Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Virus-like Particles for Disease Diagnosis and Drug Delivery Applications

Author(s): Rishav Sharma and Rishabha Malviya*

Volume 20, Issue 5, 2024

Published on: 31 July, 2023

Page: [613 - 629] Pages: 17

DOI: 10.2174/1573413719666230717123734

Price: $65

Abstract

Virus-like particles (VLPs) are nanoscale, self-assembling cage structures made out of proteins with practical uses in biomedicine. They might be used to create better vaccinations, imaging equipment, gene and drug therapy delivery systems, and in vitro diagnostic equipment. VLPs are nanostructures that might be used in medicine, immunization, and diagnostics, among other areas. Many VLPs-based vaccines are now in use for the treatment of infectious diseases, and many more are on their way to clinical testing thanks to recent advancements in biomedical engineering. Although VLPs exhibit promising qualities in terms of efficacy, safety, and diversity, they may become more widely used in the future. Vaccines based on virus-like particles (VLPs) might serve as an effective addition to current immunization strategies for the prevention and treatment of emerging infectious diseases. The growing field of healthcare prevention has become increasingly interested in VLPs, leading to the discovery of various VLP-based candidate vaccines for vaccination towards a wide range of infectious pathogens, one of the most recent that has been developed is the vaccine against SARS-CoV-2, the effectiveness of that is now being tested. VLPs can elicit both antibody and cell-mediated immune responses, unlike standard inactivated viral vaccines. However, several problems persist with this surface display method and will need fixing in the future. VLPs-based medicinal delivery, nanoreactors for treatment, and imaging systems are being developed with promising results. The latest developments in the generation and fabrication of VLPs involve explorations of several expression systems for their creation and their application as vaccines for the avoidance of infectious diseases and malignancies. This manuscript offers the most advanced perspective on biomedical applications based on VLPs, as well as details innovative methods for manufacturing, functionalization, and delivery of VLPs.

Graphical Abstract

[1]
Pumpens, P.; Grens, E. Artificial genes for chimeric virus-like particles. In: Artificial DNA: methods and applications, 1st ed.; CRC Press LLC, 2002.
[2]
Zdanowicz, M.; Chroboczek, J. Virus-like particles as drug delivery vectors. Acta Biochim. Pol., 2016, 63(3), 469-473.
[http://dx.doi.org/10.18388/abp.2016_1275] [PMID: 27474402]
[3]
Lamarre, B.; Ryadnov, M.G. Self-assembling viral mimetics: One long journey with short steps. Macromol. Biosci., 2011, 11(4), 503-513.
[http://dx.doi.org/10.1002/mabi.201000330] [PMID: 21165940]
[4]
Seow, Y.; Wood, M.J. Biological gene delivery vehicles: Beyond viral vectors. Mol. Ther., 2009, 17(5), 767-777.
[http://dx.doi.org/10.1038/mt.2009.41] [PMID: 19277019]
[5]
Pattenden, L.K.; Middelberg, A.P.J.; Niebert, M.; Lipin, D.I. Towards the preparative and large-scale precision manufacture of virus-like particles. Trends Biotechnol., 2005, 23(10), 523-529.
[http://dx.doi.org/10.1016/j.tibtech.2005.07.011] [PMID: 16084615]
[6]
King, A.M.Q.; Lefkowitz, E.J.; Mushegian, A.R.; Adams, M.J.; Dutilh, B.E.; Gorbalenya, A.E.; Harrach, B.; Harrison, R.L.; Junglen, S.; Knowles, N.J.; Kropinski, A.M.; Krupovic, M.; Kuhn, J.H.; Nibert, M.L.; Rubino, L.; Sabanadzovic, S.; Sanfaçon, H.; Siddell, S.G.; Simmonds, P.; Varsani, A.; Zerbini, F.M.; Davison, A.J. Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses (2018). Arch. Virol., 2018, 163(9), 2601-2631.
[http://dx.doi.org/10.1007/s00705-018-3847-1] [PMID: 29754305]
[7]
Fraenkel-Conrat, H.; Williams, R.C. Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proc. Natl. Acad. Sci., 1955, 41(10), 690-698.
[http://dx.doi.org/10.1073/pnas.41.10.690] [PMID: 16589730]
[8]
Zhang, Y.; Dong, Y.; Zhou, J.; Li, X.; Wang, F. Application of plant viruses as a biotemplate for nanomaterial fabrication. Molecules, 2018, 23(9), 2311.
[http://dx.doi.org/10.3390/molecules23092311] [PMID: 30208562]
[9]
Petrescu, D.S.; Blum, A.S. Viral‐based nanomaterials for plasmonic and photonic materials and devices. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2018, 10(4), e1508.
[http://dx.doi.org/10.1002/wnan.1508] [PMID: 29418076]
[10]
Zeng, Q.; Wen, H.; Wen, Q.; Chen, X.; Wang, Y.; Xuan, W.; Liang, J.; Wan, S. Cucumber mosaic virus as drug delivery vehicle for doxorubicin. Biomaterials, 2013, 34(19), 4632-4642.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.017] [PMID: 23528229]
[11]
Sánchez-Sánchez, L.; Cadena-Nava, R.D.; Palomares, L.A.; Ruiz-Garcia, J.; Koay, M.S.T.; Cornelissen, J.J.M.T.; Vazquez-Duhalt, R. Chemotherapy pro-drug activation by biocatalytic virus-like nanoparticles containing cytochrome P450. Enzyme Microb. Technol., 2014, 60, 24-31.
[http://dx.doi.org/10.1016/j.enzmictec.2014.04.003] [PMID: 24835096]
[12]
Koho, T.; Ihalainen, T.O.; Stark, M.; Uusi-Kerttula, H.; Wieneke, R.; Rahikainen, R.; Blazevic, V.; Marjomäki, V.; Tampé, R.; Kulomaa, M.S.; Hytönen, V.P. His-tagged norovirus-like particles: A versatile platform for cellular delivery and surface display. Eur. J. Pharm. Biopharm., 2015, 96(96), 22-31.
[http://dx.doi.org/10.1016/j.ejpb.2015.07.002] [PMID: 26170162]
[13]
Masarapu, H.; Patel, B.K.; Chariou, P.L.; Hu, H.; Gulati, N.M.; Carpenter, B.L.; Ghiladi, R.A.; Shukla, S.; Steinmetz, N.F. Physalis mottle virus-like particles as nanocarriers for imaging reagents and drugs. Biomacromolecules, 2017, 18(12), 4141-4153.
[http://dx.doi.org/10.1021/acs.biomac.7b01196] [PMID: 29144726]
[14]
Yan, D.; Teng, Z.; Sun, S.; Jiang, S.; Dong, H.; Gao, Y.; Wei, Y.; Qin, W.; Liu, X.; Yin, H.; Guo, H. Foot-and-mouth disease virus-like particles as integrin-based drug delivery system achieve targeting anti-tumor efficacy. Nanomedicine, 2017, 13(3), 1061-1070.
[http://dx.doi.org/10.1016/j.nano.2016.12.007] [PMID: 27993721]
[15]
Ruiter, M.V.D.; Putri, R.M. CCMV-based enzymatic nanoreactors. Methods Mol. Biol., 2018, 1776, 237-247.
[16]
Patterson, D.P. Encapsulation of active enzymes within bacteriophage P22 virus-like particles. Methods Mol. Biol., 2018, 1798, 11-24.
[http://dx.doi.org/10.1007/978-1-4939-7893-9_2]
[17]
Chauhan, K.; Hernandez-Meza, J.M.; Rodríguez-Hernández, A.G.; Juarez-Moreno, K.; Sengar, P.; Vazquez-Duhalt, R. Multifunctionalized biocatalytic P22 nanoreactor for combinatory treatment of ER+ breast cancer. J. Nanobiotechnology, 2018, 16(1), 17.
[http://dx.doi.org/10.1186/s12951-018-0345-2] [PMID: 29463260]
[18]
Wilkerson, J.W.; Yang, S.O.; Funk, P.J.; Stanley, S.K.; Bundy, B.C. Nanoreactors: Strategies to encapsulate enzyme biocatalysts in virus-like particles. N. Biotechnol., 2018, 44, 59-63.
[http://dx.doi.org/10.1016/j.nbt.2018.04.003] [PMID: 29702249]
[19]
Lam, P.; Steinmetz, N.F. Delivery of siRNA therapeutics using cowpea chlorotic mottle virus-like particles. Biomater. Sci., 2019, 7(8), 3138-3142.
[http://dx.doi.org/10.1039/C9BM00785G] [PMID: 31257379]
[20]
Chao, C.N.; Yang, Y.H.; Wu, M.S.; Chou, M.C.; Fang, C.Y.; Lin, M.C.; Tai, C.K.; Shen, C.H.; Chen, P.L.; Chang, D.; Wang, M. Gene therapy for human glioblastoma using neurotropic JC virus-like particles as a gene delivery vector. Sci. Rep., 2018, 8(1), 2213.
[http://dx.doi.org/10.1038/s41598-018-19825-w] [PMID: 29396437]
[21]
Lee, E.B.; Kim, J.H.; Hur, W.; Choi, J.E.; Kim, S.M.; Park, D.J.; Kang, B.Y.; Lee, G.W.; Yoon, S.K. Liver-specific gene delivery using engineered virus-like particles of hepatitis E virus. Sci. Rep., 2019, 9(1), 1616.
[http://dx.doi.org/10.1038/s41598-019-38533-7] [PMID: 30733562]
[22]
Schwarz, B.; Morabito, K.M.; Ruckwardt, T.J.; Patterson, D.P.; Avera, J.; Miettinen, H.M.; Graham, B.S.; Douglas, T. Viruslike particles encapsidating respiratory syncytial virus M and M2 proteins induce robust T cell responses. ACS Biomater. Sci. Eng., 2016, 2(12), 2324-2332.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00532] [PMID: 29367948]
[23]
Hu, H.; Masarapu, H.; Gu, Y.; Zhang, Y.; Yu, X.; Steinmetz, N.F. Physalis mottle virus-like nanoparticles for targeted cancer imaging. ACS Appl. Mater. Interfaces, 2019, 11(20), 18213-18223.
[http://dx.doi.org/10.1021/acsami.9b03956] [PMID: 31074602]
[24]
Shen, L.; Zhou, J.; Wang, Y.; Kang, N.; Ke, X.; Bi, S.; Ren, L. Efficient encapsulation of Fe3O4 nanoparticles into genetically engineered hepatitis B core virus-like particles through a specific interaction for potential bioapplications. Small, 2015, 11(9-10), 1190-1196.
[http://dx.doi.org/10.1002/smll.201401952] [PMID: 25155647]
[25]
Schwarz, B.; Douglas, T. Development of virus-like particles for diagnostic and prophylactic biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(5), 722-735.
[http://dx.doi.org/10.1002/wnan.1336] [PMID: 25677105]
[26]
Ho, J.K.T.; Jeevan-Raj, B.; Netter, H.J. Hepatitis B virus (HBV) subviral particles as protective vaccines and vaccine platforms. Viruses, 2020, 12(2), 126.
[http://dx.doi.org/10.3390/v12020126] [PMID: 31973017]
[27]
Balke, I.; Zeltins, A. Recent advances in the use of plant virus-like particles as vaccines. Viruses, 2020, 12(3), 270.
[http://dx.doi.org/10.3390/v12030270] [PMID: 32121192]
[28]
Chen, G.L.; Coates, E.E.; Plummer, S.H.; Carter, C.A.; Berkowitz, N.; Conan-Cibotti, M.; Cox, J.H.; Beck, A.; O’Callahan, M.; Andrews, C.; Gordon, I.J.; Larkin, B.; Lampley, R.; Kaltovich, F.; Gall, J.; Carlton, K.; Mendy, J.; Haney, D.; May, J.; Bray, A.; Bailer, R.T.; Dowd, K.A.; Brockett, B.; Gordon, D.; Koup, R.A.; Schwartz, R.; Mascola, J.R.; Graham, B.S.; Pierson, T.C.; Donastorg, Y.; Rosario, N.; Pape, J.W.; Hoen, B.; Cabié, A.; Diaz, C.; Ledgerwood, J.E. Effect of a chikungunya virus–like particle vaccine on safety and tolerability outcomes: A randomized clinical trial. JAMA, 2020, 323(14), 1369-1377.
[http://dx.doi.org/10.1001/jama.2020.2477] [PMID: 32286643]
[29]
Joe, C.C.D.; Chatterjee, S.; Lovrecz, G.; Adams, T.E.; Thaysen-Andersen, M.; Walsh, R.; Locarnini, S.A.; Smooker, P.; Netter, H.J. Glycoengineered hepatitis B virus-like particles with enhanced immunogenicity. Vaccine, 2020, 38(22), 3892-3901.
[http://dx.doi.org/10.1016/j.vaccine.2020.03.007] [PMID: 32284273]
[30]
Basu, R.; Zhai, L.; Rosso, B.; Tumban, E. Bacteriophage Qβ virus-like particles displaying Chikungunya virus B-cell epitopes elicit high-titer E2 protein antibodies but fail to neutralize a Thailand strain of Chikungunya virus. Vaccine, 2020, 38(11), 2542-2550.
[http://dx.doi.org/10.1016/j.vaccine.2020.01.091] [PMID: 32044164]
[31]
Smith, T.; O’Kennedy, M.M.; Wandrag, D.B.R.; Adeyemi, M.; Abolnik, C. Efficacy of a plant‐produced virus‐like particle vaccine in chickens challenged with Influenza A H6N2 virus. Plant Biotechnol. J., 2020, 18(2), 502-512.
[http://dx.doi.org/10.1111/pbi.13219] [PMID: 31350931]
[32]
Yadav, R.; Zhai, L.; Tumban, E. Virus-like particle-based L2 vaccines against HPVs: where are we today. Viruses, 2019, 12(1), 18.
[http://dx.doi.org/10.3390/v12010018] [PMID: 31877975]
[33]
Yazdani, R.; Shams-Bakhsh, M.; Hassani-Mehraban, A.; Arab, S.S.; Thelen, N.; Thiry, M.; Crommen, J.; Fillet, M.; Jacobs, N.; Brans, A.; Servais, A.C. Production and characterization of virus-like particles of grapevine fanleaf virus presenting L2 epitope of human papillomavirus minor capsid protein. BMC Biotechnol., 2019, 19(1), 81.
[http://dx.doi.org/10.1186/s12896-019-0566-y] [PMID: 31752839]
[34]
Fay, P.C.; Attoui, H.; Batten, C.; Mohd Jaafar, F.; Lomonossoff, G.P.; Daly, J.M.; Mertens, P.P.C. Bluetongue virus outer-capsid protein VP2 expressed in Nicotiana benthamiana raises neutralising antibodies and a protective immune response in IFNAR −/− mice. Vaccine X, 2019, 2, 100026.
[http://dx.doi.org/10.1016/j.jvacx.2019.100026] [PMID: 31384743]
[35]
Veerapen, V.P.; van Zyl, A.R.; Wigdorovitz, A.; Rybicki, E.P.; Meyers, A.E. Novel expression of immunogenic foot-and-mouth disease virus-like particles in Nicotiana benthamiana. Virus Res., 2018, 244, 213-217.
[http://dx.doi.org/10.1016/j.virusres.2017.11.027] [PMID: 29196195]
[36]
Lindsay, B.J.; Bonar, M.M.; Costas-Cancelas, I.N.; Hunt, K.; Makarkov, A.I.; Chierzi, S.; Krawczyk, C.M.; Landry, N.; Ward, B.J.; Rouiller, I. Morphological characterization of a plant-made virus-like particle vaccine bearing influenza virus hemagglutinins by electron microscopy. Vaccine, 2018, 36(16), 2147-2154.
[http://dx.doi.org/10.1016/j.vaccine.2018.02.106] [PMID: 29550194]
[37]
Marsian, J.; Fox, H.; Bahar, M.W.; Kotecha, A.; Fry, E.E.; Stuart, D.I.; Macadam, A.J.; Rowlands, D.J.; Lomonossoff, G.P. Plant-made polio type 3 stabilized VLPs—a candidate synthetic polio vaccine. Nat. Commun., 2017, 8(1), 245.
[http://dx.doi.org/10.1038/s41467-017-00090-w] [PMID: 28811473]
[38]
Wetzel, D.; Barbian, A.; Jenzelewski, V.; Schembecker, G.; Merz, J.; Piontek, M. Bioprocess optimization for purification of chimeric VLP displaying BVDV E2 antigens produced in yeast Hansenula polymorpha. J. Biotechnol., 2019, 306, 203-212.
[http://dx.doi.org/10.1016/j.jbiotec.2019.10.008] [PMID: 31634510]
[39]
Wetzel, D.; Rolf, T.; Suckow, M.; Kranz, A.; Barbian, A.; Chan, J.A.; Leitsch, J.; Weniger, M.; Jenzelewski, V.; Kouskousis, B.; Palmer, C.; Beeson, J.G.; Schembecker, G.; Merz, J.; Piontek, M. Establishment of a yeast-based VLP platform for antigen presentation. Microb. Cell Fact., 2018, 17(1), 17.
[http://dx.doi.org/10.1186/s12934-018-0868-0] [PMID: 29402276]
[40]
Shan, W.; Zhang, D.; Wu, Y.; Lv, X.; Hu, B.; Zhou, X.; Ye, S.; Bi, S.; Ren, L.; Zhang, X. Modularized peptides modified HBc virus-like particles for encapsulation and tumor-targeted delivery of doxorubicin. Nanomedicine, 2018, 14(3), 725-734.
[http://dx.doi.org/10.1016/j.nano.2017.12.002] [PMID: 29275067]
[41]
Maassen, S.J.; de Ruiter, M.V.; Lindhoud, S.; Cornelissen, J.J.L.M. Oligonucleotide length‐dependent formation of virus‐like particles. Chemistry, 2018, 24(29), 7456-7463.
[http://dx.doi.org/10.1002/chem.201800285] [PMID: 29518273]
[42]
Hirsch, J.; Faber, B.W.; Crowe, J.E., Jr; Verstrepen, B.; Cornelissen, G. E. coli production process yields stable dengue 1 virus-sized particles (VSPs). Vaccine, 2020, 38(17), 3305-3312.
[http://dx.doi.org/10.1016/j.vaccine.2020.03.003] [PMID: 32197924]
[43]
Lampinen, V.; Heinimäki, S.; Laitinen, O.H.; Pesu, M.; Hankaniemi, M.M.; Blazevic, V.; Hytönen, V.P. Modular vaccine platform based on the norovirus-like particle. J. Nanobiotechnology, 2021, 19(1), 25.
[http://dx.doi.org/10.1186/s12951-021-00772-0] [PMID: 33468139]
[44]
Noad, R.; Roy, P. Virus-like particles as immunogens. Trends Microbiol., 2003, 11(9), 438-444.
[http://dx.doi.org/10.1016/S0966-842X(03)00208-7] [PMID: 13678860]
[45]
Brisse, M.; Vrba, S.M.; Kirk, N.; Liang, Y.; Ly, H. Emerging concepts and technologies in vaccine development. Front. Immunol., 2020, 11, 583077.
[http://dx.doi.org/10.3389/fimmu.2020.583077] [PMID: 33101309]
[46]
Mohsen, M.; Gomes, A.; Vogel, M.; Bachmann, M. Interaction of viral capsid-derived virus-like particles (VLPs) with the innate immune system. Vaccines, 2018, 6(3), 37.
[http://dx.doi.org/10.3390/vaccines6030037] [PMID: 30004398]
[47]
Standaert, B.; Rappuoli, R. 3. How comprehensive can we be in the economic assessment of vaccines? J. Mark. Access Health Policy, 2017, 5(1), 1336044.
[http://dx.doi.org/10.1080/20016689.2017.1336044] [PMID: 29785253]
[48]
Tretyakova, I.; Plante, K.S.; Rossi, S.L.; Lawrence, W.S.; Peel, J.E.; Gudjohnsen, S.; Wang, E.; Mirchandani, D.; Tibbens, A.; Lamichhane, T.N.; Lukashevich, I.S.; Comer, J.E.; Weaver, S.C.; Pushko, P. Venezuelan equine encephalitis vaccine with rearranged genome resists reversion and protects non-human primates from viremia after aerosol challenge. Vaccine, 2020, 38(17), 3378-3386.
[http://dx.doi.org/10.1016/j.vaccine.2020.02.007] [PMID: 32085953]
[49]
Tebbens, R.J.D.; Pallansch, M.A.; Kew, O.M.; Cáceres, V.M.; Jafari, H.; Cochi, S.L.; Sutter, R.W.; Aylward, R.B.; Thompson, K.M. Risks of paralytic disease due to wild or vaccine-derived poliovirus after eradication. Risk Anal., 2006, 26(6), 1471-1505.
[http://dx.doi.org/10.1111/j.1539-6924.2006.00827.x] [PMID: 17184393]
[50]
Murphy, C.J.; Vartanian, A.M.; Geiger, F.M.; Hamers, R.J.; Pedersen, J.; Cui, Q.; Haynes, C.L.; Carlson, E.E.; Hernandez, R.; Klaper, R.D.; Orr, G.; Rosenzweig, Z. Biological responses to engineered nanomaterials: Needs for the next decade. ACS Cent. Sci., 2015, 1(3), 117-123.
[http://dx.doi.org/10.1021/acscentsci.5b00182] [PMID: 27162961]
[51]
Metz, S.W.; Thomas, A.; White, L.; Stoops, M.; Corten, M.; Hannemann, H.; de Silva, A.M. Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virol. J., 2018, 15(1), 60.
[http://dx.doi.org/10.1186/s12985-018-0970-2] [PMID: 29609659]
[52]
Rotter, M.L. Arguments for alcoholic hand disinfection. J. Hosp. Infect., 2001, 48, S4-S8.
[http://dx.doi.org/10.1016/S0195-6701(01)90004-0] [PMID: 11759024]
[53]
Gelderblom, H.R. Structure and classification of viruses, 4th ed.; Medical Microbiology, 1996.
[54]
Forterre, P.; Prangishvili, D. The origin of viruses. Res. Microbiol., 2009, 160(7), 466-472.
[http://dx.doi.org/10.1016/j.resmic.2009.07.008] [PMID: 19647075]
[55]
Deschuyteneer, M.; Elouahabi, A.; Plainchamp, D.; Plisnier, M.; Soete, D.; Corazza, Y.; Lockman, L.; Giannini, S.; Deschamps, M. Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in Cervarix ™, the AS04-adjuvanted HPV-16 and -18 cervical cancer vaccine. Hum. Vaccin., 2010, 6(5), 407-419.
[http://dx.doi.org/10.4161/hv.6.5.11023] [PMID: 20953154]
[56]
Sarkar, B.; Islam, S.S.; Zohora, U.S.; Ullah, M.A. Virus like particles A recent advancement in vaccine development. Microbiological Society of Korea, 2019, 55(4), 327-343.
[57]
Guo, J.; Zhou, A.; Sun, X.; Sha, W.; Ai, K.; Pan, G.; Zhou, C.; Zhou, H.; Cong, H.; He, S. Immunogenicity of a virus-like particle vaccine containing multiple antigenic epitopes of toxoplasma gondii against acute and chronic toxoplasmosis in mice. Front. Immunol., 2019, 10, 592.
[http://dx.doi.org/10.3389/fimmu.2019.00592] [PMID: 30984177]
[58]
Syomin, B.V.; Ilyin, Y.V. Virus-like particles as an instrument of vaccine production. Mol. Biol., 2019, 53(3), 323-334.
[http://dx.doi.org/10.1134/S0026893319030154] [PMID: 32214478]
[59]
Comas-Garcia, M.; Colunga-Saucedo, M.; Rosales-Mendoza, S. The role of virus-like particles in medical biotechnology. Mol. Pharm., 2020, 17(12), 4407-4420.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00828] [PMID: 33147978]
[60]
Mohsen, M.O.; Zha, L.; Cabral-Miranda, G.; Bachmann, M.F. Major findings and recent advances in virus–like particle (VLP)-based vaccines. Semin. Immunol., 2017, 34, 123-132.
[http://dx.doi.org/10.1016/j.smim.2017.08.014] [PMID: 28887001]
[61]
Chroboczek, J.; Szurgot, I.; Szolajska, E. Virus-like particles as vaccine. Acta Biochim. Pol., 2014, 61(3), 531-539.
[http://dx.doi.org/10.18388/abp.2014_1875] [PMID: 25273564]
[62]
Splawn, L.M.; Bailey, C.A.; Medina, J.P.; Cho, J.C. Heplisav-B vaccination for the prevention of hepatitis B virus infection in adults in the United States. Drugs Today, 2018, 54(7), 399-405.
[63]
Netter, H.J.; Chang, S.F.; Bruns, M. Host-range and pathogenicity of hepatitis B viruses. Future Virol., 2008, 3(1)
[http://dx.doi.org/10.2217/17460794.3.1.83]
[64]
Qian, C.; Liu, X.; Xu, Q.; Wang, Z.; Chen, J.; Li, T.; Zheng, Q.; Yu, H.; Gu, Y.; Li, S.; Xia, N. Recent progress on the versatility of virus-like particles. Vaccines, 2020, 8(1), 139.
[http://dx.doi.org/10.3390/vaccines8010139] [PMID: 32244935]
[65]
Wei, M.; Wang, D.; Li, Z.; Song, S.; Kong, X.; Mo, X.; Yang, Y.; He, M.; Li, Z.; Huang, B.; Lin, Z.; Pan, H.; Zheng, Q.; Yu, H.; Gu, Y.; Zhang, J.; Li, S.; Xia, N. N-terminal truncations on L1 proteins of human papillomaviruses promote their soluble expression in Escherichia coli and self-assembly in vitro. Emerg. Microbes Infect., 2018, 7(1), 1-12.
[http://dx.doi.org/10.1038/s41426-018-0158-2] [PMID: 30254257]
[66]
Kondo, K. Development of an HPV vaccine--remaining issues and perspective. Jpn. J. Clin. Med., 2009, 67(1), 62-68.
[PMID: 19177753]
[67]
Li, Z.; Wang, D.; Gu, Y.; Song, S.; He, M.; Shi, J.; Liu, X.; Wei, S.; Li, J.; Yu, H.; Zheng, Q.; Yan, X.; Baker, T.S.; Zhang, J.; McLellan, J.S.; Li, S.; Xia, N. Crystal structures of two immune complexes identify determinants for viral infectivity and type-specific neutralization of human papillomavirus. MBio, 2017, 8(5), e00787-e17.
[http://dx.doi.org/10.1128/mBio.00787-17] [PMID: 28951471]
[68]
Beran, J. Safety and immunogenicity of a new hepatitis B vaccine for the protection of patients with renal insufficiency including pre-haemodialysis and haemodialysis patients. Expert Opin. Biol. Ther., 2008, 8(2), 235-247.
[http://dx.doi.org/10.1517/14712598.8.2.235] [PMID: 18194079]
[69]
Bosch, F.X.; Manos, M.M.; Muñoz, N.; Sherman, M.; Jansen, A.M.; Peto, J.; Schiffman, M.H.; Moreno, V.; Kurman, R.; Shan, K.V. Prevalence of human papillomavirus in cervical cancer: A worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J. Natl. Cancer Inst., 1995, 87(11), 796-802.
[http://dx.doi.org/10.1093/jnci/87.11.796] [PMID: 7791229]
[70]
Smith, I.M.; Mydlarz, W.K.; Mithani, S.K.; Califano, J.A. DNA global hypomethylation in squamous cell head and neck cancer associated with smoking, alcohol consumption and stage. Int. J. Cancer, 2007, 121(8), 1724-1728.
[http://dx.doi.org/10.1002/ijc.22889] [PMID: 17582607]
[71]
Yim, E.K.; Park, J.S. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res. Treat., 2005, 37(6), 319-324.
[72]
Huibregtse, J.M.; Scheffner, M. Mechanisms of tumor suppressor protein inactivation by the human papillomavirus E6 and E7 oncoproteins. Semin. Virol., 1994, 5(5), 357-367.
[http://dx.doi.org/10.1006/smvy.1994.1040]
[73]
Zhang, T.; Chen, X.; Liu, H.; Bao, Q.; Wang, Z.; Liao, G.; Xu, X. A rationally designed flagellin-L2 fusion protein induced serum and mucosal neutralizing antibodies against multiple HPV types. Vaccine, 2019, 37(30), 4022-4030.
[http://dx.doi.org/10.1016/j.vaccine.2019.06.002] [PMID: 31213378]
[74]
Pouyanfard, S.; Spagnoli, G.; Bulli, L.; Balz, K.; Yang, F.; Odenwald, C.; Seitz, H.; Mariz, F.C.; Bolchi, A.; Ottonello, S.; Müller, M. Minor capsid protein L2 polytope induces broad protection against oncogenic and mucosal human papillomaviruses. J. Virol., 2018, 92(4), e01930-e17.
[http://dx.doi.org/10.1128/JVI.01930-17] [PMID: 29212932]
[75]
Slamon, D.; Clark, M.; Wong, S.; Levin, W.; Ullrich, A.; McAuire, W. Detection of c-erbB-2 amplification in breast cancer by in situ hybridization. Science, 1987, 235, 177-181.
[http://dx.doi.org/10.1126/science.3798106] [PMID: 3798106]
[76]
Bianchini, G.; Gianni, L. The immune system and response to HER2-targeted treatment in breast cancer. Lancet Oncol., 2014, 15(2), e58-e68.
[http://dx.doi.org/10.1016/S1470-2045(13)70477-7] [PMID: 24480556]
[77]
Garg, A.; Quartino, A.; Li, J.; Jin, J.; Wada, D.R.; Li, H.; Cortés, J.; McNally, V.; Ross, G.; Visich, J.; Lum, B. Population pharmacokinetic and covariate analysis of pertuzumab, a HER2-targeted monoclonal antibody, and evaluation of a fixed, non-weight-based dose in patients with a variety of solid tumors. Cancer Chemother. Pharmacol., 2014, 74(4), 819-829.
[http://dx.doi.org/10.1007/s00280-014-2560-3] [PMID: 25119184]
[78]
Leyland-Jones, B. Dose Scheduling – Herceptin<sup>®</sup>. Oncology, 2001, 61(2)(Suppl. 2), 31-36.
[http://dx.doi.org/10.1159/000055399] [PMID: 11694785]
[79]
López-Macías, C. Virus-like particle (VLP)-based vaccines for pandemic influenza. Hum. Vaccin. Immunother., 2012, 8(3), 411-414.
[http://dx.doi.org/10.4161/hv.18757] [PMID: 22330956]
[80]
Mejía-Méndez, J.L.; Vazquez-Duhalt, R.; Hernández, L.R.; Sánchez-Arreola, E.; Bach, H. Virus-like particles: Fundamentals and biomedical applications. Int. J. Mol. Sci., 2022, 23(15), 8579.
[http://dx.doi.org/10.3390/ijms23158579] [PMID: 35955711]
[81]
Louten, J. Essential human virology; Academic Press, 2022.
[82]
Hellen, C.U.T.; Wimmer, E. The role of proteolytic processing in the morphogenesis of virus particles. Experientia, 1992, 48(2), 201-215.
[http://dx.doi.org/10.1007/BF01923512] [PMID: 1740191]
[83]
Wisskirchen, K.; Lucifora, J.; Michler, T.; Protzer, U. New pharmacological strategies to fight enveloped viruses. Trends Pharmacol. Sci., 2014, 35(9), 470-478.
[http://dx.doi.org/10.1016/j.tips.2014.06.004] [PMID: 25108320]
[84]
Lan, K.; Luo, M.H. Herpesviruses: Epidemiology, pathogenesis, and interventions. Virol. Sin., 2017, 32(5), 347-348.
[http://dx.doi.org/10.1007/s12250-017-4108-2] [PMID: 29116595]
[85]
Schoeman, D.; Fielding, B.C. Coronavirus envelope protein: Current knowledge. Virol. J., 2019, 16(1), 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[86]
Naskalska, A.; Pyrć, K. Virus like particles as immunogens and universal nanocarriers. Pol. J. Microbiol., 2015, 64(1), 3-13.
[http://dx.doi.org/10.33073/pjm-2015-001] [PMID: 26094310]
[87]
Keikha, R.; Daliri, K.; Jebali, A. The use of nanobiotechnology in immunology and vaccination. Vaccines, 2021, 9(2), 74.
[http://dx.doi.org/10.3390/vaccines9020074] [PMID: 33494441]
[88]
Lua, L.H.L.; Connors, N.K.; Sainsbury, F.; Chuan, Y.P.; Wibowo, N.; Middelberg, A.P.J. Bioengineering virus-like particles as vaccines. Biotechnol. Bioeng., 2014, 111(3), 425-440.
[http://dx.doi.org/10.1002/bit.25159] [PMID: 24347238]
[89]
Dai, S.; Wang, H.; Deng, F. Advances and challenges in enveloped virus-like particle (VLP)-based vaccines. J Immunol Sci, 2018, 2(2)
[90]
Pulcini, C.; Massin, S.; Launay, O.; Verger, P. Factors associated with vaccination for hepatitis B, pertussis, seasonal and pandemic influenza among French general practitioners: A 2010 survey. Vaccine, 2013, 31(37), 3943-3949.
[http://dx.doi.org/10.1016/j.vaccine.2013.06.039] [PMID: 23806242]
[91]
Comas-Garcia, M. Packaging of genomic RNA in positive-sense single-stranded RNA viruses: A complex story. Viruses, 2019, 11(3), 253.
[http://dx.doi.org/10.3390/v11030253] [PMID: 30871184]
[92]
Lavelle, L.; Gingery, M.; Phillips, M.; Gelbart, W.M.; Knobler, C.M.; Cadena-Nava, R.D.; Vega-Acosta, J.R.; Pinedo-Torres, L.A.; Ruiz-Garcia, J. Phase diagram of self-assembled viral capsid protein polymorphs. J. Phys. Chem., 2009, 113(12), 3813-3819.
[93]
Crist, R.M.; Datta, S.A.K.; Stephen, A.G.; Soheilian, F.; Mirro, J.; Fisher, R.J.; Nagashima, K.; Rein, A. Assembly properties of human immunodeficiency virus type 1 Gag-leucine zipper chimeras: Implications for retrovirus assembly. J. Virol., 2009, 83(5), 2216-2225.
[http://dx.doi.org/10.1128/JVI.02031-08] [PMID: 19073719]
[94]
Lizotte, P.H.; Wen, A.M.; Sheen, M.R.; Fields, J.; Rojanasopondist, P.; Steinmetz, N.F.; Fiering, S. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat. Nanotechnol., 2016, 11(3), 295-303.
[http://dx.doi.org/10.1038/nnano.2015.292] [PMID: 26689376]
[95]
Zheng, Y.; Lee, P.W.; Wang, C.; Thomas, L.D.; Stewart, P.L.; Steinmetz, N.F.; Pokorski, J.K. Freeze-drying to produce efficacious CPMV virus-like particles. Nano Lett., 2019, 19(3), 2099-2105.
[http://dx.doi.org/10.1021/acs.nanolett.9b00300] [PMID: 30801195]
[96]
Romero-Brey, I.; Bartenschlager, R. Membranous replication factories induced by plus-strand RNA viruses. Viruses, 2014, 6(7), 2826-2857.
[http://dx.doi.org/10.3390/v6072826] [PMID: 25054883]
[97]
Quan, F.S.; Lee, Y.T.; Kim, K.H.; Kim, M.C.; Kang, S.M. Progress in developing virus-like particle influenza vaccines. Expert Rev. Vaccines, 2016, 15(10), 1281-1293.
[http://dx.doi.org/10.1080/14760584.2016.1175942] [PMID: 27058302]
[98]
Sartorius, R.; Trovato, M.; Manco, R.; D’Apice, L.; De Berardinis, P. Exploiting viral sensing mediated by Toll-like receptors to design innovative vaccines. npj. Vaccines, 2021, 6(1), 1-15.
[PMID: 35062662]
[99]
Roy, P.; Noad, R. Virus-like particles as a vaccine delivery system: Myths and facts. Hum. Vaccin., 2008, 4(1), 5-12.
[http://dx.doi.org/10.4161/hv.4.1.5559] [PMID: 18438104]
[100]
Storni, T.; Bachmann, M.F. Loading of MHC class I and II presentation pathways by exogenous antigens: a quantitative in vivo comparison. J. Immunol., 2004, 172(10), 6129-6135.
[http://dx.doi.org/10.4049/jimmunol.172.10.6129] [PMID: 15128799]
[101]
Zepeda-Cervantes, J.; Ramírez-Jarquín, J.O.; Vaca, L. Interaction between virus-like particles (VLPs) and pattern recognition receptors (PRRs) in dendritic cells (DCs): Toward better engineering of VLPs. Front. Immunol., 2020, 11, 1100.
[http://dx.doi.org/10.3389/fimmu.2020.01100] [PMID: 32582186]
[102]
Cui, Z.; Gorzelnik, K.V.; Chang, J.Y.; Langlais, C.; Jakana, J.; Young, R.; Zhang, J. Structures of Qβ virions, virus-like particles, and the Qβ–MurA complex reveal internal coat proteins and the mechanism of host lysis. Proc. Natl. Acad. Sci., 2017, 114(44), 11697-11702.
[http://dx.doi.org/10.1073/pnas.1707102114] [PMID: 29078304]
[103]
Golmohammadi, R.; Valegård, K.; Fridborg, K.; Liljas, L. The refined structure of bacteriophage MS2 at 2.8 A resolution. J. Mol. Biol., 1993, 234(3), 620-639.
[http://dx.doi.org/10.1006/jmbi.1993.1616] [PMID: 8254664]
[104]
Herbert, F.C.; Brohlin, O.R.; Galbraith, T.; Benjamin, C.; Reyes, C.A.; Luzuriaga, M.A.; Shahrivarkevishahi, A.; Gassensmith, J.J. Supramolecular encapsulation of small-ultrared fluorescent proteins in virus-like nanoparticles for noninvasive in vivo imaging agents. Bioconjug. Chem., 2020, 31(5), 1529-1536.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00190] [PMID: 32343135]
[105]
Rohovie, M.J.; Nagasawa, M.; Swartz, J.R. Virus-like particles: Next-generation nanoparticles for targeted therapeutic delivery. Bioeng. Transl. Med., 2017, 2(1), 43-57.
[http://dx.doi.org/10.1002/btm2.10049] [PMID: 29313023]
[106]
Bárcena, J.; Blanco, E. Design of novel vaccines based on virus-like particles or chimeric virions. Subcell. Biochem., 2013, 68, 631-665.
[http://dx.doi.org/10.1007/978-94-007-6552-8_21]
[107]
Shirbaghaee, Z.; Bolhassani, A. Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems. Biopolymers, 2016, 105(3), 113-132.
[http://dx.doi.org/10.1002/bip.22759] [PMID: 26509554]
[108]
Le, D.T.; Müller, K.M. In vitro assembly of virus-like particles and their applications. Life, 2021, 11(4), 334.
[http://dx.doi.org/10.3390/life11040334] [PMID: 33920215]
[109]
Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-Marzán, L.M. Directed self-assembly of nanoparticles. ACS Nano, 2010, 4(7), 3591-3605.
[http://dx.doi.org/10.1021/nn100869j] [PMID: 20568710]
[110]
Clark, D.P.; Pazdernik, N.J. Recombinant DNA Technology. In: Biotechnology; 2nd ed., 2016; pp. 63-95.
[111]
Crisci, E.; Bárcena, J.; Montoya, M. Virus-like particles: The new frontier of vaccines for animal viral infections. Vet. Immunol. Immunopathol., 2012, 148(3-4), 211-225.
[http://dx.doi.org/10.1016/j.vetimm.2012.04.026] [PMID: 22705417]
[112]
Nayak, S.; Herzog, R.W. Progress and prospects: Immune responses to viral vectors. Gene Ther., 2010, 17(3), 295-304.
[http://dx.doi.org/10.1038/gt.2009.148] [PMID: 19907498]
[113]
Brondyk, W.H. Selecting an appropriate method for expressing a recombinant protein. Methods Enzymol., 2009, 463, 131-147.
[http://dx.doi.org/10.1016/S0076-6879(09)63011-1] [PMID: 19892171]
[114]
Burnett, M.J.B.; Burnett, A.C. Therapeutic recombinant protein production in plants: Challenges and opportunities. Plants People Planet, 2020, 2(2), 121-132.
[http://dx.doi.org/10.1002/ppp3.10073]
[115]
Pham, P.V. Medical biotechnology: Techniques and applications. In: Omics technologies and bioengineering; , 2018; p. 449-469.
[116]
Zlotnick, A.; Mukhopadhyay, S. Virus assembly, allostery and antivirals. Trends Microbiol., 2011, 19(1), 14-23.
[http://dx.doi.org/10.1016/j.tim.2010.11.003] [PMID: 21163649]
[117]
Welsch, S.; Müller, B.; Kräusslich, H.G. More than one door - Budding of enveloped viruses through cellular membranes. FEBS Lett., 2007, 581(11), 2089-2097.
[http://dx.doi.org/10.1016/j.febslet.2007.03.060] [PMID: 17434167]
[118]
Mortola, E.; Roy, P. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett., 2004, 576(1-2), 174-178.
[http://dx.doi.org/10.1016/j.febslet.2004.09.009] [PMID: 15474033]
[119]
Rudd, P.M.; Wormald, M.R.; Stanfield, R.L.; Huang, M.; Mattsson, N.; Speir, J.A.; DiGennaro, J.A.; Fetrow, J.S.; Dwek, R.A.; Wilson, I.A. Roles for glycosylation of cell surface receptors involved in cellular immune recognition. J. Mol. Biol., 1999, 293(2), 351-366.
[http://dx.doi.org/10.1006/jmbi.1999.3104] [PMID: 10529350]
[120]
Vicente, T.; Roldão, A.; Peixoto, C.; Carrondo, M.J.T.; Alves, P.M. Large-scale production and purification of VLP-based vaccines. J. Invertebr. Pathol., 2011, 107, S42-S48.
[http://dx.doi.org/10.1016/j.jip.2011.05.004] [PMID: 21784230]
[121]
Keshavarz, M.; Mirzaei, H.; Salemi, M.; Momeni, F.; Mousavi, M.J.; Sadeghalvad, M.; Arjeini, Y.; Solaymani-Mohammadi, F.; Sadri Nahand, J.; Namdari, H.; Mokhtari-Azad, T.; Rezaei, F. Influenza vaccine: Where are we and where do we go? Rev. Med. Virol., 2019, 29(1), e2014.
[http://dx.doi.org/10.1002/rmv.2014] [PMID: 30408280]
[122]
Francis, M.J. Recent advances in vaccine technologies. Vet. Clin. North Am. Small Anim. Pract., 2018, 48(2), 231-241.
[http://dx.doi.org/10.1016/j.cvsm.2017.10.002] [PMID: 29217317]
[123]
Zackova, S.J.; Hejtmankova, A.; Neburkova, J.; Cigler, P.; Forstova, J.; Spanielova, H. The protein corona does not influence receptor-mediated targeting of virus-like particles. Bioconjug. Chem., 2020, 31(5), 1575-1585.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00240] [PMID: 32329599]
[124]
Zhai, L.; Yadav, R.; Kunda, N.K.; Anderson, D.; Bruckner, E.; Miller, E.K.; Basu, R.; Muttil, P.; Tumban, E. Oral immunization with bacteriophage MS2-L2 VLPs protects against oral and genital infection with multiple HPV types associated with head & neck cancers and cervical cancer. Antiviral Res., 2019, 166, 56-65.
[http://dx.doi.org/10.1016/j.antiviral.2019.03.012] [PMID: 30926288]
[125]
Shouval, D. Hepatitis B vaccines. J. Hepatol., 2003, 39(S1), 70-76.
[http://dx.doi.org/10.1016/S0168-8278(03)00152-1] [PMID: 14708681]
[126]
van den Ende, C.; Marano, C.; van Ahee, A.; Bunge, E.M.; De Moerlooze, L. The immunogenicity of GSK’s recombinant hepatitis B vaccine in children: A systematic review of 30 years of experience. Expert Rev. Vaccines, 2017, 16(8), 789-809.
[http://dx.doi.org/10.1080/14760584.2017.1338569] [PMID: 28586278]
[127]
Haffar, S.; Bazerbachi, F.; Lake, J.R. Making the case for the development of a vaccination against hepatitis E virus. Liver Int., 2015, 35(2), 311-316.
[http://dx.doi.org/10.1111/liv.12590] [PMID: 24836400]
[128]
Aponte-Ubillus, J.J.; Barajas, D.; Peltier, J.; Bardliving, C.; Shamlou, P.; Gold, D. Molecular design for recombinant adeno-associated virus (rAAV) vector production. Appl. Microbiol. Biotechnol., 2018, 102(3), 1045-1054.
[http://dx.doi.org/10.1007/s00253-017-8670-1] [PMID: 29204900]
[129]
Lee, C.S.; Bishop, E.S.; Zhang, R.; Yu, X.; Farina, E.M.; Yan, S.; Zhao, C.; Zeng, Z.; Shu, Y.; Wu, X.; Lei, J.; Li, Y.; Zhang, W.; Yang, C.; Wu, K.; Wu, Y.; Ho, S.; Athiviraham, A.; Lee, M.J.; Wolf, J.M.; Reid, R.R.; He, T.C. Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis., 2017, 4(2), 43-63.
[http://dx.doi.org/10.1016/j.gendis.2017.04.001] [PMID: 28944281]
[130]
Alpdagtas, S.; Ilhan, E.; Uysal, E.; Sengor, M.; Ustundag, C.B.; Gunduz, O. Evaluation of current diagnostic methods for COVID-19. APL Bioeng., 2020, 4(4), 041506.
[http://dx.doi.org/10.1063/5.0021554] [PMID: 33305162]
[131]
Balkrishna, A.; Arya, V.; Rohela, A.; Kumar, A.; Verma, R.; Kumar, D.; Nepovimova, E.; Kuca, K.; Thakur, N.; Thakur, N.; Kumar, P. Nanotechnology interventions in the management of COVID-19: Prevention, diagnosis and virus-like particle vaccines. Vaccines, 2021, 9(10), 1129.
[http://dx.doi.org/10.3390/vaccines9101129] [PMID: 34696237]
[132]
Ristić, M.; Nikolić, N.; Čabarkapa, V.; Turkulov, V.; Petrović, V. Validation of the STANDARD Q COVID-19 antigen test in Vojvodina, Serbia. PLoS One, 2021, 16(2), e0247606.
[http://dx.doi.org/10.1371/journal.pone.0247606] [PMID: 33617597]
[133]
Chaimayo, C.; Kaewnaphan, B.; Tanlieng, N.; Athipanyasilp, N.; Sirijatuphat, R.; Chayakulkeeree, M.; Angkasekwinai, N.; Sutthent, R.; Puangpunngam, N.; Tharmviboonsri, T.; Pongraweewan, O.; Chuthapisith, S.; Sirivatanauksorn, Y.; Kantakamalakul, W.; Horthongkham, N. Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand. Virol. J., 2020, 17(1), 177.
[http://dx.doi.org/10.1186/s12985-020-01452-5] [PMID: 31906972]
[134]
Sheridan, C. Fast, portable tests come online to curb coronavirus pandemic. Nat. Biotechnol., 2020, 38(5), 515-518.
[http://dx.doi.org/10.1038/d41587-020-00010-2] [PMID: 32203294]
[135]
Ramdas, K.; Darzi, A.; Jain, S. ‘Test, re-test, re-test’: Using inaccurate tests to greatly increase the accuracy of COVID-19 testing. Nat. Med., 2020, 26(6), 810-811.
[http://dx.doi.org/10.1038/s41591-020-0891-7] [PMID: 32398878]
[136]
Liu, R.; Han, H.; Liu, F.; Lv, Z.; Wu, K.; Liu, Y.; Feng, Y.; Zhu, C. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin. Chim. Acta, 2020, 505, 172-175.
[http://dx.doi.org/10.1016/j.cca.2020.03.009] [PMID: 32156607]
[137]
Huang, C.; Wen, T.; Shi, F.J.; Zeng, X.Y.; Jiao, Y.J. Rapid detection of IgM antibodies against the SARS-CoV-2 virus via colloidal gold nanoparticle-based lateral flow assay. ACS Omega, 2020, 5(21), 12550-12556.
[http://dx.doi.org/10.1021/acsomega.0c01554] [PMID: 32542208]
[138]
Kircher, M.F.; Mahmood, U.; King, R.S.; Weissleder, R.; Josephson, L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res., 2003, 63(23), 8122-8125.
[PMID: 14678964]
[139]
Nam, J.M.; Stoeva, S.I.; Mirkin, C.A. Bio-bar-code-based DNA detection with PCR-like sensitivity. J. Am. Chem. Soc., 2004, 126(19), 5932-5933.
[http://dx.doi.org/10.1021/ja049384+] [PMID: 15137735]
[140]
Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[141]
Neuwelt, E.A.; Várallyay, P.; Bagó, A.G.; Muldoon, L.L.; Nesbit, G.; Nixon, R. Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours. Neuropathol. Appl. Neurobiol., 2004, 30(5), 456-471.
[http://dx.doi.org/10.1111/j.1365-2990.2004.00557.x] [PMID: 15488022]
[142]
Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Imani, M.; Seifalian, A.M. Biological applications of quantum dots. Biomaterials, 2007, 28(31), 4717-4732.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.014] [PMID: 17686516]
[143]
Goverdhana, S.; Puntel, M.; Xiong, W.; Zirger, J.M.; Barcia, C.; Curtin, J.F.; Soffer, E.B.; Mondkar, S.; King, G.D.; Hu, J.; Sciascia, S.A.; Candolfi, M.; Greengold, D.S.; Lowenstein, P.R.; Castro, M.G. Regulatable gene expression systems for gene therapy applications: Progress and future challenges. Mol. Ther., 2005, 12(2), 189-211.
[http://dx.doi.org/10.1016/j.ymthe.2005.03.022] [PMID: 15946903]
[144]
Daniel, R.; Smith, J.A. Integration site selection by retroviral vectors: molecular mechanism and clinical consequences. Hum. Gene Ther., 2008, 19(6), 557-568.
[http://dx.doi.org/10.1089/hum.2007.148] [PMID: 18533894]
[145]
Biddlecome, A.; Habte, H.H.; McGrath, K.M.; Sambanthamoorthy, S.; Wurm, M.; Sykora, M.M.; Knobler, C.M.; Lorenz, I.C.; Lasaro, M.; Elbers, K.; Gelbart, W.M. Delivery of self-amplifying RNA vaccines in in vitro reconstituted virus-like particles. PLoS One, 2019, 14(6), e0215031.
[http://dx.doi.org/10.1371/journal.pone.0215031] [PMID: 31163034]
[146]
Choi, K.; Kim, K.; Kwon, I.C.; Kim, I.S.; Ahn, H.J. Systemic delivery of siRNA by chimeric capsid protein: Tumor targeting and RNAi activity in vivo. Mol. Pharm., 2013, 10(1), 18-25.
[http://dx.doi.org/10.1021/mp300211a] [PMID: 22663765]
[147]
Peyret, H.; Gehin, A.; Thuenemann, E.C.; Blond, D.; El Turabi, A.; Beales, L.; Clarke, D.; Gilbert, R.J.C.; Fry, E.E.; Stuart, D.I.; Holmes, K.; Stonehouse, N.J.; Whelan, M.; Rosenberg, W.; Lomonossoff, G.P.; Rowlands, D.J. Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins. PLoS One, 2015, 10(4), e0120751.
[http://dx.doi.org/10.1371/journal.pone.0120751] [PMID: 25830365]
[148]
Finbloom, J.; Aanei, I.; Bernard, J.; Klass, S.; Elledge, S.; Han, K.; Ozawa, T.; Nicolaides, T.; Berger, M.; Francis, M. Evaluation of three morphologically distinct virus-like particles as nanocarriers for convection-enhanced drug delivery to glioblastoma. Nanomaterials, 2018, 8(12), 1007.
[http://dx.doi.org/10.3390/nano8121007] [PMID: 30563038]
[149]
Steinmetz, N.F.; Cho, C.F.; Ablack, A.; Lewis, J.D.; Manchester, M. Cowpea mosaic virus nanoparticles target surface vimentin on cancer cells. Nanomedicine, 2011, 6(2), 351-364.
[http://dx.doi.org/10.2217/nnm.10.136] [PMID: 21385137]
[150]
Koudelka, K.J.; Destito, G.; Plummer, E.M.; Trauger, S.A.; Siuzdak, G.; Manchester, M. Endothelial targeting of cowpea mosaic virus (CPMV) via surface vimentin. PLoS Pathog., 2009, 5(5), e1000417.
[http://dx.doi.org/10.1371/journal.ppat.1000417] [PMID: 19412526]
[151]
Banerjee, D.; Liu, A.P.; Voss, N.R.; Schmid, S.L.; Finn, M.G. Multivalent display and receptor-mediated endocytosis of transferrin on virus-like particles. ChemBioChem, 2010, 11(9), 1273-1279.
[http://dx.doi.org/10.1002/cbic.201000125] [PMID: 20455239]
[152]
Enomoto, T.; Kawano, M.; Fukuda, H.; Sawada, W.; Inoue, T.; Haw, K.C.; Kita, Y.; Sakamoto, S.; Yamaguchi, Y.; Imai, T.; Hatakeyama, M.; Saito, S.; Sandhu, A.; Matsui, M.; Aoki, I.; Handa, H. Viral protein-coating of magnetic nanoparticles using simian virus 40 VP1. J. Biotechnol., 2013, 167(1), 8-15.
[http://dx.doi.org/10.1016/j.jbiotec.2013.06.005] [PMID: 23791947]
[153]
Kobayashi, T.; Kakimi, K.; Nakayama, E.; Jimbow, K. Antitumor immunity by magnetic nanoparticle-mediated hyperthermia. Nanomedicine, 2014, 9(11), 1715-1726.
[http://dx.doi.org/10.2217/nnm.14.106] [PMID: 25321171]
[154]
Pang, H.H.; Huang, C.Y.; Chou, Y.W.; Lin, C.J.; Zhou, Z.L.; Shiue, Y.L.; Wei, K.C.; Yang, H.W. Bioengineering fluorescent virus-like particle/RNAi nanocomplexes act synergistically with temozolomide to eradicate brain tumors. Nanoscale, 2019, 11(17), 8102-8109.
[http://dx.doi.org/10.1039/C9NR01247H] [PMID: 30982841]
[155]
Pang, H.H.; Chen, P.Y.; Wei, K.C.; Huang, C.W.; Shiue, Y.L.; Huang, C.Y.; Yang, H.W. Convection-enhanced delivery of a virus-like nanotherapeutic agent with dual-modal imaging for besiegement and eradication of brain tumors. Theranostics, 2019, 9(6), 1752-1763.
[http://dx.doi.org/10.7150/thno.30977] [PMID: 31037136]
[156]
Yuste-Calvo, C.; López-Santalla, M.; Zurita, L.; Cruz-Fernández, C.F.; Sánchez, F.; Garín, M.I.; Ponz, F. Elongated flexuous plant virus-derived nanoparticles functionalized for autoantibody detection. Nanomaterials, 2019, 9(10), 1438.
[http://dx.doi.org/10.3390/nano9101438] [PMID: 31658770]
[157]
Martin, D.A.; Muth, D.A.; Brown, T.; Johnson, A.J.; Karabatsos, N.; Roehrig, J.T. Standardization of immunoglobulin M capture enzyme-linked immunosorbent assays for routine diagnosis of arboviral infections. J. Clin. Microbiol., 2000, 38(5), 1823-1826.
[http://dx.doi.org/10.1128/JCM.38.5.1823-1826.2000] [PMID: 10790107]
[158]
Theillet, G.; Martinez, J.; Steinbrugger, C.; Lavillette, D.; Coutard, B.; Papageorgiou, N.; Dalbon, P.; Leparc-Goffart, I.; Bedin, F. Comparative study of chikungunya Virus-Like Particles and Pseudotyped-Particles used for serological detection of specific immunoglobulin M. Virology, 2019, 529, 195-204.
[http://dx.doi.org/10.1016/j.virol.2019.01.027] [PMID: 30721816]
[159]
Atmar, R.L.; Bernstein, D.I.; Harro, C.D.; Al-Ibrahim, M.S.; Chen, W.H.; Ferreira, J.; Estes, M.K.; Graham, D.Y.; Opekun, A.R.; Richardson, C.; Mendelman, P.M. Norovirus vaccine against experimental human Norwalk Virus illness. N. Engl. J. Med., 2011, 365(23), 2178-2187.
[http://dx.doi.org/10.1056/NEJMoa1101245] [PMID: 22150036]
[160]
Bernstein, D.I.; Atmar, R.L.; Lyon, G.M.; Treanor, J.J.; Chen, W.H.; Jiang, X.; Vinjé, J.; Gregoricus, N.; Frenck, R.W., Jr; Moe, C.L.; Al-Ibrahim, M.S.; Barrett, J.; Ferreira, J.; Estes, M.K.; Graham, D.Y.; Goodwin, R.; Borkowski, A.; Clemens, R.; Mendelman, P.M. Norovirus vaccine against experimental human GII.4 virus illness: A challenge study in healthy adults. J. Infect. Dis., 2015, 211(6), 870-878.
[http://dx.doi.org/10.1093/infdis/jiu497] [PMID: 25210140]
[161]
Kim, L.; Liebowitz, D.; Lin, K.; Kasparek, K.; Pasetti, M.F.; Garg, S.J.; Gottlieb, K.; Trager, G.; Tucker, S.N. Safety and immunogenicity of an oral tablet norovirus vaccine, a phase I randomized, placebo-controlled trial. JCI Insight, 2018, 3(13), e121077.
[http://dx.doi.org/10.1172/jci.insight.121077] [PMID: 29997294]
[162]
de Lalla, F.; Rinaldi, E.; Santoro, D.; Pravettoni, G. Immune response to hepatitis b vaccine given at different injection sites and by different routes a controlled randomized study. Eur. J. Epidemiol., 1988, 4(2), 256-258.
[http://dx.doi.org/10.1007/BF00144763] [PMID: 2969825]
[163]
Lemon, S.M.; Weber, D.J. Immunogenicity of plasma-derived hepatitis B vaccine. J. Gen. Intern. Med., 1986, 1(3), 199-201.
[http://dx.doi.org/10.1007/BF02602339] [PMID: 2945916]
[164]
Arnou, R.; Eavis, P.; De Juanes Pardo, J-R.; Ambrozaitis, A.; Kazek, M.P.; Weber, F. Immunogenicity, large scale safety and lot consistency of an intradermal influenza vaccine in adults aged 18–60 years: Randomized, controlled, Phase III trial. Hum. Vaccin., 2010, 6(4), 346-354.
[http://dx.doi.org/10.4161/hv.6.4.10961] [PMID: 20372053]
[165]
Clarke, P.D.; Adams, P.; Ibáñez, R.; Herzog, C. Rate, intensity, and duration of local reactions to a virosome-adjuvanted vs. an aluminium-adsorbed hepatitis A vaccine in UK travellers. Travel Med. Infect. Dis., 2006, 4(6), 313-318.
[http://dx.doi.org/10.1016/j.tmaid.2006.01.001] [PMID: 17098626]
[166]
Zurbriggen, R.; Novak-Hofer, I.; Seelig, A.; Glück, R. IRIV-adjuvanted hepatitis A vaccine: In vivo absorption and biophysical characterization. Prog. Lipid Res., 2000, 39(1), 3-18.
[http://dx.doi.org/10.1016/S0163-7827(99)00017-X] [PMID: 10729605]
[167]
Fehr, T.; Bachmann, M.F.; Bucher, E.; Kalinke, U.; Padova, F.E.D.; Lang, A.B.; Hengartner, H.; Zinkernagel, R.M. Role of repetitive antigen patterns for induction of antibodies against antibodies. J. Exp. Med., 1997, 185(10), 1785-1792.
[http://dx.doi.org/10.1084/jem.185.10.1785] [PMID: 9151704]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy