Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

The Fulcrum of Demyelination in Multiple Sclerosis

Author(s): Abinaya Ganesan, Pooja Muralidharan and Lakshmi Narasimhan Ramya*

Volume 24, Issue 7, 2023

Published on: 24 July, 2023

Page: [579 - 588] Pages: 10

DOI: 10.2174/1389203724666230717124101

Price: $65

Abstract

Multiple sclerosis (MS) is an autoimmune disorder that affects the central nervous system (CNS), including the brain, spinal cord, and optic nerves. The symptoms can vary from muscle weakness to vision loss. In the case of MS, the immune system attacks the myelin sheath, which protects the nerve fiber and causes inflammation resulting in demyelination. The myelin sheath has the composition of various proteins including membrane proteins and glycoproteins. The four main proteins namely Myelin Basic Protein (MBP), Myelin associated Oligodendrocyte Basic protein (MOBP), Myelin Proteolipid Protein (PLP) and Myelin Associated Glycoprotein (MAG) are known to be critical auto-antigens in causing demyelination in CNS leading to MS. Three out of these four proteins are intrinsically disordered proteins and in this review, we attempted to understand how these proteins play a crucial role in maintaining the integrity of myelin, by exploring its structural and functional aspects and also their auto-antigenicity leading to multiple sclerosis.

Graphical Abstract

[1]
Libretti, S.; Puckett, Y. Physiology, Homeostasis; StatPearls, 2023.
[2]
RajMohan, V.; Mohandas, E. The limbic system. Indian J. Psychiatry, 2007, 49(2), 132-139.
[http://dx.doi.org/10.4103/0019-5545.33264] [PMID: 20711399]
[3]
Tyng, C.M.; Amin, H.U.; Saad, M.N.M.; Malik, A.S. The influences of emotion on learning and memory. Front. Psychol., 2017, 8(1454), 1454.
[http://dx.doi.org/10.3389/fpsyg.2017.01454] [PMID: 28883804]
[4]
Herculano-Houzel, S. The human brain in numbers: A linearly scaled-up primate brain. Front. Hum. Neurosci., 2009, 3, 31.
[http://dx.doi.org/10.3389/neuro.09.031.2009] [PMID: 19915731]
[5]
Bahney, J.; von Bartheld, C.S. The cellular composition and glia-neuron ratio in the spinal cord of a human and a nonhuman primate: Comparison with other species and brain regions. Anat. Rec., 2018, 301(4), 697-710.
[http://dx.doi.org/10.1002/ar.23728] [PMID: 29150977]
[6]
Linnerbauer, M.; Rothhammer, V. Protective functions of reactive astrocytes following central nervous system insult. Front Immunol., 2020, 11, 573256.
[7]
Kunkl, M.; Frascolla, S.; Amormino, C.; Volpe, E.; Tuosto, L. T helper cells: The modulators of inflammation in multiple sclerosis. Cells., 2020, 9(2), 482.
[8]
Kulkarni, P.; Uversky, VN. Intrinsically disordered proteins in chronic diseases. Biomolecules, 2019, 9(4), 147.
[http://dx.doi.org/10.3390/biom9040147]
[9]
Ayyadevara, S.; Ganne, A.; Balasubramaniam, M.; Shmookler Reis, R.J. Intrinsically disordered proteins identified in the aggregate proteome serve as biomarkers of neurodegeneration. Metab. Brain Dis., 2022, 37(1), 147-152.
[http://dx.doi.org/10.1007/s11011-021-00791-8] [PMID: 34347206]
[10]
Coskuner-Weber, O.; Mirzanli, O.; Uversky, VN. Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys Rev., 2022, 14(3), 679-707.
[http://dx.doi.org/10.1007/s12551-022-00968-0]
[11]
Jeffery, C.J. Moonlighting proteins—an update. Mol. Biosyst., 2009, 5(4), 345-350.
[http://dx.doi.org/10.1039/b900658n] [PMID: 19396370]
[12]
Copley, S.D. Moonlighting is mainstream: Paradigm adjustment required. BioEssays, 2012, 34(7), 578-588.
[http://dx.doi.org/10.1002/bies.201100191] [PMID: 22696112]
[13]
Kaushansky, N.; Eisenstein, M.; Zilkha-Falb, R.; Ben-Nun, A. The myelin-associated oligodendrocytic basic protein (MOBP) as a relevant primary target autoantigen in multiple sclerosis. Autoimmun. Rev., 2010, 9(4), 233-236.
[http://dx.doi.org/10.1016/j.autrev.2009.08.002] [PMID: 19683076]
[14]
Schmidt, S. Candidate autoantigens in multiple sclerosis. Mult. Scler., 1999, 5(3), 147-160.
[http://dx.doi.org/10.1177/135245859900500303] [PMID: 10408714]
[15]
Chen, J.; Kriwacki, R.W. Intrinsically disordered proteins: Structure, function and therapeutics. J. Mol. Biol., 2018, 430(16), 2275-2277.
[http://dx.doi.org/10.1016/j.jmb.2018.06.012] [PMID: 29906412]
[16]
Raasakka, A.; Kursula, P. Flexible players within the sheaths: The intrinsically disordered proteins of myelin in health and disease. Cells., 2020, 9(2), 470.
[17]
Zhang, J.; Raus, J. Myelin basic protein-reactive T cells in multiple sclerosis: Pathologic relevance and therapeutic targeting. Cytotechnology, 1994, 16(3), 181-187.
[http://dx.doi.org/10.1007/BF00749906] [PMID: 7537052]
[18]
Stadelmann, C.; Timmler, S.; Barrantes-Freer, A.; Simons, M. Myelin in the central nervous system: Structure, function, and pathology. Physiol. Rev., 2019, 99(3), 1381-1431.
[http://dx.doi.org/10.1152/physrev.00031.2018] [PMID: 31066630]
[19]
Poitelon, Y.; Kopec, AM.; Belin, S. Myelin fat facts: An overview of lipids and fatty acid metabolism. Cells, 2020, 9(4), 812.
[20]
Kursula, P. Structural properties of proteins specific to the myelin sheath. Amino Acids, 2008, 34(2), 175-185.
[http://dx.doi.org/10.1007/s00726-006-0479-7] [PMID: 17177074]
[21]
Choi, C.I.; Yoo, K.H.; Hussaini, S.M.Q.; Jeon, B.T.; Welby, J.; Gan, H.; Scarisbrick, I.A.; Zhang, Z.; Baker, D.J.; van Deursen, J.M.; Rodriguez, M.; Jang, M.H. The progeroid gene BubR1 regulates axon myelination and motor function. Aging, 2016, 8(11), 2667-2688.
[http://dx.doi.org/10.18632/aging.101032] [PMID: 27922816]
[22]
Simons, M.; Nave, K.A. Oligodendrocytes: Myelination and axonal support. Cold Spring Harb. Perspect. Biol., 2016, 8(1)a020479
[http://dx.doi.org/10.1101/cshperspect.a020479] [PMID: 26101081]
[23]
Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol., 2018, 19(5), 281-296.
[http://dx.doi.org/10.1038/nrm.2017.138] [PMID: 29410529]
[24]
Jahn, O.; Tenzer, S.; Werner, H.B. Myelin proteomics: molecular anatomy of an insulating sheath. Mol. Neurobiol., 2009, 40(1), 55-72.
[http://dx.doi.org/10.1007/s12035-009-8071-2] [PMID: 19452287]
[25]
Love, S. Demyelinating diseases. J. Clin. Pathol., 2006, 59(11), 1151-1159.
[http://dx.doi.org/10.1136/jcp.2005.031195] [PMID: 17071802]
[26]
Alfredsson, L.; Olsson, T. Lifestyle and environmental factors in multiple sclerosis. Cold Spring Harb. Perspect. Med., 2019, 9(4)a028944
[http://dx.doi.org/10.1101/cshperspect.a028944] [PMID: 29735578]
[27]
Tzakos, A.; Kursula, P.; Troganis, A.; Theodorou, V.; Tselios, T.; Svarnas, C.; Matsoukas, J.; Apostolopoulos, V.; Gerothanassis, I. Structure and function of the myelin proteins: Current status and perspectives in relation to multiple sclerosis. Curr. Med. Chem., 2005, 12(13), 1569-1587.
[http://dx.doi.org/10.2174/0929867054039026] [PMID: 15974988]
[28]
Crawford, A.H.; Chambers, C.; Franklin, R.J.M. Remyelination: The true regeneration of the central nervous system. J. Comp. Pathol., 2013, 149(2-3), 242-254.
[http://dx.doi.org/10.1016/j.jcpa.2013.05.004] [PMID: 23831056]
[29]
Saxena, S.; Caroni, P. Mechanisms of axon degeneration: From development to disease. Prog. Neurobiol., 2007, 83(3), 174-191.
[http://dx.doi.org/10.1016/j.pneurobio.2007.07.007] [PMID: 17822833]
[30]
Cunniffe, N.; Coles, A. Promoting remyelination in multiple sclerosis. J. Neurol., 2021, 268(1), 30-44.
[http://dx.doi.org/10.1007/s00415-019-09421-x] [PMID: 31190170]
[31]
Auricchio, F.; Scavone, C.; Cimmaruta, D.; Di Mauro, G.; Capuano, A.; Sportiello, L.; Rafaniello, C. Drugs approved for the treatment of multiple sclerosis: Review of their safety profile. Expert Opin. Drug Saf., 2017, 16(12), 1359-1371.
[http://dx.doi.org/10.1080/14740338.2017.1388371] [PMID: 28976217]
[32]
Ali, R.; Nicholas, R.S.J.; Muraro, P.A. Drugs in development for relapsing multiple sclerosis. Drugs, 2013, 73(7), 625-650.
[http://dx.doi.org/10.1007/s40265-013-0030-6] [PMID: 23609782]
[33]
Olek, M.J. Multiple sclerosis. Ann. Intern. Med., 2021, 174(6), ITC81-ITC96.
[http://dx.doi.org/10.7326/AITC202106150] [PMID: 34097429]
[34]
Torre-Fuentes, L.; Moreno-Jiménez, L.; Pytel, V.; Matías-Guiu, J.A.; Gómez-Pinedo, U.; Matías-Guiu, J. Experimental models of demyelination and remyelination. Neurología, 2020, 35(1), 32-39.
[http://dx.doi.org/10.1016/j.nrleng.2019.03.007] [PMID: 28863829]
[35]
Lakshmi Narasimhan, R.; Sharma, G.; Gopinath, S. Exploring the molecular aspects of glycosylation in mog antibody disease (MOGAD). Curr. Protein Pept. Sci., 2022, 23(6), 384-394.
[http://dx.doi.org/10.2174/1389203723666220815110509] [PMID: 36285457]
[36]
Siu, C.R.; Balsor, J.L.; Jones, D.G.; Murphy, K.M. Classic and Golli Myelin Basic Protein have distinct developmental trajectories in human visual cortex. Front. Neurosci., 2015, 9, 138.
[http://dx.doi.org/10.3389/fnins.2015.00138] [PMID: 25964736]
[37]
Martinsen, V.; Kursula, P. Multiple sclerosis and myelin basic protein: Insights into protein disorder and disease. Amino Acids, 2022, 54(1), 99-109.
[http://dx.doi.org/10.1007/s00726-021-03111-7] [PMID: 34889995]
[38]
Boggs, J.M.; Yip, P.M.; Rangaraj, G.; Jo, E. Effect of posttranslational modifications to myelin basic protein on its ability to aggregate acidic lipid vesicles. Biochemistry, 1997, 36(16), 5065-5071.
[http://dx.doi.org/10.1021/bi962649f] [PMID: 9125528]
[39]
Voskuhl, R.R.; McFarlin, D.E.; Stone, R.; McFarland, H.F. T-lymphocyte recognition of a portion of myelin basic protein encoded by an exon expressed during myelination. J. Neuroimmunol., 1993, 42(2), 187-191.
[http://dx.doi.org/10.1016/0165-5728(93)90009-N] [PMID: 7679118]
[40]
Ota, K.; Matsui, M.; Milford, E.L.; Mackin, G.A.; Weiner, H.L.; Hafler, D.A. T-cell recognition of an immuno-dominant myelin basic protein epitope in multiple sclerosis. Nature, 1990, 346(6280), 183-187.
[http://dx.doi.org/10.1038/346183a0] [PMID: 1694970]
[41]
Valli, A.; Sette, A.; Kappos, L.; Oseroff, C.; Sidney, J.; Miescher, G.; Hochberger, M.; Albert, E.D.; Adorini, L. Binding of myelin basic protein peptides to human histocompatibility leukocyte antigen class II molecules and their recognition by T cells from multiple sclerosis patients. J. Clin. Invest., 1993, 91(2), 616-628.
[http://dx.doi.org/10.1172/JCI116242] [PMID: 7679413]
[42]
Musse, A.A.; Boggs, J.M.; Harauz, G. Deimination of membrane-bound myelin basic protein in multiple sclerosis exposes an immunodominant epitope. Proc. Natl. Acad. Sci., 2006, 103(12), 4422-4427.
[http://dx.doi.org/10.1073/pnas.0509158103] [PMID: 16537438]
[43]
Meng, F.; Kurgan, L. High‐throughput prediction of disordered moonlighting regions in protein sequences. Proteins, 2018, 86(10), 1097-1110.
[http://dx.doi.org/10.1002/prot.25590] [PMID: 30099775]
[44]
Cao, L.; Goodin, R.; Wood, D.; Moscarello, M.A.; Whitaker, J.N. Rapid release and unusual stability of immunodominant peptide 45-89 from citrullinated myelin basic protein. Biochemistry, 1999, 38(19), 6157-6163.
[http://dx.doi.org/10.1021/bi982960s] [PMID: 10320343]
[45]
Kim, J.K.; Mastronardi, F.G.; Wood, D.D.; Lubman, D.M.; Zand, R.; Moscarello, M.A. Multiple sclerosis. Mol. Cell. Proteomics, 2003, 2(7), 453-462.
[http://dx.doi.org/10.1074/mcp.M200050-MCP200] [PMID: 12832457]
[46]
Wood, D.D.; Moscarello, M.A.; Bilbao, J.M.; O’Connors, P. Acute multiple sclerosis (marburg type) is associated with developmentally immature myelin basic protein. Ann. Neurol., 1996, 40(1), 18-24.
[http://dx.doi.org/10.1002/ana.410400106] [PMID: 8687186]
[47]
Montague, P.; Kirkham, D.; McCallion, A.S.; Davies, R.W.; Kennedy, P.G.E.; Klugmann, M.; Nave, K.A.; Griffiths, I.R. Reduced levels of a specific myelin-associated oligodendrocytic basic protein isoform in shiverer myelin. Dev. Neurosci., 1999, 21(1), 36-42.
[http://dx.doi.org/10.1159/000017364] [PMID: 10077700]
[48]
Boggs, J.M. Myelin basic protein: A multifunctional protein. Cell. Mol. Life Sci., 2006, 63(17), 1945-1961.
[http://dx.doi.org/10.1007/s00018-006-6094-7] [PMID: 16794783]
[49]
Yamamoto, Y.; Yoshikawa, H.; Nagano, S.; Kondoh, G.; Sadahiro, S.; Gotow, T.; Yanagihara, T.; Sakoda, S. Myelin-associated oligodendrocytic basic protein is essential for normal arrangement of the radial component in central nervous system myelin. Eur. J. Neurosci., 1999, 11(3), 847-855.
[http://dx.doi.org/10.1046/j.1460-9568.1999.00490.x] [PMID: 10103078]
[50]
Yoshikawa, H. Myelin-associated oligodendrocytic basic protein modulates the arrangement of radial growth of the axon and the radial component of myelin. Med. Electron Microsc., 2001, 34(3), 160-164.
[http://dx.doi.org/10.1007/s007950100009] [PMID: 11793190]
[51]
Yool, D.; Montague, P.; McLaughlin, M.; McCulloch, M.C.; Edgar, J.M.; Nave, K.A.; Davies, R.W.; Griffiths, I.R.; McCallion, A.S. Phenotypic analysis of mice deficient in the major myelin protein MOBP, and evidence for a novelMobp isoform. Glia, 2002, 39(3), 256-267.
[http://dx.doi.org/10.1002/glia.10103] [PMID: 12203392]
[52]
Montague, P.; McCallion, A.S.; Davies, R.W.; Griffiths, I.R. Myelin-associated oligodendrocytic basic protein: A family of abundant CNS myelin proteins in search of a function. Dev. Neurosci., 2006, 28(6), 479-487.
[http://dx.doi.org/10.1159/000095110] [PMID: 17028425]
[53]
Kaye, J.F.; Kerlero de Rosbo, N.; Mendel, I.; Flechter, S.; Hoffman, M.; Yust, I.; Ben-Nun, A. The central nervous sytem-specific myelin oligodendrocytic basic protein (MOBP) is encephalitogenic and a potential target antigen in multiple sclerosis (MS). J. Neuroimmunol., 2000, 102(2), 189-198.
[http://dx.doi.org/10.1016/S0165-5728(99)00168-X] [PMID: 10636488]
[54]
Arbour, N.; Holz, A.; Sipe, J.C.; Naniche, D.; Romine, J.S.; Zyroff, J.; Oldstone, M.B. A new approach for evaluating antigen-specific T cell responses to myelin antigens during the course of multiple sclerosis. J. Neuroimmunol., 2003, 137(1-2), 197-209.
[http://dx.doi.org/10.1016/S0165-5728(03)00080-8] [PMID: 12667664]
[55]
Holz, A.; Bielekova, B.; Martin, R.; Oldstone, M.B.A. Myelin-associated oligodendrocytic basic protein: Identification of an encephalitogenic epitope and association with multiple sclerosis. J. Immunol., 2000, 164(2), 1103-1109.
[http://dx.doi.org/10.4049/jimmunol.164.2.1103] [PMID: 10623862]
[56]
Myllykoski, M.; Baumgärtel, P.; Kursula, P. Conformations of peptides derived from myelin-specific proteins in membrane-mimetic conditions probed by synchrotron radiation CD spectroscopy. Amino Acids, 2012, 42(4), 1467-1474.
[http://dx.doi.org/10.1007/s00726-011-0911-5] [PMID: 21505824]
[57]
Schäfer, I.; Müller, C.; Luhmann, H.J.; White, R. MOBP levels are regulated by Fyn kinase and affect the morphological differentiation of oligodendrocytes. J. Cell Sci., 2016, 129(5)jcs.172148
[http://dx.doi.org/10.1242/jcs.172148] [PMID: 26801084]
[58]
Kamholz, J.; Sessa, M.; Scherer, S.; Vogelbacker, H.; Mokuno, K.; Baron, P.; Wrabetz, L.; Shy, M.; Pleasure, D. Structure and expression of proteolipid protein in the peripheral nervous system. J. Neurosci. Res., 1992, 31(2), 231-244.
[http://dx.doi.org/10.1002/jnr.490310204] [PMID: 1374129]
[59]
Morell, P.; Quarles, R.H. Characteristic composition of myelin. In: Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th ed.; Lippincott-Raven: Philadelphia, 1999; 6, pp. 1-10.
[60]
Knapp, P.E. Proteolipid protein: Is it more than just a structural component of myelin? Dev. Neurosci., 1996, 18(4), 297-308.
[http://dx.doi.org/10.1159/000111420] [PMID: 8911768]
[61]
Spörkel, O.; Uschkureit, T.; Büssow, H.; Stoffel, W. Oligodendrocytes expressing exclusively the DM20 isoform of the proteolipid protein gene: Myelination and development. Glia, 2002, 37(1), 19-30.
[http://dx.doi.org/10.1002/glia.10014] [PMID: 11746780]
[62]
Greer, J.M.; Trifilieff, E.; Pender, M.P. Correlation between anti-myelin proteolipid protein(PLP) antibodies and disease severity in multiple sclerosis patients with PLP response-permissive HLA types. Front. Immunol., 1891, 2020(11), 1-10.
[PMID: 32973782]
[63]
Ruskamo, S; Raasakka, A; Pedersen, JS; Martel, A; Škubník, K; Darwish, T; Porcar, L; Kursula, P Human myelin proteolipid protein structure and lipid bilayer stacking. Cell. Mol. Life Sci., 2022, 79(8), 419.
[http://dx.doi.org/10.1007/s00018-022-04428-6]
[64]
Greer, J.M.; Pender, M.P. Myelin proteolipid protein: An effective autoantigen and target of autoimmunity in multiple sclerosis. J. Autoimmun., 2008, 31(3), 281-287.
[http://dx.doi.org/10.1016/j.jaut.2008.04.018] [PMID: 18502611]
[65]
Tuohy, V.K.; Lu, Z.J.; Sobel, R.A.; Laursen, R.A.; Lees, M.B. A synthetic peptide from myelin proteolipid protein induces experimental allergic encephalomyelitis. J. Immunol., 1988, 141(4), 1126-1130.
[http://dx.doi.org/10.4049/jimmunol.141.4.1126] [PMID: 2456341]
[66]
Anderson, T.J.; Montague, P.; Nadon, N.; Nave, K.A.; Griffiths, I.R. Modification of Schwann cell phenotype withPlp transgenes: Evidence that the PLP and DM20 isoproteins are targeted to different cellular domains. J. Neurosci. Res., 1997, 50(1), 13-22.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19971001)50:1<13::AID-JNR2>3.0.CO;2-O] [PMID: 9379489]
[67]
Muller, D.M.; Pender, M.P.; Greer, J.M. A neuropathological analysis of experimental autoimmune encephalomyelitis with predominant brain stem and cerebellar involvement and differences between active and passive induction. Acta Neuropathol., 2000, 100(2), 174-182.
[http://dx.doi.org/10.1007/s004019900163] [PMID: 10963365]
[68]
Tuohy, V.K.; Lu, Z.; Sobel, R.A.; Laursen, R.A.; Lees, M.B. Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL mice. J. Immunol., 1989, 142(5), 1523-1527.
[http://dx.doi.org/10.4049/jimmunol.142.5.1523] [PMID: 2465343]
[69]
Greer, J.M.; Sobel, R.A.; Sette, A.; Southwood, S.; Lees, M.B.; Kuchroo, V.K. Immunogenic and encephalitogenic epitope clusters of myelin proteolipid protein. J. Immunol., 1996, 156(1), 371-379.
[http://dx.doi.org/10.4049/jimmunol.156.1.371] [PMID: 8598487]
[70]
Barrese, N.; Mak, B.; Fisher, L.; Moscarello, M.A. Mechanism of demyelination in DM20 transgenic mice involves increased fatty acylation. J. Neurosci. Res., 1998, 53(2), 143-152.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19980715)53:2<143::AID-JNR3>3.0.CO;2-7] [PMID: 9671971]
[71]
Greer, J.M.; Denis, B.; Sobel, R.A.; Trifilieff, E. Thiopalmitoylation of myelin proteolipid protein epitopes enhances immunogenicity and encephalitogenicity. J. Immunol., 2001, 166(11), 6907-6913.
[http://dx.doi.org/10.4049/jimmunol.166.11.6907] [PMID: 11359852]
[72]
Pfender, N.A.; Grosch, S.; Roussel, G.; Koch, M.; Trifilieff, E.; Greer, J.M. Route of uptake of palmitoylated encephalitogenic peptides of myelin proteolipid protein by antigen-presenting cells: Importance of the type of bond between lipid chain and peptide and relevance to autoimmunity. J. Immunol., 2008, 180(3), 1398-1404.
[http://dx.doi.org/10.4049/jimmunol.180.3.1398] [PMID: 18209034]
[73]
Kursula, P.; Meriläinen, G.; Lehto, V.P.; Heape, A.M. The small myelin-associated glycoprotein is a zinc-binding protein. J. Neurochem., 1999, 73(5), 2110-2118.
[PMID: 10537071]
[74]
Kinter, J.; Lazzati, T.; Schmid, D.; Zeis, T.; Erne, B.; Lützelschwab, R.; Steck, A.J.; Pareyson, D.; Peles, E.; Schaeren-Wiemers, N. An essential role of MAG in mediating axon–myelin attachment in Charcot–Marie–Tooth 1A disease. Neurobiol. Dis., 2013, 49, 221-231.
[http://dx.doi.org/10.1016/j.nbd.2012.08.009] [PMID: 22940629]
[75]
Quarles, R.H. Myelin-associated glycoprotein (MAG): Past, present and beyond. J. Neurochem., 2007, 0(0), 070214184024009-???.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04319.x] [PMID: 17241126]
[76]
Arquint, M.; Roder, J.; Chia, L.S.; Down, J.; Wilkinson, D.; Bayley, H.; Braun, P.; Dunn, R. Molecular cloning and primary structure of myelin-associated glycoprotein. Proc. Natl. Acad. Sci., 1987, 84(2), 600-604.
[http://dx.doi.org/10.1073/pnas.84.2.600] [PMID: 2432614]
[77]
Spagnol, G.; Williams, M.; Srinivasan, J.; Golier, J.; Bauer, D.; Lebo, R.V.; Latov, N. Molecular cloning of human myelin-associated glycoprotein. J. Neurosci. Res., 1989, 24(2), 137-142.
[http://dx.doi.org/10.1002/jnr.490240203] [PMID: 2479762]
[78]
Yim, S.H.; Quarles, R.H. Biosynthesis and expression of the myelin-associated glycoprotein in cultured oligodendrocytes from adult bovine brain. J. Neurosci. Res., 1992, 33(3), 370-378.
[http://dx.doi.org/10.1002/jnr.490330303] [PMID: 1281889]
[79]
Burger, D.; Perruisseau, G.; Simon, M.; Steck, A.J. Comparison of the N-linked oligosaccharide structures of the two major human myelin glycoproteins MAG and P0: Assessment of the structures bearing the epitope for HNK-1 and human monoclonal immunoglobulin M found in demyelinating neuropathy. J. Neurochem., 1992, 58(3), 854-861.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb09335.x] [PMID: 1371150]
[80]
Möller, J.R.; Johnson, D.; Brady, R.O.; Tourtellotte, W.W.; Quarles, R.H. Antibodies to myelin-associated glycoprotein (MAG) in the cerebrospinal fluid of multiple sclerosis patients. J. Neuroimmunol., 1989, 22(1), 55-61.
[http://dx.doi.org/10.1016/0165-5728(89)90009-X] [PMID: 2465313]
[81]
Pronker, MF.; Lemstra, S.; Snijder, J.; Heck, AJ.; Thies-Weesie, DM.; Pasterkamp, RJ.; Janssen, BJ. Structural basis of myelin-associated glycoprotein adhesion and signalling. Nat Commun., 2016, 7, 13584.
[http://dx.doi.org/10.1038/ncomms13584]
[82]
Andersson, M.; Yu, M.; Söderström, M.; Weerth, S.; Baig, S.; Linington, C.; Solders, G.; Link, H. Multiple MAG peptides are recognized by circulating T and B lymphocytes in polyneuropathy and multiple sclerosis. Eur. J. Neurol., 2002, 9(3), 243-251.
[http://dx.doi.org/10.1046/j.1468-1331.2002.00391.x] [PMID: 11985632]
[83]
Figlewicz, D.A.; Quarles, R.H.; Johnson, D.; Barbarash, G.R.; Sternberger, N.H. Biochemical demonstration of the myelin-associated glycoprotein in the peripheral nervous system. J. Neurochem., 1982, 37(3), 749-758.
[http://dx.doi.org/10.1111/j.1471-4159.1982.tb12551.x] [PMID: 6168745]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy