Abstract
Aims and Background: Focusing on the low-frequency oscillation and system power loss problem in wind-thermal-bundled (WTB) transmission systems and the interaction problem due to different controllers, this study aimed to improve the low-frequency oscillation characteristics of WTB transmission system while ensuring the economy of operation and suppressing the adverse interaction between controllers.
Methods: For this purpose, a coordination and optimization strategy for a power system stabilizer (PSS), static synchronous series compensator with additional power oscillation damping controller (SSSC-POD), and static synchronous compensator with additional power oscillation damping controller (STATCOM-POD) is proposed based on multi-objective salp swarm algorithm (MSSA). The controller regulation characteristics are taken into account in the coordination method.
Results: Several designed scenarios, including changing the transmission power of the tie line and increasing wind power output, are considered in the IEEE 4-machine 2-area to test the proposed method. The power flow analysis, characteristic root analysis, and time-domain simulation are used to analyze the simulation results.
Conclusion: Simulation results demonstrate that the proposed approach can effectively suppress the low-frequency oscillation of the WTB system while reducing its net loss. The application in engineering issues for MSSA is supplemented.
Graphical Abstract
[http://dx.doi.org/10.3390/su142214829]
[http://dx.doi.org/10.1016/j.rser.2022.112111]
[http://dx.doi.org/10.1109/TPEL.2022.3189366]
[http://dx.doi.org/10.1049/joe.2018.8762]
[http://dx.doi.org/10.19635/j.cnki.csu-epsa.000557]
[http://dx.doi.org/10.3390/en15010029]
[http://dx.doi.org/10.1007/s00521-022-07575-w]
[http://dx.doi.org/10.1016/j.asoc.2023.110085]
[http://dx.doi.org/10.1016/B978-0-323-91781-0.00017-X]
[http://dx.doi.org/10.5152/electrica.2021.20088]
[http://dx.doi.org/10.1109/ISMSIT50672.2020.9254597]
[http://dx.doi.org/10.17341/gazimmfd.460529]
[http://dx.doi.org/10.1007/978-0-387-89530-7]
[http://dx.doi.org/10.1109/TPWRS.2003.811181]
[http://dx.doi.org/10.2174/2352096515666220613092804]
[http://dx.doi.org/10.22075/IJNAA.2021.5571]
[http://dx.doi.org/10.1142/S0218126617500347]
[http://dx.doi.org/10.1155/2022/5233620]
[http://dx.doi.org/10.1049/iet-gtd.2015.1002]
[http://dx.doi.org/10.1007/s42835-019-00160-7]
[http://dx.doi.org/10.2174/2352096513999200714102628]
[http://dx.doi.org/10.3969/j.issn.1006-6047.2013.10.013]
[http://dx.doi.org/10.19595/j.cnki.1000-6753.tces.2017.06.009]
[http://dx.doi.org/10.1049/gtd2.12129]
[http://dx.doi.org/10.1016/j.epsr.2020.106871]
[http://dx.doi.org/10.1016/j.advengsoft.2017.07.002]
[http://dx.doi.org/10.1016/j.ijepes.2021.107319]
[http://dx.doi.org/10.24425/aee.2021.136995]
[http://dx.doi.org/10.1109/TEC.2004.832078]
[http://dx.doi.org/10.1061/(ASCE)EY.1943-7897.0000176]
[http://dx.doi.org/10.1016/j.ijepes.2015.11.052]
[http://dx.doi.org/10.1177/0142331218780947]
[http://dx.doi.org/10.1016/j.ijepes.2022.108208]
[http://dx.doi.org/10.1016/j.ijepes.2010.10.006]
[http://dx.doi.org/10.1016/j.seta.2022.102664]
[http://dx.doi.org/10.1049/iet-gtd.2011.0296]
[http://dx.doi.org/10.1109/TPWRD.2005.852311]
[http://dx.doi.org/10.1016/j.physc.2013.08.009]
[http://dx.doi.org/10.1109/TSTE.2014.2308358]
[http://dx.doi.org/10.1016/j.ijepes.2011.01.019]