Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Proteome Profiling of Serum Exosomes from Newborns with Lung Injury after Perinatal Asphyxia

Author(s): Feifei Shen, Ying Li, Wenjing Gu, Xingmei Yu, Youjia Wu, Guihai Suo, Yuqin Zheng, Haiying Li* and Chuangli Hao*

Volume 20, Issue 2, 2023

Published on: 21 July, 2023

Page: [136 - 144] Pages: 9

DOI: 10.2174/1570164620666230714115822

Price: $65

Abstract

Background: Neonate lung injury is a common phenomenon after perinatal asphyxia.

Objective: To evaluate proteomic profiles of exosomes isolated from lung injury offspring serum after perinatal asphyxia.

Methods: Serum samples were collected at 12 h, 24 h, and 72 h after birth in neonates with perinatal asphyxia-induced lung injury. Exosomes were isolated, and the concentration and size distribution were assessed. The exosome surface markers CD9, CD63, CD81, HSP70, and TSG101 were detected by Western blot. The exosome proteins were evaluated by quantitative proteomics using a tandem mass tag (TMT). All the identified proteins were submitted to the Weighted Gene Co-Expression Network Analysis (WGCNA), GO function, and KEGG pathway analysis. A protein-protein interaction network (PPI) was utilized to identify hub proteins with the Cytohubba plugin of Cytoscape.

Results: The exosomes were round or oval vesicular structures at a diameter range of 100-200 nm, and the size distribution was standard and consistent. Exosome surface markers CD9, CD63, CD81, HSP70, and TSG101 were detected. 444 out of 450 proteins were mapped with gene names. A brown module containing 71 proteins was highly linked with the 12 h phenotype and was predominantly concentrated in lipoprotein and complement activation. The top 10 proteins, APOA1, APOB, APOE, LPA, APOA2, CP, C3, FGB, FGA, and TF, were determined as hub proteins.

Conclusion: The present study demonstrates comprehensive information for understanding molecular changes of lung injury following perinatal asphyxia, which provides a reliable basis for screening potential biomarkers and therapeutic targets in the clinic.

Graphical Abstract

[1]
Hakobyan, M.; Dijkman, K.P.; Laroche, S.; Naulaers, G.; Rijken, M.; Steiner, K.; van Straaten, H.L.M.; Swarte, R.M.C.; ter Horst, H.J.; Zecic, A.; Zonnenberg, I.A.; Groenendaal, F. Outcome of infants with therapeutic hypothermia after perinatal asphyxia and early-onset sepsis. Neonatology, 2019, 115(2), 127-133.
[http://dx.doi.org/10.1159/000493358] [PMID: 30419568]
[2]
Sugiura-Ogasawara, M.; Ebara, T.; Yamada, Y.; Shoji, N.; Matsuki, T.; Kano, H.; Kurihara, T.; Omori, T.; Tomizawa, M.; Miyata, M.; Kamijima, M.; Saitoh, S. Adverse pregnancy and perinatal outcome in patients with recurrent pregnancy loss: Multiple imputation analyses with propensity score adjustment applied to a large-scale birth cohort of the Japan Environment and Children’s Study. Am. J. Reprod. Immunol., 2019, 81(1), e13072.
[PMID: 30430678]
[3]
Ider, M.; Naseri, A.; Ok, M.; Gulersoy, E.; Bas, T.M.; Uney, K.; Parlak, T.M.; Abdelaziz, A. Serum sRAGE and sE-selectin levels are useful biomarkers of lung injury and prediction of mortality in calves with perinatal asphyxia. Theriogenology, 2022, 181, 113-118.
[http://dx.doi.org/10.1016/j.theriogenology.2022.01.019] [PMID: 35078123]
[4]
Elsadek, A.E.; Fathy, B.N.; Suliman, H.A.; Elshorbagy, H.H.; Kamal, N.M.; Talaat, I.M. Hepatic injury in neonates with perinatal asphyxia. Glob. Pediatr. Health., 2021, 8, 2333794X20987781.
[5]
Sadoh, W.E.; Eregie, C.O.; Nwaneri, D.U.; Sadoh, A.E. The diagnostic value of both troponin T and creatinine kinase isoenzyme (CK-MB) in detecting combined renal and myocardial injuries in asphyxiated infants. PLoS One, 2014, 9(3), e91338.
[http://dx.doi.org/10.1371/journal.pone.0091338] [PMID: 24625749]
[6]
Mota-Rojas, D.; Villanueva-García, D.; Solimano, A.; Muns, R.; Ibarra-Ríos, D.; Mota-Reyes, A. Pathophysiology of perinatal asphyxia in humans and animal models. Biomedicines, 2022, 10(2), 347.
[http://dx.doi.org/10.3390/biomedicines10020347] [PMID: 35203556]
[7]
Bhatti, A.; Kumar, P. Systemic effects of perinatal asphyxia. Indian J. Pediatr., 2014, 81(3), 231-233.
[http://dx.doi.org/10.1007/s12098-013-1328-9] [PMID: 24519357]
[8]
Fattuoni, C.; Palmas, F.; Noto, A.; Fanos, V.; Barberini, L. Perinatal asphyxia: A review from a metabolomics perspective. Molecules, 2015, 20(4), 7000-7016.
[http://dx.doi.org/10.3390/molecules20047000] [PMID: 25898414]
[9]
Martín-Ancel, A.; García-Alix, A.; Cabañas, F.G.F.; Burgueros, M.; Quero, J.; Quero, J. Multiple organ involvement in perinatal asphyxia. J. Pediatr., 1995, 127(5), 786-793.
[http://dx.doi.org/10.1016/S0022-3476(95)70174-5] [PMID: 7472837]
[10]
Murphy, C.V.; Schramm, G.E.; Doherty, J.A.; Reichley, R.M.; Gajic, O.; Afessa, B.; Micek, S.T.; Kollef, M.H. The importance of fluid management in acute lung injury secondary to septic shock. Chest, 2009, 136(1), 102-109.
[http://dx.doi.org/10.1378/chest.08-2706] [PMID: 19318675]
[11]
Weber, B.; Mendler, M.R.; Lackner, I.; von Zelewski, A.; Höfler, S.; Baur, M.; Braun, C.K.; Hummler, H.; Schwarz, S.; Pressmar, J.; Kalbitz, M. Lung injury after asphyxia and hemorrhagic shock in newborn piglets: Analysis of structural and inflammatory changes. PLoS One, 2019, 14(7), e0219211.
[http://dx.doi.org/10.1371/journal.pone.0219211] [PMID: 31276543]
[12]
Polglase, G.R.; Ong, T.; Hillman, N.H. Cardiovascular alterations and multiorgan dysfunction after birth asphyxia. Clin. Perinatol., 2016, 43(3), 469-483.
[http://dx.doi.org/10.1016/j.clp.2016.04.006] [PMID: 27524448]
[13]
Ferrante, G.; Carota, G.; Li Volti, G.; Giuffrè, M. Biomarkers of oxidative stress for neonatal lung disease. Front Pediatr., 2021, 9, 618867.
[http://dx.doi.org/10.3389/fped.2021.618867] [PMID: 33681099]
[14]
Shah, P.; Riphagen, S.; Beyene, J.; Perlman, M. Multiorgan dysfunction in infants with post-asphyxial hypoxic-ischaemic encephalopathy. Arch. Dis. Child. Fetal Neonatal Ed., 2004, 89(2), 152F-155.
[http://dx.doi.org/10.1136/adc.2002.023093] [PMID: 14977901]
[15]
van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol., 2018, 19(4), 213-228.
[http://dx.doi.org/10.1038/nrm.2017.125] [PMID: 29339798]
[16]
Elzanowska, J.; Semira, C.; Costa-Silva, B. DNA in extracellular vesicles: Biological and clinical aspects. Mol. Oncol., 2021, 15(6), 1701-1714.
[http://dx.doi.org/10.1002/1878-0261.12777] [PMID: 32767659]
[17]
Doyle, L.; Wang, M. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 2019, 8(7), 727.
[http://dx.doi.org/10.3390/cells8070727] [PMID: 31311206]
[18]
Shrivastava, S.; Morris, K.V. The multifunctionality of exosomes; from the garbage bin of the cell to a next generation gene and cellular therapy. Genes, 2021, 12(2), 173.
[http://dx.doi.org/10.3390/genes12020173] [PMID: 33513776]
[19]
Parzibut, G.; Henket, M.; Moermans, C.; Struman, I.; Louis, E.; Malaise, M.; Louis, R.; Misset, B.; Njock, M.S.; Guiot, J. A blood exosomal miRNA signature in acute respiratory distress syndrome. Front. Mol. Biosci., 2021, 8, 640042.
[http://dx.doi.org/10.3389/fmolb.2021.640042] [PMID: 34336922]
[20]
Barberis, E.; Vanella, V.V.; Falasca, M.; Caneapero, V.; Cappellano, G.; Raineri, D.; Ghirimoldi, M.; De Giorgis, V.; Puricelli, C.; Vaschetto, R.; Sainaghi, P.P.; Bruno, S.; Sica, A.; Dianzani, U.; Rolla, R.; Chiocchetti, A.; Cantaluppi, V.; Baldanzi, G.; Marengo, E.; Manfredi, M. Circulating exosomes are strongly involved in SARS-CoV-2 infection. Front. Mol. Biosci., 2021, 8, 632290.
[http://dx.doi.org/10.3389/fmolb.2021.632290] [PMID: 33693030]
[21]
Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9(1), 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[22]
Peng, H.; Wu, Y.; Li, H.; Zhang, X.; Hong, X.; Zhang, S.; Tang, H.; Shi, J. Proteome profiling of serum exosomes from newborns delivered by mothers with preeclampsia. Curr. Proteomics, 2022, 19(3), 281-288.
[http://dx.doi.org/10.2174/1570164619666220406121420]
[23]
Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; Fu, X.; Liu, S.; Bo, X.; Yu, G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation., 2021, 2(3), 100141.
[http://dx.doi.org/10.1016/j.xinn.2021.100141] [PMID: 34557778]
[24]
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 2014, 8(S4), S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11] [PMID: 25521941]
[25]
Mamo, S.A.; Teshome, G.S.; Tesfaye, T.; Goshu, A.T. Perinatal asphyxia and associated factors among neonates admitted to a specialized public hospital in South Central Ethiopia: A retrospective cross-sectional study. PLoS One, 2022, 17(1), e0262619.
[http://dx.doi.org/10.1371/journal.pone.0262619] [PMID: 35025979]
[26]
Odd, D.; Heep, A.; Luyt, K.; Draycott, T. Hypoxic-ischemic brain injury: Planned delivery before intrapartum events. J. Neonatal Perinatal Med., 2017, 10(4), 347-353.
[http://dx.doi.org/10.3233/NPM-16152] [PMID: 29286930]
[27]
Moshiro, R.; Mdoe, P.; Perlman, J.M. A global view of neonatal asphyxia and resuscitation. Front Pediatr., 2019, 7, 489.
[http://dx.doi.org/10.3389/fped.2019.00489] [PMID: 31850287]
[28]
Phelan, J.P.; Ahn, M.O.; Korst, L.; Martin, G.I.; Wang, Y.M. Intrapartum fetal asphyxial brain injury with absent multiorgan system dysfunction. J. Matern. Fetal Med., 1998, 7(1), 19-22.
[http://dx.doi.org/10.1002/(SICI)1520-6661(199801/02)7:1<19:AID-MFM5>3.0.CO;2-U] [PMID: 9502665]
[29]
Zhang, Y.F.; Yu, X.Q.; Liao, J.H.; Yang, F.; Tan, C.R.; Wu, S.Y.; Deng, S.Q.; Feng, J.Y.; Huang, J.Y.; Yuan, Z.F.; Liu, K.D.; Huang, Z.J.; Zhang, L.F.; Chen, Z.G.; Xia, H.; Luo, L.L.; Hu, Y.; Wu, H.S.; Xie, H.L.; Fei, B.M.; Pang, Q.W.; Zhang, S.H.; Cheng, B.X.; Jiang, L.; Shen, C.T.; Yi, Q.; Zhou, X.G. A clinical epidemiological investigation of neonatal acute respiratory distress syndrome in southwest Hubei, China. Zhongguo Dang Dai Er Ke Za Zhi, 2020, 22(9), 942-947.
[PMID: 32933623]
[30]
Provost, P.R.; Boucher, E.; Tremblay, Y. Apolipoprotein A-I, A-II, C-II, and H expression in the developing lung and sex difference in surfactant lipids. J. Endocrinol., 2009, 200(3), 321-330.
[http://dx.doi.org/10.1677/JOE-08-0238] [PMID: 19106236]
[31]
Bates, S.R.; Tao, J.Q.; Yu, K.J.; Borok, Z.; Crandall, E.D.; Collins, H.L.; Rothblat, G.H. Expression and biological activity of ABCA1 in alveolar epithelial cells. Am. J. Respir. Cell Mol. Biol., 2008, 38(3), 283-292.
[http://dx.doi.org/10.1165/rcmb.2007-0020OC] [PMID: 17884990]
[32]
Gordon, E.M.; Figueroa, D.M.; Barochia, A.V.; Yao, X.; Levine, S.J. High-density lipoproteins and apolipoprotein A-I: Potential new players in the prevention and treatment of lung disease. Front. Pharmacol., 2016, 7, 323.
[http://dx.doi.org/10.3389/fphar.2016.00323] [PMID: 27708582]
[33]
Koba, T.; Takeda, Y.; Narumi, R.; Shiromizu, T.; Nojima, Y.; Ito, M.; Kuroyama, M.; Futami, Y.; Takimoto, T.; Matsuki, T.; Edahiro, R.; Nojima, S.; Hayama, Y.; Fukushima, K.; Hirata, H.; Koyama, S.; Iwahori, K.; Nagatomo, I.; Suzuki, M.; Shirai, Y.; Murakami, T.; Nakanishi, K.; Nakatani, T.; Suga, Y.; Miyake, K.; Shiroyama, T.; Kida, H.; Sasaki, T.; Ueda, K.; Mizuguchi, K.; Adachi, J.; Tomonaga, T.; Kumanogoh, A. Proteomics of serum extracellular vesicles identifies a novel COPD biomarker, fibulin-3 from elastic fibres. ERJ Open Res., 2021, 7(1), 00658-02020.
[http://dx.doi.org/10.1183/23120541.00658-2020] [PMID: 33778046]
[34]
Manifold-Wheeler, B.C.; Elmore, B.O.; Triplett, K.D.; Castleman, M.J.; Otto, M.; Hall, P.R. Serum lipoproteins are critical for pulmonary innate defense against Staphylococcus aureus quorum sensing. J. Immunol., 2016, 196(1), 328-335.
[http://dx.doi.org/10.4049/jimmunol.1501835] [PMID: 26608923]
[35]
Yao, X.; Gordon, E.M.; Figueroa, D.M.; Barochia, A.V.; Levine, S.J. Emerging roles of apolipoprotein E and apolipoprotein A-I in the pathogenesis and treatment of lung disease. Am. J. Respir. Cell Mol. Biol., 2016, 55(2), 159-169.
[http://dx.doi.org/10.1165/rcmb.2016-0060TR] [PMID: 27073971]
[36]
Yamashita, C.M.; Fessler, M.B.; Vasanthamohan, L.; Lac, J.; Madenspacher, J.; McCaig, L.; Yao, L.; Wang, L.; Puntorieri, V.; Mehta, S.; Lewis, J.F.; Veldhuizen, R.A.W. Apolipoprotein E-deficient mice are susceptible to the development of acute lung injury. Respiration., 2014, 87(5), 416-427.
[http://dx.doi.org/10.1159/000358438] [PMID: 24662316]
[37]
Venosa, A.; Malaviya, R.; Choi, H.; Gow, A.J.; Laskin, J.D.; Laskin, D.L. Characterization of distinct macrophage subpopulations during nitrogen mustard–induced lung injury and fibrosis. Am. J. Respir. Cell Mol. Biol., 2016, 54(3), 436-446.
[http://dx.doi.org/10.1165/rcmb.2015-0120OC] [PMID: 26273949]
[38]
Chen, J.; Chen, Z.; Chintagari, N.R.; Bhaskaran, M.; Jin, N.; Narasaraju, T.; Liu, L. Alveolar type I cells protect rat lung epithelium from oxidative injury. J. Physiol., 2006, 572(3), 625-638.
[http://dx.doi.org/10.1113/jphysiol.2005.103465] [PMID: 16497717]
[39]
Lee, J.; Park, H.K.; Kwon, M.J.; Song, J.U. Decline in lung function is associated with elevated lipoprotein (a) in individuals without clinically apparent disease: A cross‐sectional study. Respirology, 2019, 24(1), 68-75.
[http://dx.doi.org/10.1111/resp.13370] [PMID: 30039523]
[40]
Winter, N.A.; Gibson, P.G.; Fricker, M.; Simpson, J.L.; Wark, P.A.; McDonald, V.M. Hemopexin: A novel anti-inflammatory marker for distinguishing COPD from asthma. Allergy Asthma Immunol. Res., 2021, 13(3), 450-467.
[http://dx.doi.org/10.4168/aair.2021.13.3.450] [PMID: 33733639]
[41]
Verrills, N.M.; Irwin, J.A.; Yan, He X.; Wood, L.G.; Powell, H.; Simpson, J.L.; McDonald, V.M.; Sim, A.; Gibson, P.G. Identification of novel diagnostic biomarkers for asthma and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2011, 183(12), 1633-1643.
[http://dx.doi.org/10.1164/rccm.201010-1623OC] [PMID: 21471098]
[42]
Sobol, G.; Pyda, E. Copper and ceruloplasmin concentrations in serum of infants with pneumonia. Pneumonol. Alergol. Pol., 1995, 63(7-8), 378-381.
[PMID: 8520553]
[43]
Pandya, P.H.; Wilkes, D.S. Complement system in lung disease. Am. J. Respir. Cell Mol. Biol., 2014, 51(4), 467-473.
[http://dx.doi.org/10.1165/rcmb.2013-0485TR] [PMID: 24901241]
[44]
Ozantürk, A.N.; Sahu, S.K.; Kulkarni, D.H.; Ma, L.; Barve, R.A.; McPhatter, J.N. Lung epithelial cell-derived C3 protects against pneumonia-induced lung injury. bioRxiv, 2022, 2022.02.03.478963.
[http://dx.doi.org/10.1101/2022.02.03.478963]
[45]
Duan, H.O.; Simpson-Haidaris, P.J. Cell type-specific differential induction of the human gamma-fibrinogen promoter by interleukin-6. J. Biol. Chem., 2006, 281(18), 12451-12457.
[http://dx.doi.org/10.1074/jbc.M600294200] [PMID: 16524883]
[46]
Schmid, C.; Ignjatovic, V.; Pang, B.; Nie, S.; Williamson, N.A.; Tingay, D.G.; Pereira-Fantini, P.M. Proteomics reveals region-specific hemostatic alterations in response to mechanical ventilation in a preterm lamb model of lung injury. Thromb. Res., 2020, 196, 466-475.
[http://dx.doi.org/10.1016/j.thromres.2020.09.036] [PMID: 33075590]
[47]
Ohlmeier, S.; Nieminen, P.; Gao, J.; Kanerva, T.; Rönty, M.; Toljamo, T.; Bergmann, U.; Mazur, W.; Pulkkinen, V. Lung tissue proteomics identifies elevated transglutaminase 2 levels in stable chronic obstructive pulmonary disease. Am. J. Physiol. Lung Cell. Mol. Physiol., 2016, 310(11), L1155-L1165.
[http://dx.doi.org/10.1152/ajplung.00021.2016] [PMID: 27084846]
[48]
Li, X.; Gao, Y.; Liu, J.; Xujian, Q.; Luo, Q.; Huang, Z.; Li, J. Validation of serotransferrin in the serum as candidate biomarkers for the diagnosis of pulmonary tuberculosis by label-free LC/MS. ACS Omega, 2022, 7(28), 24174-24183.
[http://dx.doi.org/10.1021/acsomega.2c00837] [PMID: 35874208]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy