Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

Pictet-Spengler Synthesis of N-heteroaromatics Extended Porphyrins

Author(s): Dileep Kumar Singh*

Volume 21, Issue 6, 2024

Published on: 15 August, 2023

Page: [717 - 728] Pages: 12

DOI: 10.2174/1570179420666230712155402

Price: $65

Abstract

Background: Porphyrins are highly conjugated heterocyclic compounds and are found as the backbone of many natural products such as heme and chlorophyll. To improve its biological and optical properties, the functionalization of porphyrin at its β- and meso-position has gained importance in recent years.

Objective: The purpose of this review is to describe the Pictet-Spengler method for the incorporation of nitrogenous and biologically important heterocyclic scaffolds such as pyrrolo-/indolo[1,2- a]quinoxaline, pyrrolo[1,2-a]pyrazine, and quinoline at the β- and meso-positions of the porphyrins to increase π-conjugation and improve their biological, optical, and electrochemical properties.

Conclusion: This review provides a comprehensive overview of the synthesis of N-heterocyclic extended porphyrins and metalloporphyrins via a modified Pictet-Spengler approach. The synthesized porphyrins were found to be highly conjugated and exhibited improved photophysical properties compared to their parent analogues. Moreover, the review article provided a brief overview of the Pictet-Spengler procedure, including product yields, reaction conditions, photophysical properties of the synthesized products, and potential applications in a variety of fields.

Next »
Graphical Abstract

[1]
Farinone, M.; Urbańska, K.; Pawlicki, M. BODIPY and porphyrin-based sensors for recognition of amino acids and their derivatives. Molecules, 2020, 25(19), 4523.
[http://dx.doi.org/10.3390/molecules25194523] [PMID: 33023164]
[2]
Ishihara, S.; Labuta, J.; Van Rossom, W.; Ishikawa, D.; Minami, K.; Hill, J.P.; Ariga, K. Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. Phys. Chem. Chem. Phys., 2014, 16(21), 9713-9746.
[http://dx.doi.org/10.1039/c3cp55431g] [PMID: 24562603]
[3]
Bera, K.; Maiti, S.; Maity, M.; Mandal, C.; Maiti, N.C. Porphyrin–gold nanomaterial for efficient drug delivery to cancerous cells. ACS Omega, 2018, 3(4), 4602-4619.
[http://dx.doi.org/10.1021/acsomega.8b00419] [PMID: 30023896]
[4]
Urbani, M.; Grätzel, M.; Nazeeruddin, M.K.; Torres, T. Meso-substituted porphyrins for dye-sensitized solar cells. Chem. Rev., 2014, 114(24), 12330-12396.
[http://dx.doi.org/10.1021/cr5001964] [PMID: 25495339]
[5]
Birel, Ö.; Nadeem, S.; Duman, H. Porphyrin-based dye-sensitized solar cells (DSSCs): A review. J. Fluoresc., 2017, 27(3), 1075-1085.
[http://dx.doi.org/10.1007/s10895-017-2041-2] [PMID: 28210924]
[6]
Mahmood, A.; Hu, J.Y.; Xiao, B.; Tang, A.; Wang, X.; Zhou, E. Recent progress in porphyrin-based materials for organic solar cells. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(35), 16769-16797.
[http://dx.doi.org/10.1039/C8TA06392C]
[7]
Mori, H.; Tanaka, T.; Osuka, A. Fused porphyrinoids as promising near-infrared absorbing dyes. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1(14), 2500-2519.
[http://dx.doi.org/10.1039/c3tc00932g]
[8]
Cao, L.; Li, J.; Zhu, Z.Q.; Huang, L.; Li, J. Stable and efficient near-infrared organic light-emitting diodes employing a platinum(II) porphyrin complex. ACS Appl. Mater. Interfaces, 2021, 13(50), 60261-60268.
[http://dx.doi.org/10.1021/acsami.1c17335] [PMID: 34874144]
[9]
Oh, P.S.; Jeong, H.J. Therapeutic application of light emitting diode: Photo-oncomic approach. J. Photochem. Photobiol. B, 2019, 192, 1-7.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.01.003] [PMID: 30654264]
[10]
Abdulaeva, I.A.; Birin, K.P.; Polivanovskaia, D.A.; Gorbunova, Y.G.; Tsivadze, A.Y. Functionalized heterocycle-appended porphyrins: Catalysis matters. RSC Advances, 2020, 10(69), 42388-42399.
[http://dx.doi.org/10.1039/D0RA08603G] [PMID: 35516736]
[11]
Fukui, N.; Fujimoto, K.; Yorimitsu, H.; Osuka, A. Embedding heteroatoms: An effective approach to create porphyrin-based functional materials. Dalton Trans., 2017, 46(39), 13322-13341.
[http://dx.doi.org/10.1039/C7DT02815F] [PMID: 28875206]
[12]
Kiselev, A.N.; Syrbu, S.A.; Lebedeva, N.S.; Gubarev, Y.A. Functionalization of porphyrins using metal-catalyzed C–H activation. Inorganics, 2022, 10(5), 63.
[http://dx.doi.org/10.3390/inorganics10050063]
[13]
Akita, M.; Hiroto, S.; Shinokubo, H. Oxidative annulation of β-aminoporphyrins into pyrazine-fused diporphyrins. Angew. Chem. Int. Ed., 2012, 51(12), 2894-2897.
[http://dx.doi.org/10.1002/anie.201108037] [PMID: 22318984]
[14]
Ito, S.; Hiroto, S.; Lee, S.; Son, M.; Hisaki, I.; Yoshida, T.; Kim, D.; Kobayashi, N.; Shinokubo, H. Synthesis of highly twisted and fully π-conjugated porphyrinic oligomers. J. Am. Chem. Soc., 2015, 137(1), 142-145.
[http://dx.doi.org/10.1021/ja511905f] [PMID: 25539406]
[15]
Sharma, S.; Nath, M. Synthesis and spectroscopic properties of meso-substituted quinoxalinoporphyrins. New J. Chem., 2011, 35(8), 1630-1639.
[http://dx.doi.org/10.1039/c1nj20248k]
[16]
Yeow, E.K.L.; Sintic, P.J.; Cabral, N.M.; Reek, J.N.H.; Crossley, M.J.; Ghiggino, K.P. Photoinduced energy and electron transfer in bis-porphyrins with quinoxaline Tröger’s base and biquinoxalinyl spacers. Phys. Chem. Chem. Phys., 2000, 2(19), 4281-4291.
[http://dx.doi.org/10.1039/b003612i]
[17]
Kira, A.; Matsubara, Y.; Iijima, H.; Umeyama, T.; Matano, Y.; Ito, S.; Niemi, M.; Tkachenko, N.V.; Lemmetyinen, H.; Imahori, H. Effects of π-elongation and the fused position of quinoxaline-fused porphyrins as sensitizers in dye-sensitized solar cells on optical, electrochemical, and photovoltaic properties. J. Phys. Chem. C, 2010, 114(25), 11293-11304.
[http://dx.doi.org/10.1021/jp1004049]
[18]
Hutchison, J.A.; Sintic, P.J.; Crossley, M.J.; Nagamura, T.; Ghiggino, K.P. The photophysics of selectively metallated arrays of quinoxaline-fused tetraarylporphyrins. Phys. Chem. Chem. Phys., 2009, 11(18), 3478-3489.
[http://dx.doi.org/10.1039/b820969c] [PMID: 19421551]
[19]
Eu, S.; Hayashi, S.; Umeyama, T.; Matano, Y.; Araki, Y.; Imahori, H. Quinoxaline-fused porphyrins for dye-sensitized solar cells. J. Phys. Chem. C, 2008, 112(11), 4396-4405.
[http://dx.doi.org/10.1021/jp710400p]
[20]
Lo, M.; Lefebvre, J.F.; Leclercq, D.; van der Lee, A.; Richeter, S. Stepwise fusion of porphyrin β,β′-pyrrolic positions to imidazole rings. Org. Lett., 2011, 13(12), 3110-3113.
[http://dx.doi.org/10.1021/ol2010215] [PMID: 21604780]
[21]
Crossley, M.J.; McDonald, J.A. Fused porphyrin-imidazole systems: New building blocks for synthesis of porphyrin arrays. J. Chem. Soc., 1999, 17, 2429-2431.
[22]
Kiselev, A.N.; Grigorova, O.K.; Averin, A.D.; Syrbu, S.A.; Koifman, O.I.; Beletskaya, I.P. Direct catalytic arylation of heteroarenes with meso -bromophenyl-substituted porphyrins. Beilstein J. Org. Chem., 2017, 13(1), 1524-1532.
[http://dx.doi.org/10.3762/bjoc.13.152] [PMID: 28845197]
[23]
Sharma, S.; Nath, M. Novel 5-benzazolyl-10,15,20-triphenylporphyrins and β,meso-benzoxazolyl-bridged porphyrin dyads: Synthesis, characterization and photophysical properties. Dyes Pigments, 2012, 92(3), 1241-1249.
[http://dx.doi.org/10.1016/j.dyepig.2011.07.022]
[24]
Khandagale, S.B.; Pilania, M.; Arun, V.; Kumar, D. Metal-catalyzed direct heteroarylation of C–H (meso) bonds in porphyrins: facile synthesis and photophysical properties of novel meso -heteroaromatic appended porphyrins. Org. Biomol. Chem., 2018, 16(12), 2097-2104.
[http://dx.doi.org/10.1039/C8OB00174J] [PMID: 29511768]
[25]
Alonso, C.M.A.; Neves, M.G.P.M.S.; Tomé, A.C.; Silva, A.M.S.; Cavaleiro, J.A.S. Reaction of (2-amino-5,10,15,20-tetraphenylporphyrinato)nickel(II) with quinones. Tetrahedron, 2005, 61(50), 11866-11872.
[http://dx.doi.org/10.1016/j.tet.2005.09.080]
[26]
Costa, L.; Silva, J.; Fonseca, S.; Arranja, C.; Urbano, A.; Sobral, A. Photophysical characterization and in vitro phototoxicity evaluation of 5,10,15,20-tetra(quinolin-2-yl)porphyrin as a potential sensitizer for photodynamic therapy. Molecules, 2016, 21(4), 439.
[http://dx.doi.org/10.3390/molecules21040439] [PMID: 27043519]
[27]
Eckes, F.; Deiters, E.; Métivet, A.; Bulach, V.; Hosseini, M.W. Synthesis and structural analysis of porphyrin-based polynucleating ligands bearing 8-methoxy- and 8-(allyloxy)quinoline units. Eur. J. Org. Chem., 2011, 2011(13), 2531-2541.
[http://dx.doi.org/10.1002/ejoc.201100006]
[28]
Jeandon, C.; Ruppert, R. A Porphyrin with two coordination sites: The biquinoline ligand as a new potential external chelate. Eur. J. Org. Chem., 2011, 2011(22), 4098-4102.
[http://dx.doi.org/10.1002/ejoc.201100413]
[29]
Chang, Y.; Michelin, C.; Bucher, L.; Desbois, N.; Gros, C.P.; Piant, S.; Bolze, F.; Fang, Y.; Jiang, X.; Kadish, K.M. Synthesis and characterization of carbazole-linked porphyrin tweezers. Chemistry, 2015, 21(34), 12018-12025.
[http://dx.doi.org/10.1002/chem.201501619] [PMID: 26177731]
[30]
Haumesser, J.; Pereira, A.M.V.M.; Gisselbrecht, J.P.; Merahi, K.; Choua, S.; Weiss, J.; Cavaleiro, J.A.S.; Ruppert, R. Inexpensive and efficient Ullmann methodology to prepare donor-substituted porphyrins. Org. Lett., 2013, 15(24), 6282-6285.
[http://dx.doi.org/10.1021/ol403132f] [PMID: 24283676]
[31]
Nath, M.; Singh, P. A modified Vilsmeier–Haack strategy to construct β-pyridine-fused 5,10,15,20-tetraarylporphyrins. SynOpen, 2020, 4(2), 44-50.
[http://dx.doi.org/10.1055/s-0040-1707429]
[32]
Vallejo, M.C.S.; Reis, M.J.A.; Pereira, A.M.V.M.; Serra, V.V.; Cavaleiro, J.A.S.; Moura, N.M.M.; Neves, M.G.P.M.S. Merging pyridine(s) with porphyrins and analogues: An overview of synthetic approaches. Dyes Pigments, 2021, 191, 109298.
[http://dx.doi.org/10.1016/j.dyepig.2021.109298]
[33]
Cox, E.D.; Cook, J.M. The Pictet-Spengler condensation: A new direction for an old reaction. Chem. Rev., 1995, 95(6), 1797-1842.
[http://dx.doi.org/10.1021/cr00038a004]
[34]
Guillon, J.; Mouray, E.; Moreau, S.; Mullié, C.; Forfar, I.; Desplat, V.; Belisle-Fabre, S.; Pinaud, N.; Ravanello, F.; Le-Naour, A.; Léger, J.M.; Gosmann, G.; Jarry, C.; Déléris, G.; Sonnet, P.; Grellier, P. New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: Synthesis, and in vitro antimalarial activity – Part II. Eur. J. Med. Chem., 2011, 46(6), 2310-2326.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.014] [PMID: 21458112]
[35]
Xu, H.; Fan, L. Synthesis and antifungal activities of novel 5,6-dihydro-indolo[1,2-a]quinoxaline derivatives. Eur. J. Med. Chem., 2011, 46(5), 1919-1925.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.035] [PMID: 21388718]
[36]
Fan, L.L.; Huang, N.; Yang, R.G.; He, S.Z.; Yang, L.M.; Xu, H.; Zheng, Y.T. Discovery of 5,6-dihydro-indolo[1,2-a]quinoxaline derivatives as new HIV-1 inhibitors in vitro. Lett. Drug Des. Discov., 2012, 9(1), 44-47.
[http://dx.doi.org/10.2174/157018012798193026]
[37]
Makane, V.B.; Vamshi Krishna, E.; Karale, U.B.; Babar, D.A.; Kalari, S.; Rekha, E.M.; Shukla, M.; Kaul, G.; Sriram, D.; Chopra, S.; Misra, S.; Rode, H.B. Synthesis of novel 4,5‐dihydropyrrolo[1,2‐ a]quinoxalines, pyrrolo[1,2‐ a]quinoxalin]‐2‐ones and their antituberculosis and anticancer activity. Arch. Pharm. (Weinheim), 2020, 353(12), 2000192.
[http://dx.doi.org/10.1002/ardp.202000192] [PMID: 32786042]
[38]
Kim, J.; Park, M.; Choi, J.; Singh, D.K.; Kwon, H.J.; Kim, S.H.; Kim, I. Design, synthesis, and biological evaluation of novel pyrrolo[1,2-a]pyrazine derivatives. Bioorg. Med. Chem. Lett., 2019, 29(11), 1350-1356.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.044] [PMID: 30954427]
[39]
Vidaillac, C.; Guillon, J.; Arpin, C.; Forfar-Bares, I.; Ba, B.B.; Grellet, J.; Moreau, S.; Caignard, D.H.; Jarry, C.; Quentin, C. Synthesis of omeprazole analogues and evaluation of these as potential inhibitors of the multidrug efflux pump NorA of Staphylococcus aureus. Antimicrob. Agents Chemother., 2007, 51(3), 831-838.
[http://dx.doi.org/10.1128/AAC.01306-05] [PMID: 17101679]
[40]
Çarbaş, B.B.; Kivrak, A.; Zora, M.; Önal, A.M. Synthesis of a novel fluorescent and ion sensitive monomer bearing quinoxaline moieties and its electropolymerization. React. Funct. Polym., 2011, 71(5), 579-587.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2011.02.008]
[41]
Achelle, S.; Baudequin, C.; Plé, N. Luminescent materials incorporating pyrazine or quinoxaline moieties. Dyes Pigments, 2013, 98(3), 575-600.
[http://dx.doi.org/10.1016/j.dyepig.2013.03.030]
[42]
Tervola, E.; Truong, K.N.; Ward, J.S.; Priimagi, A.; Rissanen, K. Fluorescence enhancement of quinolines by protonation. RSC Advances, 2020, 10(49), 29385-29393.
[http://dx.doi.org/10.1039/D0RA04691D] [PMID: 35521145]
[43]
Pictet, A.; Spengler, T. On the formation of isoquinoline derivatives by the action of methylal on phenylethylamine, phenylalanine and tyrosine. Ber. Dtsch. Chem. Ges., 1911, 44(3), 2030-2036.
[http://dx.doi.org/10.1002/cber.19110440309]
[44]
Valiulin, R. “75. Pictet–Spengler Reaction”. Organic Chemistry: 100 Must-Know Mechanisms; De Gruyter: Berlin, Boston, 2020, pp. 170-171.
[http://dx.doi.org/10.1515/9783110608373-075]
[45]
Pulka, K. Pictet-Spengler reactions for the synthesis of pharmaceutically relevant heterocycles. Curr. Opin. Drug Discov. Devel., 2010, 13(6), 669-684.
[PMID: 21061230]
[46]
Cho, I.S.; Mariano, P.S. Photocyclization reactions of 1-benzyl-1-pyrrolinium salts by diradical and diradical cation pathways. Novel photochemical Pictet-Spengler cyclizations. J. Org. Chem., 1988, 53(7), 1590-1592.
[http://dx.doi.org/10.1021/jo00242a056]
[47]
Rao, R.N.; Maiti, B.; Chanda, K. Application of Pictet–Spengler reaction to indole-based alkaloids containing tetrahydro-β-carboline scaffold in combinatorial chemistry. ACS Comb. Sci., 2017, 19(4), 199-228.
[http://dx.doi.org/10.1021/acscombsci.6b00184] [PMID: 28276678]
[48]
Stöckigt, J.; Antonchick, A.P.; Wu, F.; Waldmann, H. The Pictet-Spengler reaction in nature and in organic chemistry. Angew. Chem. Int. Ed., 2011, 50(37), 8538-8564.
[http://dx.doi.org/10.1002/anie.201008071] [PMID: 21830283]
[49]
Nash, A.; Qi, X.; Maity, P.; Owens, K.; Tambar, U.K. Development of the vinylogous Pictet–Spengler cyclization and total synthesis of (±)-lundurine A. Angew. Chem. Int. Ed., 2018, 57(23), 6888-6891.
[http://dx.doi.org/10.1002/anie.201803702] [PMID: 29663602]
[50]
M Heravi, M.; Zadsirjan, V.; Malmir, M. Application of the asymmetric Pictet–Spengler reaction in the total synthesis of natural products and relevant biologically active compounds. Molecules, 2018, 23(4), 943.
[http://dx.doi.org/10.3390/molecules23040943] [PMID: 29670061]
[51]
Singh, D.K.; Nath, M. Synthesis and spectroscopic properties of β-triazoloporphyrin–xanthone dyads. Beilstein J. Org. Chem., 2015, 11(1), 1434-1440.
[http://dx.doi.org/10.3762/bjoc.11.155] [PMID: 26425199]
[52]
Singh, D.K.; Nath, M. meso-Phenyl-triazole bridged porphyrin-coumarin dyads: Synthesis, characterization and photophysical properties. Dyes Pigments, 2015, 121, 256-264.
[http://dx.doi.org/10.1016/j.dyepig.2015.05.027]
[53]
Singh, D.K.; Nath, M. Synthesis and photophysical properties of β-triazole bridged porphyrin–coumarin dyads. RSC Advances, 2015, 5(83), 68209-68217.
[http://dx.doi.org/10.1039/C5RA13955D]
[54]
Singh, D.K.; Nath, M. Synthesis, characterization and photophysical studies of ß-triazolomethyl-bridged porphyrin-benzo- a-pyrone dyads. J. Chem. Sci., 2016, 128(4), 545-554.
[http://dx.doi.org/10.1007/s12039-016-1058-4]
[55]
Singh, D.K.; Nath, M. Ambient temperature synthesis of β,β′-fused nickel(II) pyrrolo[1,2-a]pyrazinoporphyrins via a DBSA-catalyzed Pictet–Spengler approach. Org. Biomol. Chem., 2015, 13(6), 1836-1845.
[http://dx.doi.org/10.1039/C4OB02370F] [PMID: 25504338]
[56]
Tiwari, R.; Nath, M. Novel π-extended pyrrolo[1,2-a]pyrazinoporphyrins: Synthesis, photophysical properties and mercuric ion recognition. Dyes Pigments, 2018, 152, 161-170.
[http://dx.doi.org/10.1016/j.dyepig.2018.01.041]
[57]
Berionni Berna, B.; Nardis, S.; Galloni, P.; Savoldelli, A.; Stefanelli, M.; Fronczek, F.R.; Smith, K.M.; Paolesse, R. β-Pyrrolopyrazino annulated corroles via a Pictet–Spengler approach. Org. Lett., 2016, 18(14), 3318-3321.
[http://dx.doi.org/10.1021/acs.orglett.6b01314] [PMID: 27378478]
[58]
Gao, K.; Fukui, N.; Jung, S.I.I.; Yorimitsu, H.; Kim, D.; Osuka, A. Pictet-Spengler synthesis of quinoline-fused porphyrins and phenanthroline-fused diporphyrins. Angew. Chem. Int. Ed., 2016, 55(42), 13038-13042.
[http://dx.doi.org/10.1002/anie.201606293] [PMID: 27634672]
[59]
Sekaran, B.; Misra, R. β-Pyrrole functionalized porphyrins: Synthesis, electronic properties, and applications in sensing and DSSC. Coord. Chem. Rev., 2022, 453, 214312.
[http://dx.doi.org/10.1016/j.ccr.2021.214312]
[60]
Sekaran, B.; Jang, Y.; Misra, R.; D’Souza, F. Push–pull porphyrins via β-pyrrole functionalization: Evidence of excited state events leading to high-potential charge-separated states. Chemistry, 2019, 25(56), 12991-13001.
[http://dx.doi.org/10.1002/chem.201902286] [PMID: 31415117]
[61]
Tekuri, C.; Singh, D.K.; Nath, M. Synthesis, characterization and optical properties of β -substituted pyrrolo- and indolo[1,2-a]quinoxalinoporphyrins. Dyes Pigments, 2016, 132, 194-203.
[http://dx.doi.org/10.1016/j.dyepig.2016.04.045]
[62]
Singh, D.K.; Nath, M. First synthesis of meso -substituted pyrrolo[1,2-a]quinoxalinoporphyrins. Beilstein J. Org. Chem., 2014, 10(1), 808-813.
[http://dx.doi.org/10.3762/bjoc.10.76] [PMID: 24778735]
[63]
Kumar, B.; Khandagale, S.B.; Verma, N.; Pandurang, T.P.; Iype, E.; Kumar, D. PIFA-promoted intramolecular oxidative cyclization of pyrrolo- and indolo[1,2-a]quinoxalino-appended porphyrins: an efficient synthesis of meso, β-pyrrolo- and indolo[1,2-a]quinoxalino-fused porphyrins. Org. Biomol. Chem., 2022, 20(35), 7040-7046.
[http://dx.doi.org/10.1039/D2OB01272C] [PMID: 36043850]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy