Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Recent Updates on Peptide Molecules in Drug and Vaccine Development

Author(s): Mamoona Sarfaraz, Faiqa Anjum, Duaa Zahra, Ayesha Maqsood and Usman Ali Ashfaq*

Volume 29, Issue 20, 2023

Published on: 24 July, 2023

Page: [1564 - 1578] Pages: 15

DOI: 10.2174/1381612829666230717121632

Price: $65

Abstract

Peptides are of great importance in the areas of science because they can act as drug carriers and their therapeutic effect and their ability to generate an immune response. As culturing of viral agents for drugs and vaccine development is harmful, therefore, peptide-based drugs and vaccines have achieved great importance. Large immunoglobulins cannot pass the plasma membrane, so peptides are used to study this interaction because of their small size. Peptides with substituted amino acid sequences are also stable in blood serum, which makes them significant for drug development. Peptides with substituted amino acid sequences are stable in blood serum hence, their stability, small size, easy screening, cost-effectiveness, ease of administration and particularity (target specificity) make them effective to be used in pharmaceutical companies. Mostly branched peptides are used for the development of drugs because they are not prone to be degraded by proteolytic enzymes. In peptide-based vaccines, protein acts as the main constituent from which the main component that causes the infection is deleted by recombinant DNA technology, and these peptides act as antigens to stimulate the immune response. Self-assembled peptides have the main role in the delivery of drugs and vaccine molecules inside the living cells because they may also assemble into nano technological structures to improve their efficiency. This review focuses on the characteristics of peptides that make them effective to develop drugs and vaccines. Different peptides like synthetic peptides, antimicrobial peptides, signal peptides, carrier peptides, and their role against various viral, pathogenic, and microbial diseases and in cosmetics are described briefly.

[1]
Shakoor H, Feehan J, Al Dhaheri AS, et al. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas 2021; 143: 1-9.
[http://dx.doi.org/10.1016/j.maturitas.2020.08.003] [PMID: 33308613]
[2]
Kreutz D, Ramos FMV, Esteves Verissimo P, Esteve Rothenberg C, Azodolmolky S, Uhlig S. Software-defined networking: A comprehensive survey. Proc IEEE 2015; 103(1): 14-76.
[http://dx.doi.org/10.1109/JPROC.2014.2371999]
[3]
Meda-Campaña JA, Grande-Meza A, de Jesus Rubio J, et al. Design of stabilizers and observers for a class of multivariable T-S fuzzy models on the basis of new interpolation functions. IEEE Trans Fuzzy Syst 2018; 26(5): 2649-62.
[http://dx.doi.org/10.1109/TFUZZ.2017.2786244]
[4]
Brunetti J, Riolo G, Gentile M, et al. Near-infrared quantum dots labelled with a tumor selective tetrabranched peptide for in vivo imaging. J Nanobiotechnology 2018; 16(1): 21.
[http://dx.doi.org/10.1186/s12951-018-0346-1] [PMID: 29501065]
[5]
Sun L. Peptide-based drug development. Mod Chem Appl 2013; 1(1): 1-2.
[http://dx.doi.org/10.4172/2329-6798.1000e103] [PMID: 23584997]
[6]
Chua BY, Eriksson EM, Brown LE, et al. A self-adjuvanting lipopeptide-based vaccine candidate for the treatment of hepatitis C virus infection. Vaccine 2008; 26(37): 4866-75.
[http://dx.doi.org/10.1016/j.vaccine.2008.03.032] [PMID: 18455278]
[7]
Madeira F, Park Y, Lee J, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 2019; 47(W1): W636-41.
[http://dx.doi.org/10.1093/nar/gkz268] [PMID: 30976793]
[8]
Powell CM, Li ZX, McElhinny MW, Meert JG, Park JK. Paleomagnetic constraints on timing of the neoproterozoic breakup of rodinia and the cambrian formation of gondwana. Geology 1993; 21(10): 889-92.
[http://dx.doi.org/10.1130/0091-7613(1993)021<0889:PCOTOT>2.3.CO;2]
[9]
Wang D, Liu S, Warrell J, et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 2018; 362(6420): eaat8464.
[http://dx.doi.org/10.1126/science.aat8464] [PMID: 30545857]
[10]
Bolhassani A, Rafati S. Heat-shock proteins as powerful weapons in vaccine development. Expert Rev Vaccines 2008; 7(8): 1185-99.
[http://dx.doi.org/10.1586/14760584.7.8.1185] [PMID: 18844593]
[11]
Shyh-Chang N, Daley GQ, Cantley LC. Stem cell metabolism in tissue development and aging. Development 2013; 140(12): 2535-47.
[http://dx.doi.org/10.1242/dev.091777] [PMID: 23715547]
[12]
Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 2007; 6(5): 404-14.
[http://dx.doi.org/10.1038/nrd2224] [PMID: 17473845]
[13]
Skwarczynski M, Toth I. Recent advances in peptide-based subunit nanovaccines. Nanomedicine 2014; 9(17): 2657-69.
[http://dx.doi.org/10.2217/nnm.14.187] [PMID: 25529569]
[14]
Morris R, Stuart S, McBarron G, Fino PC, Mancini M, Curtze C. Validity of Mobility Lab (version 2) for gait assessment in young adults, older adults and Parkinson’s disease. Physiol Meas 2019; 40(9): 095003.
[http://dx.doi.org/10.1088/1361-6579/ab4023] [PMID: 31470423]
[15]
Brooks NA, Pouniotis DS, Tang CK, Apostolopoulos V, Pietersz GA. Cell-penetrating peptides: Application in vaccine delivery. Biochim Biophys Acta, Rev Cancer 2010; 1805(1): 25-34.
[http://dx.doi.org/10.1016/j.bbcan.2009.09.004] [PMID: 19782720]
[16]
Lindgren M, Hällbrink M, Prochiantz A, Langel Ü. Cell-penetrating peptides. Trends Pharmacol Sci 2000; 21(3): 99-103.
[http://dx.doi.org/10.1016/S0165-6147(00)01447-4] [PMID: 10689363]
[17]
Nasrollahi SA, Taghibiglou C, Azizi E, Farboud ES. Cell-penetrating peptides as a novel transdermal drug delivery system. Chem Biol Drug Des 2012; 80(5): 639-46.
[http://dx.doi.org/10.1111/cbdd.12008] [PMID: 22846609]
[18]
Ong SE, Mann M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 2006; 1(6): 2650-60.
[http://dx.doi.org/10.1038/nprot.2006.427] [PMID: 17406521]
[19]
Woo HR, Koo HJ, Kim J, et al. Programming of plant leaf senescence with temporal and inter-organellar coordination of transcriptome in Arabidopsis. Plant Physiol 2016; 171(1): 452-67.
[http://dx.doi.org/10.1104/pp.15.01929] [PMID: 26966169]
[20]
Suhrbier A. Multi-epitope DNA vaccines. Immunol Cell Biol 1997; 75(4): 402-8.
[http://dx.doi.org/10.1038/icb.1997.63] [PMID: 9315485]
[21]
Jiang S, Song R, Popov S, Mirshahidi S, Ruprecht RM. Overlapping synthetic peptides as vaccines. Vaccine 2006; 24(37-39): 6356-65.
[http://dx.doi.org/10.1016/j.vaccine.2006.04.070] [PMID: 16793181]
[22]
Li ML, Shih SR, Tolbert BS, Brewer G. Enterovirus A71 vaccines. Vaccines 2021; 9(3): 199.
[http://dx.doi.org/10.3390/vaccines9030199] [PMID: 33673595]
[23]
Hans D, Young P, Fairlie D. Current status of short synthetic peptides as vaccines. Med Chem 2006; 2(6): 627-46.
[http://dx.doi.org/10.2174/1573406410602060627] [PMID: 17105445]
[24]
Riederer P, Sofic E, Rausch WD, et al. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 1989; 52(2): 515-20.
[http://dx.doi.org/10.1111/j.1471-4159.1989.tb09150.x] [PMID: 2911028]
[25]
Jiang B, Frazier GV, Prater EL. Outsourcing effects on firms’ operational performance. Int J Oper Prod Manage 2006; 26(12): 1280-300.
[http://dx.doi.org/10.1108/01443570610710551]
[26]
Van Regenmortel MHV. Antigenicity and immunogenicity of synthetic peptides. Biologicals 2001; 29(3-4): 209-13.
[http://dx.doi.org/10.1006/biol.2001.0308] [PMID: 11851317]
[27]
Barreto-Santamaría A, Patarroyo ME, Curtidor H. Designing and optimizing new antimicrobial peptides: All targets are not the same. Crit Rev Clin Lab Sci 2019; 56(6): 351-73.
[http://dx.doi.org/10.1080/10408363.2019.1631249] [PMID: 31397205]
[28]
Gjertsen MK, Gaudernack G. Mutated Ras peptides as vaccines in immunotherapy of cancer. Vox Sang 1998; 74(S2) (Suppl. 2): 489-95.
[http://dx.doi.org/10.1111/j.1423-0410.1998.tb05462.x] [PMID: 9704487]
[29]
Kumai T, Fan A, Harabuchi Y, Celis E. Cancer immunotherapy: Moving forward with peptide T cell vaccines. Curr Opin Immunol 2017; 47: 57-63.
[http://dx.doi.org/10.1016/j.coi.2017.07.003] [PMID: 28734176]
[30]
Nagato T, Ohkuri T, Ohara K, et al. Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T- cell lymphoma: A potential rationale for immunotherapy. Cancer Immunol Immunother 2017; 66(7): 877-90.
[http://dx.doi.org/10.1007/s00262-017-1987-x] [PMID: 28349165]
[31]
Wu YL, Cheng Y, Zhou J, et al. Tepotinib plus gefitinib in patients with EGFR-mutant non-small-cell lung cancer with MET overexpression or MET amplification and acquired resistance to previous EGFR inhibitor (INSIGHT study): An open-label, phase 1b/2, multicentre, randomised trial. Lancet Respir Med 2020; 8(11): 1132-43.
[http://dx.doi.org/10.1016/S2213-2600(20)30154-5] [PMID: 32479794]
[32]
Melief CJM, van der Burg SH. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer 2008; 8(5): 351-60.
[http://dx.doi.org/10.1038/nrc2373] [PMID: 18418403]
[33]
Yamada A, Sasada T, Noguchi M, Itoh K. Next-generation peptide vaccines for advanced cancer. Cancer Sci 2013; 104(1): 15-21.
[http://dx.doi.org/10.1111/cas.12050] [PMID: 23107418]
[34]
Wood AJJ, Lieschke GJ, Burgess AW. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor (2). N Engl J Med 1992; 327(2): 99-106.
[http://dx.doi.org/10.1056/NEJM199207093270207] [PMID: 1376442]
[35]
Cho S, Kim S, Kim JH, et al. Phase patterning for ohmic homojunction contact in MoTe 2. Science 2015; 349(6248): 625-8.
[http://dx.doi.org/10.1126/science.aab3175] [PMID: 26250680]
[36]
Naz RK, Dabir P. Peptide vaccines against cancer, infectious diseases, and conception. Front Biosci 2007; 12(1): 1833-44.
[http://dx.doi.org/10.2741/2191] [PMID: 17127424]
[37]
Hos BJ, Tondini E, van Kasteren SI, Ossendorp F. Approaches to improve chemically defined synthetic peptide vaccines. Front Immunol 2018; 9: 884.
[http://dx.doi.org/10.3389/fimmu.2018.00884] [PMID: 29755468]
[38]
Alcaro M, Peroni E, Rovero P, Papini A. Synthetic peptides in the diagnosis of HIV infection. Curr Protein Pept Sci 2003; 4(4): 285-90.
[http://dx.doi.org/10.2174/1389203033487117] [PMID: 14529535]
[39]
Camperi J, Dai L, Guillarme D, Stella C. Fast and automated characterization of monoclonal antibody minor variants from cell cultures by combined protein-A and multidimensional LC/MS methodologies. Anal Chem 2020; 92(12): 8506-13.
[http://dx.doi.org/10.1021/acs.analchem.0c01250] [PMID: 32441930]
[40]
Amaral SM, Carvalho LQ, de Souza Pereira NA. Alecrim (Rosmarinus officinalis): Principais características. Revista de Casos e Consultoria 2021; 12(1): e24651-1.
[41]
Malonis RJ, Georgiev GI, Haslwanter D, et al. A Powassan virus domain III nanoparticle immunogen elicits neutralizing and protective antibodies in mice. PLoS Pathog 2022; 18(6): e1010573.
[http://dx.doi.org/10.1371/journal.ppat.1010573] [PMID: 35679349]
[42]
Lin JY, Kung YA, Shih SR. Antivirals and vaccines for Enterovirus A71. J Biomed Sci 2019; 26(1): 65.
[http://dx.doi.org/10.1186/s12929-019-0560-7] [PMID: 31481071]
[43]
Zheng S, Fan J, Yu F. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: Retrospective cohort study. BMJ 2020; : m1443.369
[44]
Santos MY, Oliveira e Sá J, Andrade C, et al. A big data system supporting bosch braga industry 4.0 strategy. Int J Inf Manage 2017; 37(6): 750-60.
[http://dx.doi.org/10.1016/j.ijinfomgt.2017.07.012]
[45]
Valenta R, Campana R, Focke-Tejkl M, Niederberger V. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future. J Allergy Clin Immunol 2016; 137(2): 351-7.
[http://dx.doi.org/10.1016/j.jaci.2015.12.1299] [PMID: 26853127]
[46]
Ruppé E, Armand-Lefèvre L, Estellat C, et al. High rate of acquisition but short duration of carriage of multidrug-resistant Enterobacteriaceae after travel to the tropics. Clin Infect Dis 2015; 61(4): 593-600.
[http://dx.doi.org/10.1093/cid/civ333] [PMID: 25904368]
[47]
Peng MW, Sun SL, Pinkham B, Chen H. The institution-based view as a third leg for a strategy tripod. Acad Manage Perspect 2009; 23(3): 63-81.
[http://dx.doi.org/10.5465/amp.2009.43479264]
[48]
Tang YY, Ma Y, Wang J, et al. Short-term meditation training improves attention and self-regulation. Proc Natl Acad Sci USA 2007; 104(43): 17152-6.
[http://dx.doi.org/10.1073/pnas.0707678104] [PMID: 17940025]
[49]
Schwarze J, Openshaw P, Jha A, et al. Influenza burden, prevention, and treatment in asthma-A scoping review by the EAACI Influenza in asthma task force. Allergy 2018; 73(6): 1151-81.
[http://dx.doi.org/10.1111/all.13333] [PMID: 29105786]
[50]
Larché M, Wraith DC. Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nat Med 2005; 11(S4) (Suppl.): S69-76.
[http://dx.doi.org/10.1038/nm1226] [PMID: 15812493]
[51]
Heitz RP, Schall JD. Neural mechanisms of speed-accuracy tradeoff. Neuron 2012; 76(3): 616-28.
[http://dx.doi.org/10.1016/j.neuron.2012.08.030] [PMID: 23141072]
[52]
Cook DP, Gysemans C, Mathieu C. Lactococcus lactis as a versatile vehicle for tolerogenic immunotherapy. Front Immunol 2018; 8: 1961.
[http://dx.doi.org/10.3389/fimmu.2017.01961] [PMID: 29387056]
[53]
Elias D, Cohen IR. Peptide therapy for diabetes in NOD mice. Lancet 1994; 343(8899): 704-6.
[http://dx.doi.org/10.1016/S0140-6736(94)91582-2] [PMID: 7907681]
[54]
Nicholas D, Odumosu O, Langridge WH. Autoantigen based vaccines for type 1 diabetes. Discov Med 2011; 11(59): 293-301.
[PMID: 21524383]
[55]
Reche P, Flower DR, Fridkis-Hareli M, Hoshino Y. Peptide-based immunotherapeutics and vaccines 2017. J Immunol Res 2018; 2018
[http://dx.doi.org/10.1155/2018/4568239]
[56]
Storni F, Zeltins A, Balke I. Vaccine against peanut allergy based on engineered virus-like particles displaying single major peanut allergens. J Allergy Clin Immunol Pract 2020; 145(4): 1240-53.
[http://dx.doi.org/10.1016/j.jaci.2019.12.007]
[57]
Nicholas MK, Linton SJ, Watson PJ, Main CJ. Early identification and management of psychological risk factors (“yellow flags”) in patients with low back pain: A reappraisal. Phys Ther 2011; 91(5): 737-53.
[http://dx.doi.org/10.2522/ptj.20100224] [PMID: 21451099]
[58]
Smith EL, Peakman M. Peptide immunotherapy for type 1 diabetes-clinical advances. Front Immunol 2018; 9: 392.
[http://dx.doi.org/10.3389/fimmu.2018.00392] [PMID: 29541078]
[59]
Lewandowsky S, Ecker UKH, Cook J. Beyond misinformation: Understanding and coping with the “post-truth” era. J Appl Res Mem Cogn 2017; 6(4): 353-69.
[http://dx.doi.org/10.1016/j.jarmac.2017.07.008]
[60]
Ni L, Ye F, Cheng ML. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity 2020; 52(6): 971-7.
[61]
Jackson D, Purcell A, Fitzmaurice C, Zeng W, Hart D. The central role played by peptides in the immune response and the design of peptide-based vaccines against infectious diseases and cancer. Curr Drug Targets 2002; 3(2): 175-96.
[http://dx.doi.org/10.2174/1389450024605436] [PMID: 11958299]
[62]
Lima PG, Oliveira JTA, Amaral JL, Freitas CDT, Souza PFN. Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance. Life Sci 2021; 278: 119647.
[http://dx.doi.org/10.1016/j.lfs.2021.119647] [PMID: 34043990]
[63]
Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020; 370(6515): eabd4570.
[http://dx.doi.org/10.1126/science.abd4570] [PMID: 32972995]
[64]
Souza PFN, Marques LSM, Oliveira JTA, et al. Synthetic antimicrobial peptides: From choice of the best sequences to action mechanisms. Biochimie 2020; 175: 132-45.
[http://dx.doi.org/10.1016/j.biochi.2020.05.016] [PMID: 32534825]
[65]
Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia 2020; 34(4): 966-84.
[http://dx.doi.org/10.1038/s41375-020-0776-2] [PMID: 32127639]
[66]
Mergoni G, Manfredi M, Bertani P, Ciociola T, Conti S, Giovati L. Antibacterial effects of two synthetic peptides against Enterococcus faecalis biofilms: A preliminary in vitro study. G Ital Endod 2020; 34(1): 47-54.
[http://dx.doi.org/10.32067/GIE.2020.34.01.15]
[67]
Vivanco Vidal A. Anxiety due to COVID-19 and mental health in university students. J Res Psychology 2020; 23(2): 197-215.
[http://dx.doi.org/10.15381/rinvp.v23i2.19241]
[68]
Hoffmann M, Arora P, Groß R. SARS-CoV-2 variants B. 1.351 and P. 1 escape from neutralizing antibodies. Cell 2021; 184(9): 2384-93.
[69]
Grohe M, Kreutzer S, Siebertz S. Deciding first-order properties of nowhere dense graphs. J Assoc Comput Mach 2017; 64(3): 1-32. [JACM].
[http://dx.doi.org/10.1145/3051095]
[70]
Mascola JR, Snyder SW, Weislow OS, et al. Immunization with envelope subunit vaccine products elicits neutralizing antibodies against laboratory-adapted but not primary isolates of human immunodeficiency virus type 1. J Infect Dis 1996; 173(2): 340-8.
[http://dx.doi.org/10.1093/infdis/173.2.340] [PMID: 8568294]
[71]
Harmeyer S, Pfaff E, Groschup MH. Synthetic peptide vaccines yield monoclonal antibodies to cellular and pathological prion proteins of ruminants. J Gen Virol 1998; 79(4): 937-45.
[http://dx.doi.org/10.1099/0022-1317-79-4-937] [PMID: 9568991]
[72]
Nardin EH, Oliveira GA, Calvo-Calle JM, Nussenzweig RS. The use of multiple antigen peptides in the analysis and induction of protective immune responses against infectious diseases. Adv Immunol 1995; 60: 105-49.
[http://dx.doi.org/10.1016/S0065-2776(08)60585-4] [PMID: 8607369]
[73]
Lee CH, Hung KC, Hsieh MJ, et al. Core-shell insulin-loaded nanofibrous scaffolds for repairing diabetic wounds. Nanomedicine 2020; 24: 102123.
[http://dx.doi.org/10.1016/j.nano.2019.102123] [PMID: 31711999]
[74]
Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses 2020; 12(3): 254.
[http://dx.doi.org/10.3390/v12030254] [PMID: 32106567]
[75]
Riedl S, Zweytick D, Lohner K. Membrane-active host defense peptides - Challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids 2011; 164(8): 766-81.
[http://dx.doi.org/10.1016/j.chemphyslip.2011.09.004] [PMID: 21945565]
[76]
Papo N, Shai Y. Host defense peptides as new weapons in cancer treatment. Cell Mol Life Sci 2005; 62(7-8): 784-90.
[http://dx.doi.org/10.1007/s00018-005-4560-2] [PMID: 15868403]
[77]
Al-Benna S, Shai Y, Jacobsen F, Steinstraesser L. Oncolytic activities of host defense peptides. Int J Mol Sci 2011; 12(11): 8027-51.
[http://dx.doi.org/10.3390/ijms12118027] [PMID: 22174648]
[78]
Ferraro F, Lymperi S, Méndez-Ferrer S. Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci Transl Med 2011; 3(104): 104ra101.
[http://dx.doi.org/10.1126/scitranslmed.3002191]
[79]
Perez R, Kivalov S, Schlemmer J, Hemker K Jr, Renné D, Hoff TE. Validation of short and medium term operational solar radiation forecasts in the US. Sol Energy 2010; 84(12): 2161-72.
[http://dx.doi.org/10.1016/j.solener.2010.08.014]
[80]
Nishikawa M, Takemoto S, Takakura Y. Heat shock protein derivatives for delivery of antigens to antigen presenting cells. Int J Pharm 2008; 354(1-2): 23-7.
[http://dx.doi.org/10.1016/j.ijpharm.2007.09.030] [PMID: 17980980]
[81]
Li W, Joshi M, Singhania S, Ramsey K, Murthy A. Peptide vaccine: Progress and challenges. Vaccines 2014; 2(3): 515-36.
[http://dx.doi.org/10.3390/vaccines2030515] [PMID: 26344743]
[82]
Bijker MS, van den Eeden SJF, Franken KL, Melief CJM, Offringa R, van der Burg SH. CD8+ CTL priming by exact peptide epitopes in incomplete Freund’s adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J Immunol 2007; 179(8): 5033-40.
[http://dx.doi.org/10.4049/jimmunol.179.8.5033] [PMID: 17911588]
[83]
Situmorang YA, Zhao Z, Yoshida A, Abudula A, Guan G. Small-scale biomass gasification systems for power generation (<200 kW class): A review. Renew Sustain Energy Rev 2020; 117: 109486.
[http://dx.doi.org/10.1016/j.rser.2019.109486]
[84]
Aldilla VR, Chen R, Martin AD, et al. Anthranilamide-based short peptides self-assembled hydrogels as antibacterial agents. Sci Rep 2020; 10(1): 770.
[http://dx.doi.org/10.1038/s41598-019-57342-6] [PMID: 31964927]
[85]
Dorosti H, Eslami M, Nezafat N, Fadaei F, Ghasemi Y. Designing self-assembled peptide nanovaccine against Streptococcus pneumoniae: An in silico strategy. Mol Cell Probes 2019; 48: 101446.
[http://dx.doi.org/10.1016/j.mcp.2019.101446] [PMID: 31520715]
[86]
Negahdaripour M, Golkar N, Hajighahramani N, Kianpour S, Nezafat N, Ghasemi Y. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Biotechnol Adv 2017; 35(5): 575-96.
[http://dx.doi.org/10.1016/j.biotechadv.2017.05.002] [PMID: 28522213]
[87]
Eskandari S, Guerin T, Toth I, Stephenson RJ. Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering. Adv Drug Deliv Rev 2017; 110-111: 169-87.
[http://dx.doi.org/10.1016/j.addr.2016.06.013] [PMID: 27356149]
[88]
Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 2016; 107: 163-75.
[http://dx.doi.org/10.1016/j.addr.2016.06.018] [PMID: 27426411]
[89]
Neufurth M, Wang X, Wang S, et al. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone. Acta Biomater 2017; 64: 377-88.
[http://dx.doi.org/10.1016/j.actbio.2017.09.031] [PMID: 28966095]
[90]
Xing L, Wen C, Liu Z, Su H, Cai J. Adaptive compensation for actuator failures with event-triggered input. Automatica 2017; 85: 129-36.
[http://dx.doi.org/10.1016/j.automatica.2017.07.061]
[91]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[92]
Huang G, Liu L, Wang H, et al. Tet1 deficiency leads to premature reproductive aging by reducing spermatogonia stem cells and germ cell differentiation. iScience 2020; 23(3): 100908.
[http://dx.doi.org/10.1016/j.isci.2020.100908] [PMID: 32114381]
[93]
Yang J, Firdaus F, Azuar A, et al. Cell-penetrating peptides-based liposomal delivery system enhanced immunogenicity of peptide-based vaccine against Group A Streptococcus. Vaccines 2021; 9(5): 499.
[http://dx.doi.org/10.3390/vaccines9050499] [PMID: 34066099]
[94]
Deshayes S, Morris MC, Divita G, Heitz F. Cell-penetrating peptides: Tools for intracellular delivery of therapeutics. Cell Mol Life Sci 2005; 62(16): 1839-49.
[http://dx.doi.org/10.1007/s00018-005-5109-0] [PMID: 15968462]
[95]
Heitz F, Morris MC, Divita G. Twenty years of cell-penetrating peptides: From molecular mechanisms to therapeutics. Br J Pharmacol 2009; 157(2): 195-206.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00057.x] [PMID: 19309362]
[96]
Chen J, Yang H, Teo ASM, et al. Genomic landscape of lung adenocarcinoma in East Asians. Nat Genet 2020; 52(2): 177-86.
[http://dx.doi.org/10.1038/s41588-019-0569-6] [PMID: 32015526]
[97]
Chen JY, Qiao K, Liu F, et al. Lung transplantation as therapeutic option in acute respiratory distress syndrome for coronavirus disease 2019-related pulmonary fibrosis. Chin Med J 2020; 133(12): 1390-6.
[http://dx.doi.org/10.1097/CM9.0000000000000839] [PMID: 32251003]
[98]
Ren W, Zhou P, Tian Y, et al. Catalytic performance and reaction mechanism of an iron-loaded catalyst derived from blast furnace slag for the CO-SO2 reaction to produce sulfur. Appl Catal A Gen 2020; 606: 117810.
[http://dx.doi.org/10.1016/j.apcata.2020.117810]
[99]
Yang J, Luo Y, Shibu MA, Toth I, Skwarczynskia M. Cell-penetrating peptides: Efficient vectors for vaccine delivery. Curr Drug Deliv 2019; 16(5): 430-43.
[http://dx.doi.org/10.2174/1567201816666190123120915] [PMID: 30760185]
[100]
Landh E, Moir LM, Gomes Dos Reis L, Traini D, Young PM, Ong HX. Inhaled rapamycin solid lipid nano particles for the treatment of Lymphangioleiomyomatosis. Eur J Pharm Sci 2020; 142: 105098.
[http://dx.doi.org/10.1016/j.ejps.2019.105098] [PMID: 31698038]
[101]
Kurrikoff K, Vunk B, Langel Ü. Status update in the use of cell-penetrating peptides for the delivery of macromolecular therapeutics. Expert Opin Biol Ther 2021; 21(3): 361-70.
[http://dx.doi.org/10.1080/14712598.2021.1823368] [PMID: 32938243]
[102]
Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: From basic research to clinics. Trends Pharmacol Sci 2017; 38(4): 406-24.
[http://dx.doi.org/10.1016/j.tips.2017.01.003] [PMID: 28209404]
[103]
Copolovici DM, Langel K, Eriste E, Langel Ü. Cell-penetrating peptides: Design, synthesis, and applications. ACS Nano 2014; 8(3): 1972-94.
[http://dx.doi.org/10.1021/nn4057269] [PMID: 24559246]
[104]
Nevagi RJ, Skwarczynski M, Toth I. Polymers for subunit vaccine delivery. Eur Polym J 2019; 114: 397-410.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.03.009]
[105]
Rostami B, Irani S, Bolhassani A, Cohan RA. Gene and protein delivery using four cell penetrating peptides for HIV-1 vaccine development. IUBMB Life 2019; 71(10): 1619-33.
[http://dx.doi.org/10.1002/iub.2107] [PMID: 31220406]
[106]
Davoodi S, Bolhassani A, Sadat SM, Irani S. Design and in vitro delivery of HIV-1 multi-epitope DNA and peptide constructs using novel cell-penetrating peptides. Biotechnol Lett 2019; 41(11): 1283-98.
[http://dx.doi.org/10.1007/s10529-019-02734-x] [PMID: 31531750]
[107]
Rodríguez-Carmona A, Pérez Fontán M, Sangiao Alvarellos S, et al. Serum levels of the adipomyokine irisin in patients with chronic kidney disease. Nefrología 2016; 36(5): 496-502.
[http://dx.doi.org/10.1016/j.nefroe.2016.11.011] [PMID: 27590717]
[108]
Mohammadi F, Samaei MR, Azhdarpoor A, Teiri H, Badeenezhad A, Rostami S. Modelling and optimizing pyrene removal from the soil by phytoremediation using response surface methodology, artificial neural networks, and genetic algorithm. Chemosphere 2019; 237: 124486.
[http://dx.doi.org/10.1016/j.chemosphere.2019.124486] [PMID: 31398609]
[109]
Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019; 47(D1): D687-92.
[http://dx.doi.org/10.1093/nar/gky1080] [PMID: 30395255]
[110]
Reissmann S, Filatova MP. New generation of cell-penetrating peptides: Functionality and potential clinical application. J Pept Sci 2021; 27(5): e3300.
[http://dx.doi.org/10.1002/psc.3300] [PMID: 33615648]
[111]
Davoodi S, Bolhassani A, Namazi F. In vivo delivery of a multiepitope peptide and Nef protein using novel cell-penetrating peptides for development of HIV-1 vaccine candidate. Biotechnol Lett 2021; 43(3): 547-59.
[http://dx.doi.org/10.1007/s10529-020-03060-3] [PMID: 33386500]
[112]
Soleymani S, Zabihollahi R, Shahbazi S, Bolhassani A. Antiviral effects of saffron and its major ingredients. Curr Drug Deliv 2018; 15(5): 698-704.
[http://dx.doi.org/10.2174/1567201814666171129210654] [PMID: 29189153]
[113]
Guillen Schlippe YV, Hartman MCT, Josephson K, Szostak JW. In vitro selection of highly modified cyclic peptides that act as tight binding inhibitors. J Am Chem Soc 2012; 134(25): 10469-77.
[http://dx.doi.org/10.1021/ja301017y] [PMID: 22428867]
[114]
Otvos L Jr, Wade JD. Current challenges in peptide-based drug discovery. Frontiers Media, SA 2014; p. 62.
[115]
Fiester SE, Arivett BA, Schmidt RE, et al. Iron-regulated phospholipase C activity contributes to the cytolytic activity and virulence of Acinetobacter baumannii. PLoS One 2016; 11(11): e0167068.
[http://dx.doi.org/10.1371/journal.pone.0167068] [PMID: 27875572]
[116]
Gooding M, Browne LP, Quinteiro FM, Selwood DL. siRNA delivery: From lipids to cell-penetrating peptides and their mimics. Chem Biol Drug Des 2012; 80(6): 787-809.
[http://dx.doi.org/10.1111/cbdd.12052] [PMID: 22974319]
[117]
Díaz-Sánchez V, Rodríguez-Patiño G, Ramírez-Bribiesca E, Morales-Álvarez J, López-Arellano R. Evaluación de bolos selenio sobre parámetros productivos e IgG en cabritos inmunizados con bacterina-toxoide. Abanico Veterinario 2018; 8(3): 118-29.
[http://dx.doi.org/10.21929/abavet2018.83.9]
[118]
Chen L, Harrison SD. Cell-penetrating peptides in drug development: Enabling intracellular targets. Biochem Soc Trans 2007; 35(4): 821-5.
[http://dx.doi.org/10.1042/BST0350821] [PMID: 17635156]
[119]
Gessner I, Neundorf I. Nanoparticles modified with cell-penetrating peptides: Conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Int J Mol Sci 2020; 21(7): 2536.
[http://dx.doi.org/10.3390/ijms21072536] [PMID: 32268473]
[120]
Bahar A, Ren D. Antimicrobial peptides. Pharmaceuticals 2013; 6(12): 1543-75.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[121]
Lien S, Lowman HB. Therapeutic peptides. Trends Biotechnol 2003; 21(12): 556-62.
[http://dx.doi.org/10.1016/j.tibtech.2003.10.005] [PMID: 14624865]
[122]
Azizi S, Zandsalimi M, Li D. An energy-efficient algorithm for virtual machine placement optimization in cloud data centers. Cluster Comput 2020; 23(4): 3421-34.
[http://dx.doi.org/10.1007/s10586-020-03096-0]
[123]
Davani-Davari D, Negahdaripour M, Karimzadeh I, et al. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods 2019; 8(3): 92.
[http://dx.doi.org/10.3390/foods8030092] [PMID: 30857316]
[124]
Izadpanah A, Gallo RL. Antimicrobial peptides. J Am Acad Dermatol 2005; 52(3): 381-90.
[http://dx.doi.org/10.1016/j.jaad.2004.08.026] [PMID: 15761415]
[125]
Wang Y, Yin W, Zeng J. Global convergence of ADMM in nonconvex nonsmooth optimization. J Sci Comput 2019; 78(1): 29-63.
[http://dx.doi.org/10.1007/s10915-018-0757-z]
[126]
Feldman O, Samuel N, Kvatinsky N, Idelman R, Diamand R, Shavit I. Endotracheal intubation of COVID-19 patients by paramedics using a box barrier: A randomized crossover manikin study. PLoS One 2021; 16(3): e0248383.
[http://dx.doi.org/10.1371/journal.pone.0248383] [PMID: 33788837]
[127]
Annunziato G, Costantino G. Antimicrobial peptides (AMPs): A patent review (2015-2020). Expert Opin Ther Pat 2020; 30(12): 931-47.
[http://dx.doi.org/10.1080/13543776.2020.1851679] [PMID: 33187458]
[128]
Lim JA, Lee ST, Moon J, et al. Development of the clinical assessment scale in autoimmune encephalitis. Ann Neurol 2019; 85(3): 352-8.
[http://dx.doi.org/10.1002/ana.25421] [PMID: 30675918]
[129]
Guan Z, Wang Y, Wang H, et al. Electrochemical oxidative cyclization of olefinic carbonyls with diselenides. Green Chem 2019; 21(18): 4976-80.
[http://dx.doi.org/10.1039/C9GC02665G]
[130]
Liu J, Cao L, Klauser PC, et al. A genetically encoded fluorosulfonyloxybenzoyl-L-lysine for expansive covalent bonding of proteins via sufex chemistry. J Am Chem Soc 2021; 143(27): 10341-51.
[http://dx.doi.org/10.1021/jacs.1c04259] [PMID: 34213894]
[131]
Cooper BM, Iegre J, O’ Donovan DH, Ölwegård Halvarsson M, Spring DR. Peptides as a platform for targeted therapeutics for cancer: Peptide-drug conjugates (PDCs). Chem Soc Rev 2021; 50(3): 1480-94.
[http://dx.doi.org/10.1039/D0CS00556H] [PMID: 33346298]
[132]
Reddy KVR, Yedery RD, Aranha C. Antimicrobial peptides: Premises and promises. Int J Antimicrob Agents 2004; 24(6): 536-47.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.09.005] [PMID: 15555874]
[133]
Hwang PM, Vogel HJ. Structure-function relationships of antimicrobial peptides. Biochem Cell Biol 1998; 76(2-3): 235-46.
[http://dx.doi.org/10.1139/o98-026] [PMID: 9923692]
[134]
Zorzi A, Deyle K, Heinis C. Cyclic peptide therapeutics: Past, present and future. Curr Opin Chem Biol 2017; 38: 24-9.
[http://dx.doi.org/10.1016/j.cbpa.2017.02.006] [PMID: 28249193]
[135]
Vinogradov AA, Yin Y, Suga H. Macrocyclic peptides as drug candidates: Recent progress and remaining challenges. J Am Chem Soc 2019; 141(10): 4167-81.
[http://dx.doi.org/10.1021/jacs.8b13178] [PMID: 30768253]
[136]
Kurpe SR, Grishin SY, Surin AK, et al. Antimicrobial and amyloidogenic activity of peptides. Can antimicrobial peptides be used against SARS-CoV-2? Int J Mol Sci 2020; 21(24): 9552.
[http://dx.doi.org/10.3390/ijms21249552] [PMID: 33333996]
[137]
Muttenthaler M, King GF, Adams DJ, Alewood PF. Trends in peptide drug discovery. Nat Rev Drug Discov 2021; 20(4): 309-25.
[http://dx.doi.org/10.1038/s41573-020-00135-8] [PMID: 33536635]
[138]
Pant S, Singh M, Ravichandiran V, Murty US, Srivastava HK. Peptide-like and small-molecule inhibitors against COVID-19. J Biomol Struct Dyn 2021; 39(8): 2904-13.
[http://dx.doi.org/10.1080/07391102.2020.1757510] [PMID: 32306822]
[139]
Tezel G, Timur SS, Kuralay F, et al. Current status of micro/nanomotors in drug delivery. J Drug Target 2021; 29(1): 29-45.
[http://dx.doi.org/10.1080/1061186X.2020.1797052] [PMID: 32672079]
[140]
Chiangjong W, Chutipongtanate S, Hongeng S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 2020; 57(3): 678-96.
[http://dx.doi.org/10.3892/ijo.2020.5099] [PMID: 32705178]
[141]
Alexander SPH, Mathie A, Peters JA, et al. The concise guide to pharmacology 2021/22: Ion channels. Br J Pharmacol 2021; 178(S1) (Suppl. 1): S157-245.
[http://dx.doi.org/10.1111/bph.15539] [PMID: 34529831]
[142]
Wu Z, Wang S, Zhao J, Chen L, Meng H. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal. Bioresour Technol 2014; 169: 220-8.
[http://dx.doi.org/10.1016/j.biortech.2014.06.105] [PMID: 25058297]
[143]
Capone DJ, Clark GL, Bivona D, et al. Evaluating residual strain throughout the murine female reproductive system. J Biomech 2019; 82: 299-306.
[http://dx.doi.org/10.1016/j.jbiomech.2018.11.001] [PMID: 30458959]
[144]
Ammar A, Brach M, Trabelsi K, et al. Effects of COVID-19 home confinement on eating behaviour and physical activity: Results of the ECLB-COVID19 international online survey. Nutrients 2020; 12(6): 1583.
[http://dx.doi.org/10.3390/nu12061583] [PMID: 32481594]
[145]
Raut P, Glass JB, Lieberman RL. Archaeal roots of intramembrane aspartyl protease siblings signal peptide peptidase and presenilin. Proteins 2021; 89(2): 232-41.
[http://dx.doi.org/10.1002/prot.26009] [PMID: 32935885]
[146]
Lumangtad LA, Bell TW. The signal peptide as a new target for drug design. Bioorg Med Chem Lett 2020; 30(10): 127115.
[http://dx.doi.org/10.1016/j.bmcl.2020.127115] [PMID: 32209293]
[147]
Ahlschwede KM, Curran GL, Rosenberg JT, et al. Cationic carrier peptide enhances cerebrovascular targeting of nanoparticles in Alzheimer’s disease brain. Nanomedicine 2019; 16: 258-66.
[http://dx.doi.org/10.1016/j.nano.2018.09.010] [PMID: 30300748]
[148]
Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK. Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential. Front Pharmacol 2017; 8: 828.
[http://dx.doi.org/10.3389/fphar.2017.00828] [PMID: 29209209]
[149]
Zitvogel L, Ayyoub M, Routy B, Kroemer G. Microbiome and anticancer immunosurveillance. Cell 2016; 165(2): 276-87.
[http://dx.doi.org/10.1016/j.cell.2016.03.001] [PMID: 27058662]
[150]
Brauner JM, Mindermann S, Sharma M, et al. Inferring the effectiveness of government interventions against COVID-19. Science 2021; 371(6531): eabd9338.
[http://dx.doi.org/10.1126/science.abd9338] [PMID: 33323424]
[151]
Zhang QT, Liu ZD, Wang Z, et al. Recent advances in small peptides of marine origin in cancer therapy. Mar Drugs 2021; 19(2): 115.
[http://dx.doi.org/10.3390/md19020115] [PMID: 33669851]
[152]
Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 2020; 63(3): 457-60.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[153]
Soccol CR, de Souza Vandenberghe LP, Spier MR. The potential of probiotics: A review. Food Technol Biotechnol 2010; 48(4): 413-34.
[154]
Sugrani A, Ahmad A, Djide MN, Natsir H. Two novel antimicrobial and anticancer peptides prediction from Vibrio sp. strain ES25. J Appl Pharm Sci 2020; 10(8): 058-66.
[http://dx.doi.org/10.7324/JAPS.2020.10807]
[155]
Karpiński T, Adamczak A. Anticancer activity of bacterial proteins and peptides. Pharmaceutics 2018; 10(2): 54.
[http://dx.doi.org/10.3390/pharmaceutics10020054] [PMID: 29710857]
[156]
Wagner A, Weinberger B. Vaccines to prevent infectious diseases in the older population: Immunological challenges and future perspectives. Front Immunol 2020; 11: 717.
[http://dx.doi.org/10.3389/fimmu.2020.00717] [PMID: 32391017]
[157]
Kaspar AA, Reichert JM. Future directions for peptide therapeutics development. Drug Discov Today 2013; 18(17-18): 807-17.
[http://dx.doi.org/10.1016/j.drudis.2013.05.011] [PMID: 23726889]
[158]
Di Natale C, La Manna S, De Benedictis I, Brandi P, Marasco D. Perspectives in peptide-based vaccination strategies for syndrome coronavirus 2 pandemic. Front Pharmacol 2020; 11: 578382.
[http://dx.doi.org/10.3389/fphar.2020.578382] [PMID: 33343349]
[159]
Kirkby M, Hutton ARJ, Donnelly RF. Microneedle mediated transdermal delivery of protein, peptide and antibody based therapeutics: Current status and future considerations. Pharm Res 2020; 37(6): 117.
[http://dx.doi.org/10.1007/s11095-020-02844-6] [PMID: 32488611]
[160]
Pillai SG, Haldorai K, Seo WS, Kim WG. COVID-19 and hospitality 5.0: Redefining hospitality operations. Int J Hospit Manag 2021; 94: 102869.
[http://dx.doi.org/10.1016/j.ijhm.2021.102869] [PMID: 34785847]
[161]
Lau JL, Dunn MK. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg Med Chem 2018; 26(10): 2700-7.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[162]
Hung CF, Ma B, Monie A, Tsen SW, Wu T-C. Therapeutic human papillomavirus vaccines: Current clinical trials and future directions. Expert Opin Biol Ther 2008; 8(4): 421-39.
[http://dx.doi.org/10.1517/14712598.8.4.421] [PMID: 18352847]
[163]
Terando AM, Faries MB, Morton DL. Vaccine therapy for melanoma: Current status and future directions. Vaccine 2007; 25 (Suppl. 2): B4-B16.
[http://dx.doi.org/10.1016/j.vaccine.2007.06.033] [PMID: 17646038]
[164]
Freeman-Keller M, Goldman J, Gray J. Vaccine immunotherapy in lung cancer: Clinical experience and future directions. Pharmacol Ther 2015; 153: 1-9.
[http://dx.doi.org/10.1016/j.pharmthera.2015.05.004] [PMID: 25989231]
[165]
Abdifetah O, Na-Bangchang K. Pharmacokinetic studies of nanoparticles as a delivery system for conventional drugs and herb-derived compounds for cancer therapy: A systematic review. Int J Nanomedicine 2019; 14: 5659-77.
[http://dx.doi.org/10.2147/IJN.S213229] [PMID: 31632004]
[166]
Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics 2020; 12(2): 102.
[http://dx.doi.org/10.3390/pharmaceutics12020102]
[167]
Mahmood N, Nasir SB, Hefferon K. Plant-based drugs and vaccines for COVID-19. MDPI 2021; 9(1): 15.
[168]
Rai A, Ferrão R, Palma P, et al. Antimicrobial peptide-based materials: Opportunities and challenges. J Mater Chem B Mater Biol Med 2022; 10(14): 2384-429.
[http://dx.doi.org/10.1039/D1TB02617H] [PMID: 35244122]
[169]
Habault J, Poyet J-L. Recent advances in cell penetrating peptide-based anticancer therapies. Molecules 2019; 24(5): 927.
[170]
de la Torre BG, Albericio F. Peptide therapeutics 2.0. Molecules 2020; 25(10): 2293-117.
[171]
Guo RC, Zhang XH, Ji L, et al. Recent progress of therapeutic peptide based nanomaterials: From synthesis and self-assembly to cancer treatment. Biomater Sci 2020; 8(22): 6175-89.
[http://dx.doi.org/10.1039/D0BM01358G] [PMID: 33026364]
[172]
Ribeiro HB, Rodés-Cabau J, Blanke P, et al. Incidence, predictors, and clinical outcomes of coronary obstruction following transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: Insights from the VIVID registry. Eur Heart J 2018; 39(8): 687-95.
[http://dx.doi.org/10.1093/eurheartj/ehx455] [PMID: 29020413]
[173]
Chen CH, Lu TK. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 2020; 9(1): 24.
[http://dx.doi.org/10.3390/antibiotics9010024] [PMID: 31941022]
[174]
Buckton LK, Rahimi MN, McAlpine SR. Cyclic peptides as drugs for intracellular targets: The next frontier in peptide therapeutic development. Chemistry 2021; 27(5): 1487-513.
[http://dx.doi.org/10.1002/chem.201905385] [PMID: 32875673]
[175]
Hribernik K, Cabri G, Mandreoli F, Mentzas G. Autonomous, context-aware, adaptive Digital Twins-State of the art and roadmap. Comput Ind 2021; 133: 103508.
[http://dx.doi.org/10.1016/j.compind.2021.103508]
[176]
Mun SJ, Cho E, Kim JS, Yang CS. Pathogen-derived peptides in drug targeting and its therapeutic approach. J Control Release 2022; 350: 716-33.
[http://dx.doi.org/10.1016/j.jconrel.2022.08.041] [PMID: 36030988]
[177]
Li M, Ma Z, Peng M, et al. A gene and drug co-delivery application helps to solve the short life disadvantage of RNA drug. Nano Today 2022; 43: 101452.
[http://dx.doi.org/10.1016/j.nantod.2022.101452]
[178]
Long L, Zhang J, Yang Z, Guo Y, Hu X, Wang Y. Transdermal delivery of peptide and protein drugs: Strategies, advantages and disadvantages. J Drug Deliv Sci Technol 2020; 60: 102007.
[http://dx.doi.org/10.1016/j.jddst.2020.102007]
[179]
Karami Fath M, Babakhaniyan K, Zokaei M, et al. Anti-cancer peptide-based therapeutic strategies in solid tumors. Cell Mol Biol Lett 2022; 27(1): 33.
[http://dx.doi.org/10.1186/s11658-022-00332-w] [PMID: 35397496]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy