi.org/10.1001/jama.2020.4742] [PMID: 32208486]
[61]
Gautret, P.; Lagier, J.C.; Honoré, S.; Hoang, V.T.; Colson, P.; Raoult, D.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Dupont, H.T. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open label non-randomized clinical trial revisited. Int. J. Antimicrob. Agents, 2021, 57(1), 106243.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106243] [PMID: 33408014]
[62]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Sevestre, J.; Mailhe, M.; Doudier, B.; Aubry, C.; Amrane, S.; Seng, P.; Hocquart, M.; Eldin, C.; Finance, J.; Vieira, V.E.; Tissot-Dupont, H.T.; Honoré, S.; Stein, A.; Million, M.; Colson, P.; La Scola, B.; Veit, V.; Jacquier, A.; Deharo, J.C.; Drancourt, M.; Fournier, P.E.; Rolain, J.M.; Brouqui, P.; Raoult, D. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med. Infect. Dis., 2020, 34, 101663.
[http://dx.doi.org/10.1016/j.tmaid.2020.101663] [PMID: 32289548]
[63]
Javelot, H.; El-Hage, W.; Meyer, G.; Becker, G.; Michel, B.; Hingray, C. COVID-19 and (hydroxy)chloroquine–azithromycin combination: Should we take the risk for our patients? Br. J. Clin. Pharmacol., 2020, 86(6), 1176-1177.
[http://dx.doi.org/10.1111/bcp.14335] [PMID: 32350872]
[64]
Gbinigie, K.; Frie, K. Should azithromycin be used to treat COVID-19? A rapid review. BMJ open, 2020, 4(2), bjgpopen20X101094.
[http://dx.doi.org/10.3399/bjgpopen20X101094]
[65]
Andreani, J.; Le Bideau, M.; Duflot, I.; Jardot, P.; Rolland, C.; Boxberger, M.; Wurtz, N.; Rolain, J.M.; Colson, P.; La Scola, B.; Raoult, D. In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microb. Pathog., 2020, 145, 104228.
[http://dx.doi.org/10.1016/j.micpath.2020.104228] [PMID: 32344177]
[66]
Arikata, M.; Itoh, Y.; Shichinohe, S.; Nakayama, M.; Ishigaki, H.; Kinoshita, T.; Le, M.Q.; Kawaoka, Y.; Ogasawara, K.; Shimizu, T. Efficacy of clarithromycin against H5N1 and H7N9 avian influenza a virus infection in cynomolgus monkeys. Antiviral Res., 2019, 171, 104591.
[http://dx.doi.org/10.1016/j.antiviral.2019.104591] [PMID: 31421167]
[67]
Takahashi, E.; Indalao, I.L.; Sawabuchi, T.; Mizuno, K.; Sakai, S.; Kimoto, T.; Kim, H.; Kido, H. Clarithromycin suppresses induction of monocyte chemoattractant protein-1 and matrix metalloproteinase-9 and improves pathological changes in the lungs and heart of mice infected with influenza A virus. Comp. Immunol. Microbiol. Infect. Dis., 2018, 56, 6-13.
[http://dx.doi.org/10.1016/j.cimid.2017.11.002] [PMID: 29406285]
[68]
Amsden, G. Erythromycin, clarithromycin, and azithromycin: Are the differences real? Clin. Ther., 1996, 18(1), 56-72.
[http://dx.doi.org/10.1016/S0149-2918(96)80179-2] [PMID: 8851453]
[69]
Millán-Oñate, J.; Millan, W.; Mendoza, L.A.; Sánchez, C.G.; Fernandez-Suarez, H.; Bonilla-Aldana, D.K.; Rodríguez-Morales, A.J. Successful recovery of COVID-19 pneumonia in a patient from Colombia after receiving chloroquine and clarithromycin. Ann. Clin. Microbiol. Antimicrob., 2020, 19(1), 16.
[http://dx.doi.org/10.1186/s12941-020-00358-y] [PMID: 32331519]
[70]
Zhou, N.; Pan, T.; Zhang, J.; Li, Q.; Zhang, X.; Bai, C.; Huang, F.; Peng, T.; Zhang, J.; Liu, C.; Tao, L.; Zhang, H. Glycopeptide antibiotics potently inhibit cathepsin l in the late endosome/lysosome and block the entry of ebola virus, middle east respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV). J. Biol. Chem., 2016, 291(17), 9218-9232.
[http://dx.doi.org/10.1074/jbc.M116.716100] [PMID: 26953343]
[71]
Wang, Y.; Cui, R.; Li, G.; Gao, Q.; Yuan, S.; Altmeyer, R.; Zou, G. Teicoplanin inhibits Ebola pseudovirus infection in cell culture. Antiviral Res., 2016, 125, 1-7.
[http://dx.doi.org/10.1016/j.antiviral.2015.11.003] [PMID: 26585243]
[72]
Baron, S.A.; Devaux, C.; Colson, P.; Raoult, D.; Rolain, J.M. Teicoplanin: An alternative drug for the treatment of COVID-19? Int. J. Antimicrob. Agents, 2020, 55(4), 105944.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105944] [PMID: 32179150]
[73]
Ceccarelli, G.; Alessandri, F.; d’Ettorre, G.; Borrazzo, C.; Spagnolello, O.; Oliva, A.; Ruberto, F.; Mastroianni, C.M.; Pugliese, F.; Venditti, M. Is teicoplanin a complementary treatment option for COVID-19? The question remains. Int. J. Antimicrob. Agents, 2020, 56(2), 106029.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106029] [PMID: 32454071]
[74]
Fredeking, T.; Zavala-Castro, J.; González-Martínez, P.; Moguel-Rodríguez, W.; Sanchez, E.; Foster, M.; Diaz-Quijano, F. Dengue patients treated with doxycycline showed lower mortality associated to a reduction in IL-6 and TNF levels. Recent Patents Anti-Infect. Drug Disc., 2015, 10(1), 51-58.
[http://dx.doi.org/10.2174/1574891X10666150410153839] [PMID: 25858261]
[75]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[76]
Quartuccio, L.; Semerano, L.; Benucci, M.; Boissier, M.C.; De Vita, S. Urgent avenues in the treatment of COVID-19: Targeting downstream inflammation to prevent catastrophic syndrome. Joint Bone Spine, 2020, 87(3), 191-193.
[http://dx.doi.org/10.1016/j.jbspin.2020.03.011] [PMID: 32321634]
[77]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[78]
De Clercq, E. Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Rev. Anti Infect. Ther., 2006, 4(2), 291-302.
[http://dx.doi.org/10.1586/14787210.4.2.291] [PMID: 16597209]
[79]
Wang, J. Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. J. Chem. Inf. Model., 2020, 60(6), 3277-3286.
[http://dx.doi.org/10.1021/acs.jcim.0c00179] [PMID: 32315171]
[80]
Thiem, U.; Heppner, H.J.; Pientka, L. Elderly patients with community-acquired pneumonia: optimal treatment strategies. Drugs Aging, 2011, 28(7), 519-537.
[http://dx.doi.org/10.2165/11591980-000000000-00000] [PMID: 21721597]
[81]
Durojaiye, A.B.; Clarke, J.R.D.; Stamatiades, G.A.; Wang, C. Repurposing cefuroxime for treatment of COVID-19: A scoping review of in silico studies. J. Biomol. Struct. Dyn., 2021, 39(12), 4547-4554.
[http://dx.doi.org/10.1080/07391102.2020.1777904] [PMID: 32538276]
[82]
Almutairi, A.S.; Abunurah, H.; Hadi Alanazi, A.; Alenezi, F.K.; Nagy, H.; Saad Almutairi, N.; Wells, M.; Alawam, A.; Alqahtani, M.M. The immunological response among COVID-19 patients with acute respiratory distress syndrome. J. Infect. Public Health, 2021, 14(7), 954-959.
[http://dx.doi.org/10.1016/j.jiph.2021.05.007] [PMID: 34130119]
[83]
van Paassen, J.; Vos, J.S.; Hoekstra, E.M.; Neumann, K.M.I.; Boot, P.C.; Arbous, S.M. Corticosteroid use in COVID-19 patients: A systematic review and meta-analysis on clinical outcomes. Crit. Care, 2020, 24(1), 696.
[http://dx.doi.org/10.1186/s13054-020-03400-9] [PMID: 33317589]
[84]
Cheng, B.; Ma, J.; Yang, Y.; Shao, T.; Zhao, B.; Zeng, L. Systemic corticosteroid administration in coronavirus disease 2019 outcomes: An umbrella meta-analysis incorporating both mild and pulmonary fibrosis–manifested severe disease. Front. Pharmacol., 2021, 12, 670170.
[http://dx.doi.org/10.3389/fphar.2021.670170] [PMID: 34122093]
[85]
Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; Prudon, B.; Green, C.; Felton, T.; Chadwick, D.; Rege, K.; Fegan, C.; Chappell, L.C.; Faust, S.N.; Jaki, T.; Jeffery, K.; Montgomery, A.; Rowan, K.; Juszczak, E.; Baillie, J.K.; Haynes, R.; Landray, M.J. Dexamethasone in hospitalized patients with covid-19. N. Engl. J. Med., 2021, 384(8), 693-704.
[http://dx.doi.org/10.1056/NEJMoa2021436] [PMID: 32678530]
[86]
Kluge, S.; Janssens, U.; Welte, T.; Weber-Carstens, S.; Schälte, G.; Spinner, C.D.; Malin, J.J.; Gastmeier, P.; Langer, F.; Wepler, M.; Westhoff, M.; Pfeifer, M.; Rabe, K.F.; Hoffmann, F.; Böttiger, B.W.; Weinmann-Menke, J.; Kersten, A.; Berlit, P.; Haase, R.; Marx, G.; Karagiannidis, C. S2k-Leitlinie – empfehlungen zur stationären therapie von patienten mit COVID-19. Pneumologie, 2021, 75(2), 88-112.
[http://dx.doi.org/10.1055/a-1334-1925] [PMID: 33450783]
[87]
Daminova, N. The European medicines agency ‘transparency’ policies, the CJEU and COVID-19: Do the CFREU provisions retain any relevance? MTA LAW WORKING PAPERS, 2021, 1(8), 1-32.
[88]
Bartoletti, M.; Azap, O.; Barac, A.; Bussini, L.; Ergonul, O.; Krause, R.; Paño-Pardo, J.R.; Power, N.R.; Sibani, M.; Szabo, B.G.; Tsiodras, S.; Verweij, P.E.; Zollner-Schwetz, I.; Rodríguez-Baño, J. ESCMID COVID-19 living guidelines: Drug treatment and clinical management. Clin Microbiol Infect, 2022, 28(2), 222-238.
[http://dx.doi.org/10.1016/j.cmi.2021.11.007]
[89]
Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; Zhang, Y.; Song, J.; Wang, S.; Chao, Y.; Yang, Z.; Xu, J.; Zhou, X.; Chen, D.; Xiong, W.; Xu, L.; Zhou, F.; Jiang, J.; Bai, C.; Zheng, J.; Song, Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med., 2020, 180(7), 934-943.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[90]
Russell, C.D.; Millar, J.E.; Baillie, J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet, 2020, 395(10223), 473-475.
[http://dx.doi.org/10.1016/S0140-6736(20)30317-2] [PMID: 32043983]
[91]
Bahl, A.; Johnson, S.; Chen, N.W. Timing of corticosteroids impacts mortality in hospitalized COVID-19 patients. Intern. Emerg. Med., 2021, 16(6), 1593-1603.
[http://dx.doi.org/10.1007/s11739-021-02655-6] [PMID: 33547620]
[92]
Bretagne, S.; Sitbon, K.; Botterel, F.; Dellière, S.; Letscher-Bru, V.; Chouaki, T.; Bellanger, A.P.; Bonnal, C.; Fekkar, A.; Persat, F.; Costa, D.; Bourgeois, N.; Dalle, F.; Lussac-Sorton, F.; Paugam, A.; Cassaing, S.; Hasseine, L.; Huguenin, A.; Guennouni, N.; Mazars, E.; Le Gal, S.; Sasso, M.; Brun, S.; Cadot, L.; Cassagne, C.; Cateau, E.; Gangneux, J.P.; Moniot, M.; Roux, A.L.; Tournus, C.; Desbois-Nogard, N.; Le Coustumier, A.; Moquet, O.; Alanio, A.; Dromer, F. COVID-19-associated pulmonary aspergillosis, fungemia, and pneumocystosis in the intensive care unit: A retrospective multicenter observational cohort during the first French pandemic wave. Microbiol. Spectr., 2021, 9(2), e01138-21.
[http://dx.doi.org/10.1128/Spectrum.01138-21] [PMID: 34668768]
[93]
Li, H.; Chen, C.; Hu, F.; Wang, J.; Zhao, Q.; Gale, R.P.; Liang, Y. Impact of corticosteroid therapy on outcomes of persons with SARS-CoV-2, SARS-CoV, or MERS-CoV infection: A systematic review and meta-analysis. Leukemia, 2020, 34(6), 1503-1511.
[http://dx.doi.org/10.1038/s41375-020-0848-3] [PMID: 32372026]
[94]
Budhathoki, P.; Shrestha, D.B.; Rawal, E.; Khadka, S. Corticosteroids in COVID-19: Is it rational? A systematic review and meta-analysis. SN Compr. Clin. Med., 2020, 2(12), 2600-2620.
[http://dx.doi.org/10.1007/s42399-020-00515-6] [PMID: 33103063]
[95]
Day, M. Covid-19: European drugs agency to review safety of ibuprofen. BMJ, 2020, 368, m1168.
[http://dx.doi.org/10.1136/bmj.m1168] [PMID: 32205306]
[96]
Little, P. Non-steroidal anti-inflammatory drugs and covid-19. BMJ, 2020, 368, m1185.
[http://dx.doi.org/10.1136/bmj.m1185] [PMID: 32220865]
[97]
McManus, N.; Offman, R.; Oetman, J. Emergency department management of COVID-19: An evidence-based approach. West. J. Emerg. Med., 2020, 21(6), 32-44.
[http://dx.doi.org/10.5811/westjem.2020.8.48288] [PMID: 33052814]
[98]
Amici, C.; Caro, A.D.; Ciucci, A.; Chiappa, L.; Castilletti, C.; Martella, V.; Decaro, N.; Buonavoglia, C.; Capobianchi, M.R.; Santoro, M.G. Indomethacin has a potent antiviral activity against SARS coronavirus. Antivir. Ther., 2006, 11(8), 1021-1030.
[http://dx.doi.org/10.1177/135965350601100803] [PMID: 17302372]
[99]
Patel, A.B.; Verma, A. COVID-19 and angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: what is the evidence? JAMA, 2020, 323(18), 1769-1770.
[http://dx.doi.org/10.1001/jama.2020.4812] [PMID: 32208485]
[100]
Sommerstein, R.; Kochen, M.M.; Messerli, F.H.; Gräni, C. Coronavirus disease 2019 (COVID-19): Do angiotensin-converting enzyme inhibitors/angiotensin receptor blockers have a biphasic effect? J. Am. Heart Assoc., 2020, 9(7), e016509.
[http://dx.doi.org/10.1161/JAHA.120.016509] [PMID: 32233753]
[101]
Warner, F.J.; Smith, A.I.; Hooper, N.M.; Turner, A.J. Angiotensin-converting enzyme-2: A molecular and cellular perspective. Cell. Mol. Life Sci., 2004, 61(21), 2704-2713.
[http://dx.doi.org/10.1007/s00018-004-4240-7] [PMID: 15549171]
[102]
Dimitrov, D.S. The secret life of ACE2 as a receptor for the SARS virus. Cell, 2003, 115(6), 652-653.
[http://dx.doi.org/10.1016/S0092-8674(03)00976-0] [PMID: 14675530]
[103]
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[104]
Simmons, G.; Reeves, J.D.; Rennekamp, A.J.; Amberg, S.M.; Piefer, A.J.; Bates, P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc. Natl. Acad. Sci., 2004, 101(12), 4240-4245.
[http://dx.doi.org/10.1073/pnas.0306446101] [PMID: 15010527]
[105]
Yeung, K.S.; Yamanaka, G.A.; Meanwell, N.A. Severe acute respiratory syndrome coronavirus entry into host cells: Opportunities for therapeutic intervention. Med. Res. Rev., 2006, 26(4), 414-433.
[http://dx.doi.org/10.1002/med.20055] [PMID: 16521129]
[106]
Diaz, J.H. Hypothesis: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. J. Travel Med., 2020, 27(3), taaa041.
[http://dx.doi.org/10.1093/jtm/taaa041] [PMID: 32186711]
[107]
Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun., 2020, 109, 102433.
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[108]
Hussain, A.; Bhowmik, B.; do Vale Moreira, N.C. COVID-19 and diabetes: Knowledge in progress. Diabetes Res. Clin. Pract., 2020, 162, 108142.
[http://dx.doi.org/10.1016/j.diabres.2020.108142] [PMID: 32278764]
[109]
Muniyappa, R.; Gubbi, S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am. J. Physiol. Endocrinol. Metab., 2020, 318(5), E736-E741.
[http://dx.doi.org/10.1152/ajpendo.00124.2020] [PMID: 32228322]
[110]
Allard, R.; Leclerc, P.; Tremblay, C.; Tannenbaum, T.N. Diabetes and the severity of pandemic influenza A (H1N1) infection. Diabetes Care, 2010, 33(7), 1491-1493.
[http://dx.doi.org/10.2337/dc09-2215] [PMID: 20587722]
[111]
Targher, G.; Mantovani, A.; Wang, X.B.; Yan, H.D.; Sun, Q.F.; Pan, K.H.; Byrne, C.D.; Zheng, K.I.; Chen, Y.P.; Eslam, M.; George, J.; Zheng, M.H. Patients with diabetes are at higher risk for severe illness from COVID-19. Diabetes Metab., 2020, 46(4), 335-337.
[http://dx.doi.org/10.1016/j.diabet.2020.05.001] [PMID: 32416321]
[112]
Fadini, G.P.; Morieri, M.L.; Longato, E.; Avogaro, A. Prevalence and impact of diabetes among people infected with SARS-CoV-2. J. Endocrinol. Invest., 2020, 43(6), 867-869.
[http://dx.doi.org/10.1007/s40618-020-01236-2] [PMID: 32222956]
[113]
Guo, W.; Li, M.; Dong, Y.; Zhou, H.; Zhang, Z.; Tian, C.; Qin, R.; Wang, H.; Shen, Y.; Du, K.; Zhao, L.; Fan, H.; Luo, S.; Hu, D. Diabetes is a risk factor for the progression and prognosis of COVID -19. Diabetes Metab. Res. Rev., 2020, 36(7), e3319.
[http://dx.doi.org/10.1002/dmrr.3319] [PMID: 32233013]
[114]
Stoian, A.P.; Banerjee, Y.; Rizvi, A.A.; Rizzo, M. Diabetes and the COVID-19 pandemic: How insights from recent experience might guide future management. Metab. Syndr. Relat. Disord., 2020, 18(4), 173-175.
[http://dx.doi.org/10.1089/met.2020.0037] [PMID: 32271125]
[115]
Bornstein, S.R.; Dalan, R.; Hopkins, D.; Mingrone, G.; Boehm, B.O. Endocrine and metabolic link to coronavirus infection. Nat. Rev. Endocrinol., 2020, 16(6), 297-298.
[http://dx.doi.org/10.1038/s41574-020-0353-9] [PMID: 32242089]
[116]
Sardu, C.; D’Onofrio, N.; Balestrieri, M.L.; Barbieri, M.; Rizzo, M.R.; Messina, V.; Maggi, P.; Coppola, N.; Paolisso, G.; Marfella, R. Outcomes in patients with hyperglycemia affected by COVID-19: can we do more on glycemic control? Diabetes Care, 2020, 43(7), 1408-1415.
[http://dx.doi.org/10.2337/dc20-0723] [PMID: 32430456]
[117]
Solerte, S.B.; D’Addio, F.; Trevisan, R.; Lovati, E.; Rossi, A.; Pastore, I.; Dell’Acqua, M.; Ippolito, E.; Scaranna, C.; Bellante, R.; Galliani, S.; Dodesini, A.R.; Lepore, G.; Geni, F.; Fiorina, R.M.; Catena, E.; Corsico, A.; Colombo, R.; Mirani, M.; De Riva, C.; Oleandri, S.E.; Abdi, R.; Bonventre, J.V.; Rusconi, S.; Folli, F.; Di Sabatino, A.; Zuccotti, G.; Galli, M.; Fiorina, P. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID-19: A multicenter, case-control, retrospective, observational study. Diabetes Care, 2020, 43(12), 2999-3006.
[http://dx.doi.org/10.2337/dc20-1521] [PMID: 32994187]
[118]
Sun, Q.; Li, J.; Gao, F. New insights into insulin: The anti-inflammatory effect and its clinical relevance. World J. Diabetes, 2014, 5(2), 89-96.
[http://dx.doi.org/10.4239/wjd.v5.i2.89] [PMID: 24765237]
[119]
Salem, E.S.B.; Grobe, N.; Elased, K.M. Insulin treatment attenuates renal ADAM17 and ACE2 shedding in diabetic Akita mice. Am. J. Physiol. Renal Physiol., 2014, 306(6), F629-F639.
[http://dx.doi.org/10.1152/ajprenal.00516.2013] [PMID: 24452639]
[120]
Chen, Y.; Yang, D.; Cheng, B.; Chen, J.; Peng, A.; Yang, C.; Liu, C.; Xiong, M.; Deng, A.; Zhang, Y.; Zheng, L.; Huang, K. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care, 2020, 43(7), 1399-1407.
[http://dx.doi.org/10.2337/dc20-0660] [PMID: 32409498]
[121]
Xian, H.; Liu, Y.; Nilsson, A.R.; Gatchalian, R.; Crother, T.R.; Tourtellotte, W.G.; Zhang, Y.; Aleman-Muench, G.R.; Lewis, G.; Chen, W. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity, 2021, 54(7), 1463-1477. e1411..
[http://dx.doi.org/10.1016/j.immuni.2021.05.004]
[122]
Bramante, C.T.; Ingraham, N.E.; Murray, T.A.; Marmor, S.; Hovertsen, S.; Gronski, J.; McNeil, C.; Feng, R.; Guzman, G.; Abdelwahab, N.; King, S.; Tamariz, L.; Meehan, T.; Pendleton, K.M.; Benson, B.; Vojta, D.; Tignanelli, C.J. Metformin and risk of mortality in patients hospitalised with COVID-19: A retrospective cohort analysis. Lancet Healthy Longev., 2021, 2(1), e34-e41.
[http://dx.doi.org/10.1016/S2666-7568(20)30033-7] [PMID: 33521772]
[123]
Lalau, J.D.; Al-Salameh, A.; Hadjadj, S.; Goronflot, T.; Wiernsperger, N.; Pichelin, M.; Allix, I.; Amadou, C.; Bourron, O.; Duriez, T.; Gautier, J.F.; Dutour, A.; Gonfroy, C.; Gouet, D.; Joubert, M.; Julier, I.; Larger, E.; Marchand, L.; Marre, M.; Meyer, L.; Olivier, F.; Prevost, G.; Quiniou, P.; Raffaitin-Cardin, C.; Roussel, R.; Saulnier, P.J.; Seret-Begue, D.; Thivolet, C.; Vatier, C.; Desailloud, R.; Wargny, M.; Gourdy, P.; Cariou, B. Metformin use is associated with a reduced risk of mortality in patients with diabetes hospitalised for COVID-19. Diabetes Metab., 2021, 47(5), 101216.
[http://dx.doi.org/10.1016/j.diabet.2020.101216] [PMID: 33309936]
[124]
Luo, P.; Qiu, L.; Liu, Y.; Liu, X.; Zheng, J.; Xue, H.; Liu, W.; Liu, D.; Li, J. Metformin treatment was associated with decreased mortality in COVID-19 patients with diabetes in a retrospective analysis. Am. J. Trop. Med. Hyg., 2020, 103(1), 69-72.
[http://dx.doi.org/10.4269/ajtmh.20-0375] [PMID: 32446312]
[125]
Apostolova, N.; Iannantuoni, F.; Gruevska, A.; Muntane, J.; Rocha, M.; Victor, V.M. Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions. Redox Biol., 2020, 34, 101517.
[http://dx.doi.org/10.1016/j.redox.2020.101517] [PMID: 32535544]
[126]
Cheng, X.; Liu, Y.-M.; Li, H.; Zhang, X.; Lei, F.; Qin, J.-J.; Chen, Z.; Deng, K.-Q.; Lin, L.; Chen, M.-M. Metformin is associated with higher incidence of acidosis, but not mortality, in individuals with COVID-19 and pre-existing type 2 diabetes. Cell metabolism, 2020, 32(4), 537-547. e533..
[http://dx.doi.org/10.1016/j.cmet.2020.08.013]
[127]
Gao, Y.; Liu, T.; Zhong, W.; Liu, R.; Zhou, H.; Huang, W.; Zhang, W. Risk of metformin in patients with type 2 diabetes with COVID-19: A preliminary retrospective report. Clin. Transl. Sci., 2020, 13(6), 1055-1059.
[http://dx.doi.org/10.1111/cts.12897] [PMID: 32955785]
[128]
Apicella, M.; Campopiano, M.C.; Mantuano, M.; Mazoni, L.; Coppelli, A.; Del Prato, S. COVID-19 in people with diabetes: understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol., 2020, 8(9), 782-792.
[http://dx.doi.org/10.1016/S2213-8587(20)30238-2] [PMID: 32687793]
[129]
Katsiki, N.; Banach, M.; Mikhailidis, D. Lipid-lowering therapy and renin-angiotensin-aldosterone system inhibitors in the era of the COVID-19 pandemic. Arch. Med. Sci., 2020, 16(3), 485-489.
[http://dx.doi.org/10.5114/aoms.2020.94503] [PMID: 32399093]
[130]
Pratelli, A.; Colao, V. Role of the lipid rafts in the life cycle of canine coronavirus. J. Gen. Virol., 2015, 96(2), 331-337.
[http://dx.doi.org/10.1099/vir.0.070870-0] [PMID: 25381058]
[131]
Schönbeck, U.; Libby, P. Inflammation, immunity, and HMG-CoA reductase inhibitors: Statins as antiinflammatory agents? Circulation, 2004, 109(S21), II18-II26.
[http://dx.doi.org/10.1161/01.CIR.0000129505.34151.23] [PMID: 15173059]
[132]
Baden, L.R.; Rubin, E.J. Covid-19 — the search for effective therapy. N. Engl. J. Med., 2020, 382(19), 1851-1852.
[http://dx.doi.org/10.1056/NEJMe2005477] [PMID: 32187463]
[133]
Tay, M.Y.F.; Fraser, J.E.; Chan, W.K.K.; Moreland, N.J.; Rathore, A.P.; Wang, C.; Vasudevan, S.G.; Jans, D.A. Nuclear localization of dengue virus (DENV) 1–4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antiviral Res., 2013, 99(3), 301-306.
[http://dx.doi.org/10.1016/j.antiviral.2013.06.002] [PMID: 23769930]
[134]
Tu, Y.F.; Chien, C.S.; Yarmishyn, A.A.; Lin, Y.Y.; Luo, Y.H.; Lin, Y.T.; Lai, W.Y.; Yang, D.M.; Chou, S.J.; Yang, Y.P.; Wang, M.L.; Chiou, S.H. A review of SARS-CoV-2 and the ongoing clinical trials. Int. J. Mol. Sci., 2020, 21(7), 2657.
[http://dx.doi.org/10.3390/ijms21072657] [PMID: 32290293]
[135]
Yang, S.N.Y.; Atkinson, S.C.; Wang, C.; Lee, A.; Bogoyevitch, M.A.; Borg, N.A.; Jans, D.A. The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral Res., 2020, 177, 104760.
[http://dx.doi.org/10.1016/j.antiviral.2020.104760] [PMID: 32135219]
[136]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178, 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[137]
Lundberg, L.; Pinkham, C.; Baer, A.; Amaya, M.; Narayanan, A.; Wagstaff, K.M.; Jans, D.A.; Kehn-Hall, K. Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce Venezuelan Equine Encephalitis Virus replication. Antiviral Res., 2013, 100(3), 662-672.
[http://dx.doi.org/10.1016/j.antiviral.2013.10.004] [PMID: 24161512]
[138]
Guzzo, C.A.; Furtek, C.I.; Porras, A.G.; Chen, C.; Tipping, R.; Clineschmidt, C.M.; Sciberras, D.G.; Hsieh, J.Y.K.; Lasseter, K.C. Safety, tolerability, and pharmacokinetics of escalating high doses of ivermectin in healthy adult subjects. J. Clin. Pharmacol., 2002, 42(10), 1122-1133.
[http://dx.doi.org/10.1177/009127002237994] [PMID: 12362927]
[139]
Muñoz, J.; Ballester, M.R.; Antonijoan, R.M.; Gich, I.; Rodríguez, M.; Colli, E.; Gold, S.; Krolewiecki, A.J. Safety and pharmacokinetic profile of fixed-dose ivermectin with an innovative 18mg tablet in healthy adult volunteers. PLoS Negl. Trop. Dis., 2018, 12(1), e0006020.
[http://dx.doi.org/10.1371/journal.pntd.0006020] [PMID: 29346388]
[140]
Bryant, A.; Lawrie, T.A.; Dowswell, T.; Fordham, E.J.; Mitchell, S.; Hill, S.R.; Tham, T.C. Ivermectin for prevention and treatment of COVID-19 infection: a systematic review, meta-analysis, and trial sequential analysis to inform clinical guidelines. Am. J. Ther., 2021, 28(4), e434-e460.
[http://dx.doi.org/10.1097/MJT.0000000000001402] [PMID: 34145166]
[141]
Kaur, H.; Shekhar, N.; Sharma, S.; Sarma, P.; Prakash, A.; Medhi, B. Ivermectin as a potential drug for treatment of COVID-19: An in-sync review with clinical and computational attributes. Pharmacol. Rep., 2021, 73(3), 736-749.
[http://dx.doi.org/10.1007/s43440-020-00195-y] [PMID: 33389725]
[142]
Altay, O.; Mohammadi, E.; Lam, S.; Turkez, H.; Boren, J.; Nielsen, J.; Uhlen, M.; Mardinoglu, A. Current status of COVID-19 therapies and drug repositioning applications. iScience, 2020, 23(7), 101303.
[http://dx.doi.org/10.1016/j.isci.2020.101303] [PMID: 32622261]
[143]
Gao, K.; Nguyen, D.D.; Chen, J.; Wang, R.; Wei, G.W. Repositioning of 8565 existing drugs for COVID-19. J. Phys. Chem. Lett., 2020, 11(13), 5373-5382.
[http://dx.doi.org/10.1021/acs.jpclett.0c01579] [PMID: 32543196]
[144]
Pindiprolu, S.K.S.S.; Pindiprolu, S.H. Plausible mechanisms of Niclosamide as an antiviral agent against COVID-19. Med. Hypotheses, 2020, 140, 109765.
[http://dx.doi.org/10.1016/j.mehy.2020.109765] [PMID: 32361588]
[145]
Gassen, N.C.; Papies, J.; Bajaj, T.; Emanuel, J.; Dethloff, F.; Chua, R.L.; Trimpert, J.; Heinemann, N.; Niemeyer, C.; Weege, F.; Hönzke, K.; Aschman, T.; Heinz, D.E.; Weckmann, K.; Ebert, T.; Zellner, A.; Lennarz, M.; Wyler, E.; Schroeder, S.; Richter, A.; Niemeyer, D.; Hoffmann, K.; Meyer, T.F.; Heppner, F.L.; Corman, V.M.; Landthaler, M.; Hocke, A.C.; Morkel, M.; Osterrieder, N.; Conrad, C.; Eils, R.; Radbruch, H.; Giavalisco, P.; Drosten, C.; Müller, M.A. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nat. Commun., 2021, 12(1), 3818.
[http://dx.doi.org/10.1038/s41467-021-24007-w] [PMID: 34155207]
[146]
Stachulski, A.V.; Taujanskas, J.; Pate, S.L.; Rajoli, R.K.R.; Aljayyoussi, G.; Pennington, S.H.; Ward, S.A.; Hong, W.D.; Biagini, G.A.; Owen, A.; Nixon, G.L.; Leung, S.C.; O’Neill, P.M. Therapeutic potential of nitazoxanide: An appropriate choice for repurposing versus SARS-CoV-2? ACS Infect. Dis., 2021, 7(6), 1317-1331.
[http://dx.doi.org/10.1021/acsinfecdis.0c00478] [PMID: 33352056]
[147]
Bobrowski, T.; Chen, L.; Eastman, R.T.; Itkin, Z.; Shinn, P.; Chen, C.Z.; Guo, H.; Zheng, W.; Michael, S.; Simeonov, A.; Hall, M.D.; Zakharov, A.V.; Muratov, E.N. Synergistic and antagonistic drug combinations against SARS-CoV-2. Mol. Ther., 2021, 29(2), 873-885.
[http://dx.doi.org/10.1016/j.ymthe.2020.12.016] [PMID: 33333292]
[148]
Pascoalino, B.S.; Courtemanche, G.; Cordeiro, M.T.; Gil, L.H.V.G.; Freitas-Junior, L.H. Zika antiviral chemotherapy: Identification of drugs and promising starting points for drug discovery from an FDA-approved library. F1000 Res., 2016, 5, 2523.
[http://dx.doi.org/10.12688/f1000research.9648.1] [PMID: 27909576]
[149]
Tonelli, M.; Simone, M.; Tasso, B.; Novelli, F.; Boido, V.; Sparatore, F.; Paglietti, G.; Pricl, S.; Giliberti, G.; Blois, S.; Ibba, C.; Sanna, G.; Loddo, R.; La Colla, P. Antiviral activity of benzimidazole derivatives. II. Antiviral activity of 2-phenylbenzimidazole derivatives. Bioorg. Med. Chem., 2010, 18(8), 2937-2953.
[http://dx.doi.org/10.1016/j.bmc.2010.02.037] [PMID: 20359898]
[150]
Law, J.N.; Akers, K.; Tasnina, N.; Santina, C.M.D.; Deutsch, S.; Kshirsagar, M.; Klein-Seetharaman, J.; Crovella, M.; Rajagopalan, P.; Kasif, S.; Murali, T.M. Interpretable network propagation with application to expanding the repertoire of human proteins that interact with SARS-CoV-2. Gigascience, 2021, 10(12), giab082.
[http://dx.doi.org/10.1093/gigascience/giab082] [PMID: 34966926]
[151]
Rainsford, K.D. Influenza (“Bird Flu”), inflammation and anti-inflammatory/analgesic drugs. Inflammopharmacology, 2006, 14(1-2), 2-9.
[http://dx.doi.org/10.1007/s10787-006-0002-5] [PMID: 16835706]
[152]
Srinivasan, V.; Mohamed, M.; Kato, H. Melatonin in bacterial and viral infections with focus on sepsis: A review. Recent Pat. Endocr. Metab. Immune Drug Discov., 2012, 6(1), 30-39.
[http://dx.doi.org/10.2174/187221412799015317] [PMID: 22264213]
[153]
Tan, D.X.; Korkmaz, A.; Reiter, R.J.; Manchester, L.C. Ebola virus disease: Potential use of melatonin as a treatment. J. Pineal Res., 2014, 57(4), 381-384.
[http://dx.doi.org/10.1111/jpi.12186] [PMID: 25262626]
[154]
Tan, D.X.; Manchester, L.C.; Terron, M.P.; Flores, L.J.; Reiter, R.J. One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal Res., 2007, 42(1), 28-42.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00407.x] [PMID: 17198536]
[155]
Galano, A.; Tan, D.X.; Reiter, R.J. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J. Pineal Res., 2013, 54(3), 245-257.
[http://dx.doi.org/10.1111/jpi.12010] [PMID: 22998574]
[156]
Xiao, J.; Shimada, M.; Liu, W.; Hu, D.; Matsumori, A. Anti-inflammatory effects of eplerenone on viral myocarditis. Eur. J. Heart Fail., 2009, 11(4), 349-353.
[http://dx.doi.org/10.1093/eurjhf/hfp023] [PMID: 19213804]
[157]
Zhao, Y.; Ren, J.; Harlos, K.; Jones, D.M.; Zeltina, A.; Bowden, T.A.; Padilla-Parra, S.; Fry, E.E.; Stuart, D.I. Toremifene interacts with and destabilizes the Ebola virus glycoprotein. Nature, 2016, 535(7610), 169-172.
[http://dx.doi.org/10.1038/nature18615] [PMID: 27362232]
[158]
Schwarz, S.; Wang, K.; Yu, W.; Sun, B.; Schwarz, W. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res., 2011, 90(1), 64-69.
[http://dx.doi.org/10.1016/j.antiviral.2011.02.008] [PMID: 21356245]
[159]
Ho, T.; Wu, S.; Chen, J.; Li, C.; Hsiang, C. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res., 2007, 74(2), 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy