Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Recent Advances in the Electrocarboxylation of CO2 with Ketones, Aldehydes, and Imines

Author(s): Bao-Li Chen, Qin-Zhou Liu, Huan Wang* and Jia-Xing Lu*

Volume 27, Issue 9, 2023

Published on: 16 August, 2023

Page: [734 - 740] Pages: 7

DOI: 10.2174/1385272827666230714145953

Price: $65

conference banner
Abstract

Carbon dioxide (CO2) is regarded as an ideal C1 building block for the synthesis of value-added chemicals due to its low price, non-toxic, rich reserves, and recyclability. Organic electrosynthesis, using electricity as the driving force to avoid the use of toxic or expensive reducing agents, has become an efficient and environmentally friendly synthetic method and is widely used in the chemical conversion of CO2. In particular, the electrocarboxylation reaction of CO2 with a substrate containing a specific group, such as C=O and C=N, can be realized to synthesize α-hydroxy acids, amino acids, and their derivatives under mild reaction conditions by accurately adjusting the current or potential. In this review, we focus on the recent advances in the electrocarboxylation of CO2 with unsaturated substrates (including ketones, aldehydes, and imines) in the past five years, which we hope could stimulate further research on electrocarboxylation of CO2 with ketones, aldehydes, and imines and provide a reference for the application of such reactions in green organic electrosynthesis in the future.

Graphical Abstract

[1]
Wakerley, D.; Lamaison, S.; Wicks, J.; Clemens, A.; Feaster, J.; Corral, D.; Jaffer, S.A.; Sarkar, A.; Fontecave, M.; Duoss, E.B.; Baker, S.; Sargent, E.H.; Jaramillo, T.F.; Hahn, C. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy, 2022, 7(2), 130-143.
[http://dx.doi.org/10.1038/s41560-021-00973-9]
[2]
Sun, K.; Qian, Y.; Jiang, H.L. Metal-organic frameworks for photocatalytic water splitting and CO2 lduction. Angew. Chem. Int. Ed., 2023, 62(15), e202217565.
[http://dx.doi.org/10.1002/anie.202217565] [PMID: 36688729]
[3]
Chen, C.; Yan, X.; Wu, Y.; Zhang, X.; Liu, S.; Zhang, F.; Sun, X.; Zhu, Q.; Zheng, L.; Zhang, J.; Xing, X.; Wu, Z.; Han, B. Oxidation of metallic Cu by supercritical CO2 and control synthesis of amorphous nano-metal catalysts for CO2 electroreduction. Nat. Commun., 2023, 14(1), 1092-1101.
[http://dx.doi.org/10.1038/s41467-023-36721-8] [PMID: 36841816]
[4]
Jia, S.; Ma, X.; Sun, X.; Han, B. Electrochemical transformation of CO2 to value-added chemicals and fuels. CCS Chem., 2022, 4(10), 3213-3229.
[http://dx.doi.org/10.31635/ccschem.022.202202094]
[5]
Li, Z.; Sun, B.; Xiao, D.; Wang, Z.; Liu, Y.; Zheng, Z.; Wang, P.; Dai, Y.; Cheng, H.; Huang, B. Electron-rich bi nanosheets promote CO2 formation for high-performance and pH-Universal electrocatalytic CO2 reduction. Angew. Chem. Int. Ed., 2023, 62(11), e202217569.
[http://dx.doi.org/10.1002/anie.202217569] [PMID: 36658095]
[6]
Liu, X.F.; Wang, M.Y.; He, L.N. Heterogeneous catalysis for oxazolidinone synthesis from Aziridines and CO2. Curr. Org. Chem., 2017, 21(8), 698-707.
[http://dx.doi.org/10.2174/1385272820666161017115814]
[7]
Forte, G.; Chiarotto, I.; Richter, F.; Trieu, V.; Feroci, M. Towards a sustainable electrochemical activation for recycling CO2: Synthesis of bis-O-alkylcarbamates from aliphatic and benzyl diamines. React. Chem. Eng., 2017, 2(5), 646-649.
[http://dx.doi.org/10.1039/C7RE00101K]
[8]
Medvedeva, X.V.; Medvedev, J.J.; Klinkova, A. Translating tactics from direct CO2 electroreduction to electroorganic coupling reactions with CO2. Adv. Energy Sustain. Res., 2021, 2(6), 2100001-2100016.
[http://dx.doi.org/10.1002/aesr.202100001]
[9]
Mita, T.; Chen, J.; Sugawara, M.; Sato, Y. One-pot synthesis of α-amino acids from imines through CO2 incorporation: An alternative method for Strecker synthesis. Angew. Chem. Int. Ed., 2011, 50(6), 1393-1396.
[http://dx.doi.org/10.1002/anie.201006422] [PMID: 21290520]
[10]
Wang, S.; Feng, T.; Wang, Y.; Qiu, Y. Recent advances in electrocarboxylation with CO2. Chem. Asian J., 2022, 17(17), e202200543.
[http://dx.doi.org/10.1002/asia.202200543] [PMID: 35792032]
[11]
Liu, X.F.; Zhang, K.; Tao, L.; Lu, X.B.; Zhang, W.Z. Recent advances in electrochemical carboxylation reactions using carbon dioxide. Green Chem. Eng., 2022, 3, 125-137.
[12]
Yu, Z.; Shi, M. Recent advances in the electrochemically mediated chemical transformation of carbon dioxide. Chem. Commun., 2022, 58(98), 13539-13555.
[http://dx.doi.org/10.1039/D2CC05242C] [PMID: 36426711]
[13]
Nandi, S.; Jana, R. Toward sustainable photo-/electrocatalytic carboxylation of organic substrates with CO2. Asian J. Org. Chem., 2022, 11, e202200356.
[14]
Rossi, L. Electrochemical methodologies for the carboxylation reactions in organic synthesis. An alternative re-use of carbon dioxide. Curr. Green Chem., 2015, 2(1), 77-89.
[http://dx.doi.org/10.2174/2213346101666140804222344]
[15]
Lu, Y.; Zou, Y.; Zhao, W.; Wang, M.; Li, C.; Liu, S.; Wang, S. Nanostructured electrocatalysts for electrochemical carboxylation with CO2. Nano Select, 2020, 1(2), 135-151.
[http://dx.doi.org/10.1002/nano.202000001]
[16]
Zhong, W.; Huang, W.; Ruan, S.; Zhang, Q.; Wang, Y.; Xie, S. Electrocatalytic reduction of CO2 coupled with organic conversion to selectively synthesize high-value chemicals. Chemistry, 2023, 29(20), e202203228.
[http://dx.doi.org/10.1002/chem.202203228] [PMID: 36454216]
[17]
Senboku, H.; Katayama, A. Electrochemical carboxylation with carbon dioxide. Curr. Opin. Green Sustain. Chem., 2017, 3, 50-54.
[http://dx.doi.org/10.1016/j.cogsc.2016.10.003]
[18]
Sakakura, T.; Choi, J.C.; Yasuda, H. Transformation of carbon dioxide. Chem. Rev., 2007, 107(6), 2365-2387.
[http://dx.doi.org/10.1021/cr068357u] [PMID: 17564481]
[19]
Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun., 2015, 6(1), 5933-5947.
[http://dx.doi.org/10.1038/ncomms6933] [PMID: 25600683]
[20]
Mubarak, M.S.; Peters, D.G. Using silver cathodes for organic electrosynthesis and mechanistic studies. Curr. Opin. Electrochem., 2017, 2(1), 60-66.
[http://dx.doi.org/10.1016/j.coelec.2017.03.001]
[21]
Tortajada, A.; Juliá-Hernández, F.; Börjesson, M.; Moragas, T.; Martin, R. Transition-metal-catalyzed carboxylation reactions with carbon dioxide. Angew. Chem. Int. Ed., 2018, 57(49), 15948-15982.
[http://dx.doi.org/10.1002/anie.201803186] [PMID: 29722461]
[22]
Chen, K.; Li, H.; He, L. Advance and prospective on CO2 activation and transformation strategy. Chin. J. Org. Chem., 2020, 40(8), 2195-2207.
[http://dx.doi.org/10.6023/cjoc202004030]
[23]
Yan, S.S.; Fu, Q.; Liao, L.L.; Sun, G.Q.; Ye, J.H.; Gong, L.; Bo-Xue, Y.Z.; Yu, D.G. Transition metal-catalyzed carboxylation of unsaturated substrates with CO2. Coord. Chem. Rev., 2018, 374, 439-463.
[http://dx.doi.org/10.1016/j.ccr.2018.07.011]
[24]
Tortajada, A.; Börjesson, M.; Martin, R. Nickel-catalyzed reductive carboxylation and amidation reactions. Acc. Chem. Res., 2021, 54(20), 3941-3952.
[http://dx.doi.org/10.1021/acs.accounts.1c00480] [PMID: 34586783]
[25]
Tortajada, A. Juliá-Hernández, F.; Börjesson, M.; Moragas, T.; Martin, R. Transition-metal-catalyzed carboxylation reactions with carbon dioxide. Angew. Chem. Int. Ed., 2018, 57, 15948-15982.
[26]
Vaitla, J.; Guttormsen, Y.; Mannisto, J.K.; Nova, A.; Repo, T.; Bayer, A.; Hopmann, K.H. Enantioselective incorporation of CO2: Status and potential. ACS Catal., 2017, 7(10), 7231-7244.
[http://dx.doi.org/10.1021/acscatal.7b02306]
[27]
Liu, A.H.; Yu, B.; He, L.N. Catalytic conversion of carbon dioxide to carboxylic acid derivatives. Greenh. Gases Sci. Technol., 2015, 5(1), 17-33.
[http://dx.doi.org/10.1002/ghg.1461]
[28]
Zhang, W.; Lü, X. Synthesis of carboxylic acids and derivatives using CO2 as carboxylative reagent. Chin. J. Catal., 2012, 33(4-6), 745-756.
[http://dx.doi.org/10.1016/S1872-2067(11)60390-2]
[29]
Zhang, Z.; Ye, J.H.; Ju, T.; Liao, L.L.; Huang, H.; Gui, Y.Y.; Zhou, W.J.; Yu, D.G. Visible-light-driven catalytic reductive carboxylation with CO2. ACS Catal., 2020, 10(19), 10871-10885.
[http://dx.doi.org/10.1021/acscatal.0c03127]
[30]
Yeung, C.S. Photoredox catalysis as a strategy for CO2 incorporation: Direct access to carboxylic acids from a renewable feedstock. Angew. Chem. Int. Ed., 2019, 58(17), 5492-5502.
[http://dx.doi.org/10.1002/anie.201806285] [PMID: 30035861]
[31]
Cao, G.M.; Hu, X.L.; Liao, L.L.; Yan, S.S.; Song, L.; Chruma, J.J.; Gong, L.; Yu, D.G. Visible-light photoredox-catalyzed umpolung carboxylation of carbonyl compounds with CO2. Nat. Commun., 2021, 12(1), 3306-3315.
[http://dx.doi.org/10.1038/s41467-021-23447-8] [PMID: 34083530]
[32]
Ju, T.; Zhou, Y.Q.; Cao, K.G.; Fu, Q.; Ye, J.H.; Sun, G.Q.; Liu, X.F.; Chen, L.; Liao, L.L.; Yu, D.G. Dicarboxylation of alkenes, allenes and (hetero)arenes with CO2 via visible-light photoredox catalysis. Nat. Catal., 2021, 4(4), 304-311.
[http://dx.doi.org/10.1038/s41929-021-00594-1]
[33]
Overa, S.; Ko, B.H.; Zhao, Y.; Jiao, F. Electrochemical Approaches for CO2 conversion to chemicals: A journey toward practical applications. Acc. Chem. Res., 2022, 55(5), 638-648.
[http://dx.doi.org/10.1021/acs.accounts.1c00674] [PMID: 35041403]
[34]
Wang, G.; Chen, J.; Ding, Y.; Cai, P.; Yi, L.; Li, Y.; Tu, C.; Hou, Y.; Wen, Z.; Dai, L. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem. Soc. Rev., 2021, 50(8), 4993-5061.
[http://dx.doi.org/10.1039/D0CS00071J] [PMID: 33625419]
[35]
Tan, X.; Sun, X.; Han, B. Ionic liquid-based electrolytes for CO2 electroreduction and CO2 electroorganic transformation. Natl. Sci. Rev., 2022, 9(4), nwab022.
[http://dx.doi.org/10.1093/nsr/nwab022] [PMID: 35530435]
[36]
Feroci, M.; Chiarotto, I.; Forte, G.; Inesi, A. An electrochemical methodology for the cyclic CO2 “catch and release”. The role of the electrogenerated Nheterocyclic carbene in BMIm-BF4. J. CO2 Util., 2013, 2, 29-34.
[37]
Doherty, A. Electrochemical reduction of butyraldehyde in the presence of CO2. Electrochim. Acta, 2002, 47(18), 2963-2967.
[http://dx.doi.org/10.1016/S0013-4686(02)00196-2]
[38]
Scialdone, O.; Sabatino, M.A.; Belfiore, C.; Galia, A.; Paternostro, M.P.; Filardo, G. An unexpected ring carboxylation in the electrocarboxylation of aromatic ketones. Electrochim. Acta, 2006, 51(17), 3500-3505.
[http://dx.doi.org/10.1016/j.electacta.2005.09.044]
[39]
Chan, A.S.C.; Huang, T.T.; Wagenknecht, J.H.; Miller, R.E. A novel synthesis of 2-aryllactic acids via electrocarboxylation of methyl aryl ketones. J. Org. Chem., 1995, 60(3), 742-744.
[http://dx.doi.org/10.1021/jo00108a047]
[40]
Koshechko, V.G.; Titov, V.E.; Bondarenko, V.N.; Pokhodenko, V.D. Electrochemical carboxylation of fluorocontaining imines with preparation of fluorinated N-phenylphenylglycines. J. Fluor. Chem., 2008, 129(8), 701-706.
[http://dx.doi.org/10.1016/j.jfluchem.2008.06.010]
[41]
Qu, Y.; Tsuneishi, C.; Tateno, H.; Matsumura, Y.; Atobe, M. Green synthesis of α-amino acids by electrochemical carboxylation of imines in a flow microreactor. React. Chem. Eng., 2017, 2(6), 871-875.
[http://dx.doi.org/10.1039/C7RE00149E]
[42]
Li, C.H.; Song, X.Z.; Tao, L.M.; Li, Q.G.; Xie, J.Q.; Peng, M.N.; Pan, L.; Jiang, C.; Peng, Z.Y.; Xu, M.F. Electrogenerated-bases promoted electrochemical synthesis of N-bromoamino acids from imines and carbon dioxide. Tetrahedron, 2014, 70(10), 1855-1860.
[http://dx.doi.org/10.1016/j.tet.2014.01.054]
[43]
Feng, Q.; Huang, K.; Liu, S.; Yu, J.; Liu, F. Electrocatalytic carboxylation of aromatic ketones with carbon dioxide in ionic liquid 1-butyl-3-methylimidazoliumtetrafluoborate to α-hydroxy-carboxylic acid methyl ester. Electrochim. Acta, 2011, 56(14), 5137-5141.
[http://dx.doi.org/10.1016/j.electacta.2011.03.061]
[44]
Yuan, G.; Li, Z.; Jiang, H. Electrosyntheses of α -hydroxycarboxylic acids from carbon dioxide and aromatic ketones using nickel as the cathode. Chin. J. Chem., 2009, 27(8), 1464-1470.
[http://dx.doi.org/10.1002/cjoc.200990246]
[45]
Zhang, L.; Xiao, L.P.; Niu, D.F.; Luo, Y.W.; Lu, J.X. Electrocarboxylation of acetophenone tO2-hydroxy-2-phenylpropionic acid in the presence of CO2. Chin. J. Chem., 2008, 26(1), 35-38.
[http://dx.doi.org/10.1002/cjoc.200890034]
[46]
Wang, H.; Zhang, K.; Chen, B.L.; Li, R.N.; Zhao, J.Q.; Lu, J.X. Study on electrocarboxylation of [(4-Methoxy-Benzylidene)-Amino] - acetic acid ester. Int. J. Electrochem. Sci., 2011, 6, 1720-1729.
[47]
Zhao, S.F.; Horne, M.; Bond, A.M.; Zhang, J. Electrocarboxylation of acetophenone in ionic liquids: The influence of proton availability on product distribution. Green Chem., 2014, 16(4), 2242-2251.
[http://dx.doi.org/10.1039/C3GC42404A]
[48]
Zhao, S.F.; Wang, H.; Lan, Y.C.; Liu, X.; Lu, J.X.; Zhang, J. Influences of the operative parameters and the nature of the substrate on the electrocarboxylation of benzophenones. J. Electroanal. Chem., 2012, 664(C), 105-110.
[http://dx.doi.org/10.1016/j.jelechem.2011.11.001] [PMID: 22368535]
[49]
Zhao, S.F.; Wu, L.X.; Wang, H.; Lu, J.X.; Bond, A.M.; Zhang, J. A unique proton coupled electron transfer pathway for electrochemical reduction of acetophenone in the ionic liquid [BMIM][BF4] under a carbon dioxide atmosphere. Green Chem., 2011, 13(12), 3461-3468.
[http://dx.doi.org/10.1039/c1gc15929a]
[50]
Zhang, K.; Wu, L.X.; Hu, L.L.; Ding, X.Y.; Wang, H.; Lu, J.X. Electrosynthesis of 2-Hydroxy-2-(4-methoxy-phenyl) -propionic acid methyl ester via electrochemical fixation of carbon dioxide. Chem. J. Chin. Univ., 2010, 31, 1410-1415.
[51]
Chen, B.L.; Tu, Z.Y.; Zhu, H.W.; Sun, W.W.; Wang, H.; Lu, J.X. CO2 as a C1-organic building block: Enantioselective electrocarboxylation of aromatic ketones with CO2 catalyzed by cinchona alkaloids under mild conditions. Electrochim. Acta, 2014, 116, 475-483.
[http://dx.doi.org/10.1016/j.electacta.2013.11.001]
[52]
Zhang, L.; Wang, H.; Zhao, J.Q.; Chen, B.L.; Lu, J.X. Electrocarboxylation of anthrone to anthracene-9-carboxylic acid in the presence of CO2. Chem. Res. Chin. Univ., 2011, 27, 1027-1030.
[53]
Zhang, K.; Wang, H.; Zhao, S.F.; Niu, D.F.; Lu, J.X. Asymmetric electrochemical carboxylation of prochiral acetophenone: An efficient route to optically active atrolactic acid via selective fixation of carbon dioxide. J. Electroanal. Chem., 2009, 630(1-2), 35-41.
[http://dx.doi.org/10.1016/j.jelechem.2009.02.013]
[54]
Zhao, S.F.; Zhu, M.X.; Zhang, K.; Wang, H.; Lu, J.X. Alkaloid induced asymmetric electrocarboxylation of 4-methylpropiophenone. Tetrahedron Lett., 2011, 52(21), 2702-2705.
[http://dx.doi.org/10.1016/j.tetlet.2011.03.076]
[55]
Luo, P.P.; Zhang, Y.T.; Chen, B.L.; Yu, S.X.; Zhou, H.W.; Qu, K.G.; Kong, Y.X.; Huang, X.Q.; Zhang, X.X.; Lu, J.X. Electrocarboxylation of dichlorobenzenes on a silver electrode in DMF. Catalysts, 2017, 7(9), 274-284.
[http://dx.doi.org/10.3390/catal7090274]
[56]
Zhang, Y.; Yu, S.; Luo, P.; Xu, S.; Zhang, X.; Zhou, H.; Du, J.; Yang, J.; Xin, N.; Kong, Y.; Liu, J.; Chen, B.; Lu, J. Fixation of CO2 along with bromopyridines on a silver electrode. R. Soc. Open Sci., 2018, 5(8), 180897-180905.
[http://dx.doi.org/10.1098/rsos.180897] [PMID: 30225079]
[57]
Zhang, L.; Niu, D.; Zhang, K.; Zhang, G.; Luo, Y.; Lu, J. Electrochemical activation of CO2 in ionic liquid (BMIMBF4): Synthesis of organic carbonates under mild conditions. Green Chem., 2008, 10(2), 202-206.
[http://dx.doi.org/10.1039/B711981J]
[58]
Zhang, K.; Xiao, Y.; Lan, Y.; Zhu, M.; Wang, H.; Lu, J. Electrochemical reduction of aliphatic conjugated dienes in the presence of carbon dioxide. Electrochem. Commun., 2010, 12(12), 1698-1702.
[http://dx.doi.org/10.1016/j.elecom.2010.09.028]
[59]
Yang, H.P.; Yue, Y.N.; Sun, Q.L.; Feng, Q.; Wang, H.; Lu, J.X. Entrapment of a chiral cobalt complex within silver: A novel heterogeneous catalyst for asymmetric carboxylation of benzyl bromides with CO2. Chem. Commun., 2015, 51(61), 12216-12219.
[http://dx.doi.org/10.1039/C5CC04554A] [PMID: 26134479]
[60]
Wang, H.; Zhang, K.; Liu, Y.Z.; Lin, M.Y.; Lu, J.X. Electrochemical carboxylation of cinnamate esters in MeCN. Tetrahedron, 2008, 64(2), 314-318.
[http://dx.doi.org/10.1016/j.tet.2007.10.104]
[61]
Xiao, Y.; Chen, B.L.; Yang, H.P.; Wang, H.; Lu, J.X. Electrosynthesis of enantiomerically pure cyclic carbonates from CO2 and chiral epoxides. Electrochem. Commun., 2014, 43, 71-74.
[http://dx.doi.org/10.1016/j.elecom.2014.03.012]
[62]
Scialdone, O.; Galia, A.; Isse, A.A.; Gennaro, A.; Sabatino, M.A.; Leone, R.; Filardo, G. Electrocarboxylation of aromatic ketones: Influence of operative parameters on the competition between ketyl and ring carboxylation. J. Electroanal. Chem., 2007, 609(1), 8-16.
[http://dx.doi.org/10.1016/j.jelechem.2007.02.014]
[63]
Scialdone, O.; Amatore, C.; Galia, A.; Filardo, G. CO2 as a C1-organic building block: Electrocarboxylation of aromatic ketones. A quantitative study of the effect of the concentration of substrate and of carbon dioxide on the selectivity of the process. J. Electroanal. Chem., 2006, 592(2), 163-174.
[http://dx.doi.org/10.1016/j.jelechem.2006.04.009]
[64]
Zhang, K.; Wang, H.; Wu, L.; Zhang, J.; Lu, J. Efficient electrocarboxylation of p-Methylpropiophenone in the presence of Carbon Dioxide. Chin. J. Chem., 2010, 28(4), 509-513.
[http://dx.doi.org/10.1002/cjoc.201090104]
[65]
Boissou, F.; Baranton, S.; Tarighi, M.; De Oliveira Vigier, K.; Coutanceau, C. The potency of γ-valerolactone as bio-sourced polar aprotic organic medium for the electrocarboxlation of furfural by CO2. J. Electroanal. Chem., 2019, 848, 113257-113266.
[http://dx.doi.org/10.1016/j.jelechem.2019.113257]
[66]
Singh, K.; Sohal, H.S.; Singh, B. Synthesis of α-hydroxycarboxylic acids from various aldehydes and ketones by direct electrocarboxylation: A facile, efficient and atom economy protocol. Asian J. Chem., 2021, 33(4), 839-845.
[http://dx.doi.org/10.14233/ajchem.2021.23090]
[67]
Stalcup, M.A.; Nilles, C.K.; Lee, H.J.; Subramaniam, B.; Blakemore, J.D.; Leonard, K.C. Organic electrosynthesis in CO2 -eXpanded electrolytes: Enabling selective acetophenone carboxylation to atrolatic acid. ACS Sustain. Chem. Eng., 2021, 9(31), 10431-10436.
[http://dx.doi.org/10.1021/acssuschemeng.1c03073]
[68]
Yang, S.; Xiang, X.; He, Z.; Zhong, W.; Jia, C.; Gong, Z.; Zhang, N.; Zhao, S.; Chen, Y. Anionic defects engineering of NiCo2O4 for 5-hydroxymethylfurfural electrooxidation. Chem. Eng. J., 2023, 457, 141344-141353.
[http://dx.doi.org/10.1016/j.cej.2023.141344]
[69]
Wang, X.; Deng, C.; Hong, X.; Dong, W.; Liang, B. Controllable synthesis of NiCo2O4, NiCo2O4/graphene composite and their electrochemical application in supercapacitors. J. Energy Storage, 2022, 55, 105837-105852.
[http://dx.doi.org/10.1016/j.est.2022.105837]
[70]
Barqi, J.; Masoudpanah, S.M.; Hasheminiasari, M.; Liu, X. Nanoribbon-like NiCo2O4/reduced graphene oxide nanocomposite for high-performance hybrid supercapacitor. J. Alloys Compd., 2023, 930, 167509-167519.
[http://dx.doi.org/10.1016/j.jallcom.2022.167509]
[71]
Yuan, B.; Sun, P.; Fernandez, C.; Wang, H.; Guan, P.; Xu, H.; Niu, Y. Molecular fluorinated cobalt phthalocyanine immobilized on ordered mesoporous carbon as an electrochemical sensing platform for sensitive detection of hydrogen peroxide and hydrazine in alkaline medium. J. Electroanal. Chem., 2022, 906, 116019-116028.
[http://dx.doi.org/10.1016/j.jelechem.2022.116019]
[72]
Li, N.; Li, L.; Xia, J.; Arif, M.; Zhou, S.; Yin, F.; He, G.; Chen, H. Single-atom Co-N4 catalytic sites anchored on N-doped ordered mesoporous carbon for excellent Zn-air batteries. J. Mater. Sci. Technol., 2023, 139, 224-231.
[http://dx.doi.org/10.1016/j.jmst.2022.07.058]
[73]
Li, X.; Guan, Q.; Zhuang, Z.; Zhang, Y.; Lin, Y.; Wang, J.; Shen, C.; Lin, H.; Wang, Y.; Zhan, L.; Ling, L. Ordered mesoporous carbon grafted mxene catalytic heterostructure as Li-Ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li–S battery. ACS Nano, 2023, 17(2), 1653-1662.
[http://dx.doi.org/10.1021/acsnano.2c11663] [PMID: 36607402]
[74]
Shi, Y.; Hou, Y.; Wang, Y.; Zhang, J.J.; Wang, H.; Lu, J.X. Ordered mesoporous carbon loaded with NiCo2O4 as an electrocatalyst for electrocarboxylation of benzophenone. Microporous Mesoporous Mater., 2021, 323, 111174-111180.
[http://dx.doi.org/10.1016/j.micromeso.2021.111174]
[75]
Jiang, G.; Su, Y.; Li, H.; Chen, Y.; Li, S.; Bu, Y.; Zhang, Z. Insight into the Ag-CeO2 interface and mechanism of catalytic oxidation of formaldehyde. Appl. Surf. Sci., 2021, 549, 149277-149286.
[http://dx.doi.org/10.1016/j.apsusc.2021.149277]
[76]
Guan, A.; Quan, Y.; Chen, Y.; Liu, Z.; Zhang, J.; Kan, M.; Zhang, Q.; Huang, H.; Qian, L.; Zhang, L.; Zheng, G. Efficient CO2 fixation with acetophenone on Ag-CeO2 electrocatalyst by a double activation strategy. Chin. J. Catal., 2022, 43(12), 3134-3141.
[http://dx.doi.org/10.1016/S1872-2067(22)64116-0]
[77]
Doherty, A.P.; Marley, E.; Barhdadi, R.; Puchelle, V.; Wagner, K.; Wallace, G.G. Mechanism and kinetics of electrocarboxylation of aromatic ketones in ionic liquid. J. Electroanal. Chem., 2018, 819, 469-473.
[http://dx.doi.org/10.1016/j.jelechem.2017.12.035]
[78]
Tian, K.; Chen, R.; Xu, J.; Yang, G.; Xu, X.; Zhang, Y. Understanding the photo- and electro-carboxylation of o-methylbenzophenone with carbon dioxide. Catalysts, 2020, 10(6), 664-673.
[http://dx.doi.org/10.3390/catal10060664]
[79]
Muchez, L.; De Vos, D.E.; Kim, M. Sacrificial anode-free electrosynthesis of α-hydroxy acids via electrocatalytic coupling of carbon dioxide to aromatic alcohols. ACS Sustain. Chem.& Eng., 2019, 7(19), 15860-15864.
[http://dx.doi.org/10.1021/acssuschemeng.9b04612]
[80]
Seidler, J.; Roth, A.; Vieira, L.; Waldvogel, S.R. Electrochemical CO2 utilization for the synthesis of α-hydroxy acids. ACS Sustain. Chem.& Eng., 2023, 11(1), 390-398.
[http://dx.doi.org/10.1021/acssuschemeng.2c06046]
[81]
Yang, L.R.; Zhang, J.J.; Zhao, Y.J.; Wang, Z.L.; Wang, H.; Lu, J-X. La1-xSrxFeO3 perovskite electrocatalysts for asymmetric electrocarboxylation of acetophenone with CO2. Electrochim. Acta, 2021, 398, 139308-139316.
[http://dx.doi.org/10.1016/j.electacta.2021.139308]
[82]
Yang, L.R.; Zhao, Y.J.; Jiang, C.J.; Xiong, R.; Wang, H.; Lu, J.X. Perovskite La0.7Sr0.3Fe0.8B0.2O3 (B = Ti, Mn, Co, Ni, and Cu) as heterogeneous electrocatalysts for asymmetric electrocarboxylation of aromatic ketones. J. Catal., 2021, 401, 224-233.
[http://dx.doi.org/10.1016/j.jcat.2021.08.001]
[83]
Zhao, Y.J.; Yang, L.R.; Wang, L.T.; Wang, Y.; Lu, J.X.; Wang, H. Asymmetric electrocarboxylation of 4′-methylacetophenone over PrCoO3 perovskites. Catal. Sci. Technol., 2022, 12(9), 2887-2893.
[http://dx.doi.org/10.1039/D2CY00116K]
[84]
Zhang, K.; Liu, X.F.; Zhang, W.Z.; Ren, W.M.; Lu, X.B. Electrocarboxylation of N-acylimines with carbon dioxide: Access to substituted α-amino acids. Org. Lett., 2022, 24(19), 3565-3569.
[http://dx.doi.org/10.1021/acs.orglett.2c01267] [PMID: 35532347]
[85]
Naito, Y.; Nakamura, Y.; Shida, N.; Senboku, H.; Tanaka, K.; Atobe, M. Integrated flow synthesis of α-amino acids by in situ generation of aldimines and subsequent electrochemical carboxylation. J. Org. Chem., 2021, 86(22), 15953-15960.
[http://dx.doi.org/10.1021/acs.joc.1c00821] [PMID: 34152747]
[86]
Shields, B.J.; Stevens, J.; Li, J.; Parasram, M.; Damani, F.; Alvarado, J.I.M.; Janey, J.M.; Adams, R.P.; Doyle, A.G. Bayesian reaction optimization as a tool for chemical synthesis. Nature, 2021, 590(7844), 89-96.
[http://dx.doi.org/10.1038/s41586-021-03213-y] [PMID: 33536653]
[87]
Naito, Y.; Kondo, M.; Nakamura, Y.; Shida, N.; Ishikawa, K.; Washio, T.; Takizawa, S.; Atobe, M. Bayesian optimization with constraint on passed charge for multiparameter screening of electrochemical reductive carboxylation in a flow microreactor. Chem. Commun., 2022, 58(24), 3893-3896.
[http://dx.doi.org/10.1039/D2CC00124A] [PMID: 35226032]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy