Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Miniaturized Polymeric Systems for the Intravaginal Gene Therapies: Recent Update on Unconventional Delivery

Author(s): Manisha Pandey*, Jocelyn Su Szhiou Ting, Bapi Gorain, Neha Jain and Jayashree Mayuren

Volume 29, Issue 40, 2023

Published on: 20 July, 2023

Page: [3254 - 3262] Pages: 9

DOI: 10.2174/1381612829666230712162540

Price: $65

conference banner
Abstract

The prevalence of vaginal infection is increasing among women, especially at reproductive age. For proper eradication of infection, the effective concentration of a drug is required at the infection site. Therefore, local delivery is recommended to exert a direct therapeutic effect at the site action that causes a reduction in dose and side effects. The main focus of vaginal drug delivery is to enhance retention time and patient compliance. The high recurrence rate of vaginal infection due to the lack of effective treatment strategies opens the door for new therapeutic approaches. To combat these setbacks, intravaginal gene therapies have been investigated. High attention has been gained by vaginal gene therapy, especially for sexually transmitted infection treatment. Despite much research, no product is available in the market, although in vitro and preclinical data support the vaginal route as an effective route for gene administration. The main focus of this review is to discuss the recent advancement in miniaturized polymeric systems for intravaginal gene therapies to treat local infections. An overview of different barriers to vaginal delivery and challenges of vaginal infection treatment are also summarised.

« Previous
[1]
Yalew GT, Muthupandian S, Hagos K, et al. Prevalence of bacterial vaginosis and aerobic vaginitis and their associated risk factors among pregnant women from Northern Ethiopia: A cross-sectional study. PLoS One 2022; 17(2): e0262692.
[http://dx.doi.org/10.1371/journal.pone.0262692] [PMID: 35213556]
[2]
Salinas AM, Osorio VG, Pacha-Herrera D, Vivanco JS, Trueba AF, Machado A. Vaginal microbiota evaluation and prevalence of key pathogens in Ecuadorian women: An epidemiologic analysis. Sci Rep 2020; 10(1): 18358.
[http://dx.doi.org/10.1038/s41598-020-74655-z] [PMID: 33110095]
[3]
Onderdonk AB, Delaney ML, Fichorova RN. The human microbiome during bacterial vaginosis. Clin Microbiol Rev 2016; 29(2): 223-38.
[http://dx.doi.org/10.1128/CMR.00075-15] [PMID: 26864580]
[4]
Petrova MI, Lievens E, Malik S, Imholz N, Lebeer S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front Physiol 2015; 6: 81.
[http://dx.doi.org/10.3389/fphys.2015.00081] [PMID: 25859220]
[5]
O’Hanlon DE, Moench TR, Cone RA. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS One 2013; 8(11): e80074.
[http://dx.doi.org/10.1371/journal.pone.0080074] [PMID: 24223212]
[6]
Seth AR, Chaitra S, Vaishnavi S, Chandra GRS. Prevalence of bacterial vaginosis in females in the reproductive age group in Kadur, Karnataka, India. Int J Reprod Contracept Obstet Gynecol 2017; 6: 4863-6.
[http://dx.doi.org/10.18203/2320-1770.ijrcog20174651]
[7]
Krauss-Silva L, Almada-Horta A, Alves MB, Camacho KG, Moreira MEL, Braga A. Basic vaginal pH, bacterial vaginosis and aerobic vaginitis: Prevalence in early pregnancy and risk of spontaneous preterm delivery, a prospective study in a low socioeconomic and multiethnic South American population. BMC Pregnancy Childbirth 2014; 14(1): 107.
[http://dx.doi.org/10.1186/1471-2393-14-107] [PMID: 24641730]
[8]
Owen MK, Clenney TL. Management of vaginitis. Am Fam Physician 2004; 70(11): 2125-32.
[PMID: 15606061]
[9]
Jahic M, Mulavdic M, Nurkic J, Jahic E, Nurkic M. Clinical characteristics of aerobic vaginitis and its association to vaginal candidiasis, trichomonas vaginitis and bacterial vaginosis. Med Arh 2013; 67(6): 428-30.
[http://dx.doi.org/10.5455/medarh.2013.67.428-430] [PMID: 25568514]
[10]
Machado D, Castro J, Martinez-de-Oliveira J, Nogueira-Silva C, Cerca N. Prevalence of bacterial vaginosis in Portuguese pregnant women and vaginal colonization by Gardnerella vaginalis. PeerJ 2017; 5: e3750.
[http://dx.doi.org/10.7717/peerj.3750] [PMID: 28875084]
[11]
Palmeira-de-Oliveira R, Palmeira-de-Oliveira A, Martinez-de-Oliveira J. New strategies for local treatment of vaginal infections. Adv Drug Deliv Rev 2015; 92: 105-22.
[http://dx.doi.org/10.1016/j.addr.2015.06.008] [PMID: 26144995]
[12]
Tamrakar R, Yamada T, Furuta I, et al. Association between Lactobacillus species and bacterial vaginosis-related bacteria, and bacterial vaginosis scores in pregnant Japanese women. BMC Infect Dis 2007; 7(1): 128.
[http://dx.doi.org/10.1186/1471-2334-7-128] [PMID: 17986357]
[13]
Nelson DB, Hanlon A, Hassan S, et al. Preterm labor and bacterial vaginosis-associated bacteria among urban women. J Perinat Med 2009; 37(2): 130-4.
[http://dx.doi.org/10.1515/JPM.2009.026] [PMID: 18999913]
[14]
Datcu R. Characterization of the vaginal microflora in health and disease. Dan Med J 2014; 61(4): B4830-0.
[PMID: 24814599]
[15]
Wiesenfeld HC, Hillier SL, Krohn MA, Landers DV, Sweet RL. Bacterial vaginosis is a strong predictor of Neisseria gonorrhoeae and Chlamydia trachomatis infection. Clin Infect Dis 2003; 36(5): 663-8.
[http://dx.doi.org/10.1086/367658] [PMID: 12594649]
[16]
Bramston P, Rogers-Clark C, Hegney D, Bishop J. Gender roles and geographic location as predictors of emotional distress in Australian women. Aust J Rural Health 2000; 8(3): 154-60.
[http://dx.doi.org/10.1046/j.1440-1584.2000.00272.x] [PMID: 11249403]
[17]
Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol 2017; 8: 1162.
[http://dx.doi.org/10.3389/fmicb.2017.01162] [PMID: 28690602]
[18]
Karasz A, Anderson M. The vaginitis monologues: Women’s experiences of vaginal complaints in a primary care setting. Soc Sci Med 2003; 56(5): 1013-21.
[http://dx.doi.org/10.1016/S0277-9536(02)00092-8] [PMID: 12593874]
[19]
Bilardi JE, Walker S, Temple-Smith M, et al. The burden of bacterial vaginosis: Women’s experience of the physical, emotional, sexual and social impact of living with recurrent bacterial vaginosis. PLoS One 2013; 8(9): e74378.
[http://dx.doi.org/10.1371/journal.pone.0074378] [PMID: 24040236]
[20]
Vermani K, Garg S. The scope and potential of vaginal drug delivery. Pharm Sci Technol Today 2000; 3(10): 359-64.
[http://dx.doi.org/10.1016/S1461-5347(00)00296-0] [PMID: 11050460]
[21]
Hussain A, Ahsan F. The vagina as a route for systemic drug delivery. J Control Release 2005; 103(2): 301-13.
[http://dx.doi.org/10.1016/j.jconrel.2004.11.034] [PMID: 15763615]
[22]
das Neves J, Bahia MF. Gels as vaginal drug delivery systems. Int J Pharm 2006; 318(1-2): 1-14.
[http://dx.doi.org/10.1016/j.ijpharm.2006.03.012] [PMID: 16621366]
[23]
Palmeira-de-Oliveira R, Duarte P, Palmeira-de-Oliveira A, et al. Women’s experiences, preferences and perceptions regarding vaginal products: Results from a cross-sectional web-based survey in Portugal. Eur J Contracept Reprod Health Care 2015; 20(4): 259-71.
[http://dx.doi.org/10.3109/13625187.2014.980501] [PMID: 25529320]
[24]
Carvalho GC, Araujo VHS, Fonseca-Santos B, et al. Highlights in poloxamer-based drug delivery systems as strategy at local application for vaginal infections. Int J Pharm 2021; 602: 120635.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120635] [PMID: 33895295]
[25]
dos Santos AM, Carvalho SG, Araujo VHS, Carvalho GC, Gremião MPD, Chorilli M. Recent advances in hydrogels as strategy for drug delivery intended to vaginal infections. Int J Pharm 2020; 590: 119867.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119867] [PMID: 32919001]
[26]
Jøraholmen M, Basnet P, Tostrup M, Moueffaq S, Škalko-Basnet N. Localized therapy of vaginal infections and inflammation: Liposomes-in-hydrogel delivery system for polyphenols. Pharmaceutics 2019; 11(2): 53.
[http://dx.doi.org/10.3390/pharmaceutics11020053] [PMID: 30691199]
[27]
Rodríguez-Gascón A, del Pozo-Rodríguez A, Isla A, Solinís MA. Vaginal gene therapy. Adv Drug Deliv Rev 2015; 92: 71-83.
[http://dx.doi.org/10.1016/j.addr.2015.07.002] [PMID: 26189799]
[28]
Niu G, Jin Z, Zhang C, et al. An effective vaginal gel to deliver CRISPR/Cas9 system encapsulated in poly (β-amino ester) nanoparticles for vaginal gene therapy. EBioMedicine 2020; 58: 102897.
[http://dx.doi.org/10.1016/j.ebiom.2020.102897] [PMID: 32711250]
[29]
Finbloom JA, Sousa F, Stevens MM, Desai TA. Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Adv Drug Deliv Rev 2020; 167: 89-108.
[http://dx.doi.org/10.1016/j.addr.2020.06.007] [PMID: 32535139]
[30]
Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 2012; 41(7): 2545-61.
[http://dx.doi.org/10.1039/c2cs15327k] [PMID: 22334259]
[31]
Meng H, Leong W, Leong KW, Chen C, Zhao Y. Walking the line: The fate of nanomaterials at biological barriers. Biomaterials 2018; 174: 41-53.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.056] [PMID: 29778981]
[32]
González-Mariscal L, Nava P, Hernández S. Critical role of tight junctions in drug delivery across epithelial and endothelial cell layers. J Membr Biol 2005; 207(2): 55-68.
[http://dx.doi.org/10.1007/s00232-005-0807-y] [PMID: 16477528]
[33]
Krogstad EA, Rathbone MJ, Woodrow KA. Vaginal drug delivery. Focal Controlled Drug Delivery. Boston, MA: Springer 2014; pp. 607-51.
[http://dx.doi.org/10.1007/978-1-4614-9434-8_27]
[34]
Katz DF, Dunmire EN. Cervical mucus. Adv Drug Deliv Rev 1993; 11(3): 385-401.
[http://dx.doi.org/10.1016/0169-409X(93)90017-X]
[35]
Richardson JL, Illum L. (D) Routes of delivery: Case studies. Adv Drug Deliv Rev 1992; 8(2-3): 341-66.
[http://dx.doi.org/10.1016/0169-409X(92)90008-E]
[36]
Mohammed Y, Holmes A, Kwok PCL, et al. Advances and future perspectives in epithelial drug delivery. Adv Drug Deliv Rev 2022; 186: 114293.
[http://dx.doi.org/10.1016/j.addr.2022.114293] [PMID: 35483435]
[37]
Amabebe E, Anumba DOC. The vaginal microenvironment: The physiologic role of Lactobacilli. Front Med 2018; 5: 181.
[http://dx.doi.org/10.3389/fmed.2018.00181] [PMID: 29951482]
[38]
Brannon-Peppas L. Novel vaginal drug release applications. Adv Drug Deliv Rev 1993; 11(1-2): 169-77.
[http://dx.doi.org/10.1016/0169-409X(93)90031-X]
[39]
Lalan MS, Patel VN, Misra A. Polymers in vaginal drug delivery: Recent advancements. Applications of Polymers in Drug Delivery. Elsevier 2021; pp. 281-303.
[http://dx.doi.org/10.1016/B978-0-12-819659-5.00010-0]
[40]
Pandey M, Choudhury H, Abdul-Aziz A, et al. Promising drug delivery approaches to treat microbial infections in the vagina: A recent update. Polymers 2020; 13(1): 26.
[http://dx.doi.org/10.3390/polym13010026] [PMID: 33374756]
[41]
Lee VHL, Yamamoto A. Penetration and enzymatic barriers to peptide and protein absorption. Adv Drug Deliv Rev 1989; 4(2): 171-207.
[http://dx.doi.org/10.1016/0169-409X(89)90018-5]
[42]
Kasza K, Gurnani P, Hardie KR, Cámara M, Alexander C. Challenges and solutions in polymer drug delivery for bacterial biofilm treatment: A tissue-by-tissue account. Adv Drug Deliv Rev 2021; 178: 113973.
[http://dx.doi.org/10.1016/j.addr.2021.113973] [PMID: 34530014]
[43]
Muzny CA, Schwebke JR. Biofilms: An underappreciated mechanism of treatment failure and recurrence in vaginal infections: Table 1. Clin Infect Dis 2015; 61(4): 601-6.
[http://dx.doi.org/10.1093/cid/civ353] [PMID: 25935553]
[44]
Boahen A, Than LTL, Loke YL, Chew SY. The antibiofilm role of biotics family in vaginal fungal infections. Front Microbiol 2022; 13: 787119.
[http://dx.doi.org/10.3389/fmicb.2022.787119] [PMID: 35694318]
[45]
Gaziano R, Sabbatini S, Roselletti E, Perito S, Monari C. Saccharomyces cerevisiae-based probiotics as novel antimicrobial agents to prevent and treat vaginal infections. Front Microbiol 2020; 11: 718.
[http://dx.doi.org/10.3389/fmicb.2020.00718] [PMID: 32373104]
[46]
Abdul-Aziz M, Mahdy MAK, Abdul-Ghani R, et al. Bacterial vaginosis, vulvovaginal candidiasis and trichomonal vaginitis among reproductive-aged women seeking primary healthcare in Sana’a city, Yemen. BMC Infect Dis 2019; 19(1): 879.
[http://dx.doi.org/10.1186/s12879-019-4549-3] [PMID: 31640583]
[47]
Faisal S. Vaginal Infection: Review article. Univ Thi-Qar J Sci 2022; 9: 19-25.
[48]
Vaginitis - NHS. NHS. Published 2023. Accessed June 20, 2023.. https://www.nhs.uk/conditions/vaginitis/
[49]
Wathne B, Holst E, Hovelius B, Mårdh PA. Vaginal discharge - comparison of clinical, laboratory and microbiological findings. Acta Obstet Gynecol Scand 1994; 73(10): 802-8.
[http://dx.doi.org/10.3109/00016349409072509] [PMID: 7817733]
[50]
Bilardi J, Walker S, McNair R, et al. Women’s management of recurrent bacterial vaginosis and experiences of clinical care: A qualitative study. PLoS One 2016; 11(3): e0151794.
[http://dx.doi.org/10.1371/journal.pone.0151794] [PMID: 27010725]
[51]
Kenyon C, Colebunders R, Crucitti T. The global epidemiology of bacterial vaginosis: A systematic review. Am J Obstet Gynecol 2013; 209(6): 505-23.
[http://dx.doi.org/10.1016/j.ajog.2013.05.006] [PMID: 23659989]
[52]
Kairys N, Garg M. Bacterial Vaginosis Stat Pearls. StatPearls Publishing 2022.
[53]
Russo R, Karadja E, De Seta F. Evidence-based mixture containing Lactobacillus strains and lactoferrin to prevent recurrent bacterial vaginosis: A double blind, placebo controlled, randomised clinical trial. Benef Microbes 2019; 10(1): 19-26.
[http://dx.doi.org/10.3920/BM2018.0075] [PMID: 30525953]
[54]
Ventolini G. Progresses in vaginal microflora physiology and implications for bacterial vaginosis and candidiasis. Womens Health 2016; 12(3): 283-91.
[http://dx.doi.org/10.2217/whe.16.5] [PMID: 27215488]
[55]
Sewankambo N, Gray RH, Wawer MJ, et al. HIV-1 infection associated with abnormal vaginal flora morphology and bacterial vaginosis. Lancet 1997; 350(9077): 546-50.
[http://dx.doi.org/10.1016/S0140-6736(97)01063-5] [PMID: 9284776]
[56]
Hay PE, Lamont RF, Taylor-Robinson D, Morgan DJ, Ison C, Pearson J. Abnormal bacterial colonisation of the genital tract and subsequent preterm delivery and late miscarriage. BMJ 1994; 308(6924): 295-8.
[http://dx.doi.org/10.1136/bmj.308.6924.295] [PMID: 8124116]
[57]
Muzny CA, Kardas P. A narrative review of current challenges in the diagnosis and management of bacterial vaginosis. Sex Transm Dis 2020; 47(7): 441-6.
[http://dx.doi.org/10.1097/OLQ.0000000000001178] [PMID: 32235174]
[58]
Javed A, Parvaiz F, Manzoor S. Bacterial vaginosis: An insight into the prevalence, alternative treatmentsregimen and it’s associated resistance patterns. Microb Pathog. 2019; 127: pp. 21-30.
[http://dx.doi.org/10.1016/J.MICPATH.2018.11.0]
[59]
Surapaneni S, Akins R, Sobel J D. Recurrent bacterial vaginosis: An unmet therapeutic challenge. experience with a combination pharmacotherapy long-term suppressive regimen. Sex Transm Dis 2021; 48(10): 761-5.
[http://dx.doi.org/10.1097/OLQ.0000000000001420]
[60]
Vodstrcil LA, Muzny CA, Plummer EL, Sobel JD, Bradshaw CS. Bacterial vaginosis: Drivers of recurrence and challenges and opportunities in partner treatment. BMC Med 2021; 191(19): 1-12.
[61]
Sobel JD. Pathogenesis of Candida vulvovaginitis. Curr Top Med Mycol 1989; 3: 86-108.
[http://dx.doi.org/10.1007/978-1-4612-3624-5_5] [PMID: 2688924]
[62]
Marnach ML, Wygant JN, Casey PM. Evaluation and management of vaginitis. Mayo Clin Proc 2022; 97(2): 347-58.
[http://dx.doi.org/10.1016/j.mayocp.2021.09.022] [PMID: 35120697]
[63]
Jeanmonod R, Jeanmonod D. Vaginal Candidiasis. StatPearls 2022.
[64]
Sustr V, Foessleitner P, Kiss H, Farr A. Vulvovaginal candidosis: Current concepts, challenges and perspectives. J Fungi 2020; 6(4): 267.
[http://dx.doi.org/10.3390/jof6040267]
[65]
Phillips NA, Bachmann G, Haefner H, Martens M, Stockdale C. Topical treatment of recurrent vulvovaginal candidiasis: An expert consensus. Womens Health Rep (New Rochelle). 2022; 3(1): 38-42.
[66]
Willems HME, Ahmed SS, Liu J, Xu Z, Peters BM. Vulvovaginal candidiasis: A current understanding and burning questions. J Fungi 2020; 6(1): 27.
[http://dx.doi.org/10.3390/jof6010027] [PMID: 32106438]
[67]
Shu YCLTLT. Vulvovaginal candidosis: Contemporary challenges and the future of prophylactic and therapeutic approaches. Mycoses 2016; 59(5): 262-73.
[68]
Paladine HL, Desai UA. Vaginitis: Diagnosis and treatment. Am Fam Physician 2018; 97(5): 321-9.
[PMID: 29671516]
[69]
Van Gerwen OT, Muzny CA. Recent advances in the epidemiology, diagnosis, and management of Trichomonas vaginalis infection. F1000 Res 2019; 8: 1666.
[http://dx.doi.org/10.12688/f1000research.19972.1]
[70]
Workowski K. Bacterial Vaginosis - 2015 STD treatment Guidelines. Centers of Disease Control and Prevention. Accessed on March 15, 2023.. https://www.cdc.gov/std/treatment-guidelines/bv.htm
[71]
Kissinger PJ, Gaydos CA, Seña AC. et al. Diagnosis and management of trichomonas vaginalis: Summary of evidence reviewed for the 2021 centers for disease control and prevention sexually transmitted infections treatment guidelines. Clin Infect Dis. 2022; (74(Supplement_2)): S152-61.
[http://dx.doi.org/10.1093/CID/CIAC030]
[72]
Wong TW, Dhanawat M, Rathbone MJ. Vaginal drug delivery: Strategies and concerns in polymeric nanoparticle development. Expert Opin Drug Deliv 2014; 11(9): 1419-34.
[http://dx.doi.org/10.1517/17425247.2014.924499] [PMID: 24960192]
[73]
Johal HS, Garg T, Rath G, Goyal AK. Advanced topical drug delivery system for the management of vaginal candidiasis. Drug Deliv 2016; 23(2): 550-63.
[http://dx.doi.org/10.3109/10717544.2014.928760] [PMID: 24959937]
[74]
Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater 2016; 1(12): 16071.
[http://dx.doi.org/10.1038/natrevmats.2016.71] [PMID: 29657852]
[75]
Zhao X, Liang Y, Huang Y, He J, Han Y, Guo B. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH Stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv Funct Mater 2020; 30(17): 1910748.
[http://dx.doi.org/10.1002/adfm.201910748]
[76]
Lina TT, Johnson SJ, Wagner RD. Intravaginal poly-(D, L-lactic- co-glycolic acid)-(polyethylene glycol) drug-delivery nanoparticles induce pro-inflammatory responses with Candida albicans infection in a mouse model. PLoS One 2020; 15(10): e0240789.
[http://dx.doi.org/10.1371/journal.pone.0240789] [PMID: 33091017]
[77]
Traore YL, Chen Y, Padilla F, Ho EA. Segmented intravaginal ring for the combination delivery of hydroxychloroquine and anti-CCR5 siRNA nanoparticles as a potential strategy for preventing HIV infection. Drug Deliv Transl Res 2022; 12
[78]
Currie S, Kim S, Gu X, et al. Mucus-penetrating PEGylated polysuccinimide-based nanocarrier for intravaginal delivery of siRNA battling sexually transmitted infections. Colloids Surf B Biointerfaces 2020; 196: 111287.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111287] [PMID: 32768985]
[79]
Gu J, Yang S, Ho EA. Biodegradable film for the targeted delivery of siRNA-loaded nanoparticles to vaginal immune cells. Mol Pharm 2015; 12(8): 2889-903.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00073] [PMID: 26099315]
[80]
Ariza-Sáenz M, Espina M, Bolaños N, et al. Penetration of polymeric nanoparticles loaded with an HIV-1 inhibitor peptide derived from GB virus C in a vaginal mucosa model. Eur J Pharm Biopharm 2017; 120: 98-106.
[http://dx.doi.org/10.1016/j.ejpb.2017.08.008] [PMID: 28842284]
[81]
Steinbach JM, Weller CE, Booth CJ, Saltzman WM. Polymer nanoparticles encapsulating siRNA for treatment of HSV-2 genital infection. J Control Release 2012; 162(1): 102-10.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.008] [PMID: 22705461]
[82]
Singh J, Michel D, Getson HM, Chitanda JM, Verrall RE, Badea I. Development of amino acid substituted gemini surfactant-based mucoadhesive gene delivery systems for potential use as noninvasive vaginal genetic vaccination. Nanomedicine 2015; 10(3): 405-17.
[http://dx.doi.org/10.2217/nnm.14.123] [PMID: 25707975]
[83]
Griesser J, Hetényi G, Bernkop-Schnürch A. Thiolated hyaluronic acid as versatile mucoadhesive polymer: From the chemistry behind to product developments-What are the capabilities? Polymers 2018; 10(3): 243.
[http://dx.doi.org/10.3390/polym10030243] [PMID: 30966278]
[84]
Cook MT, Brown MB. Polymeric gels for intravaginal drug delivery. J Control Release 2018; 270: 145-57.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.004] [PMID: 29223536]
[85]
Borin MT. Systemic absorption of clindamycin following intravaginal application of clindamycin phosphate 1% cream. J Clin Pharmacol 1990; 30(1): 33-8.
[http://dx.doi.org/10.1002/j.1552-4604.1990.tb03435.x] [PMID: 2303578]
[86]
Bácskay I. Role of cytotoxicity experiments in pharmaceutical development. Cytotoxicity. InTech 2018.
[http://dx.doi.org/10.5772/intechopen.72539]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy