Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Nanotechnological Advancements for the Theranostic Intervention in Anaplastic Thyroid Cancer: Current Perspectives and Future Direction

Author(s): Sai Swetha Uppalapati, Lahanya Guha, Hemant Kumar and Amit Mandoli*

Volume 24, Issue 3, 2024

Published on: 04 August, 2023

Page: [245 - 270] Pages: 26

DOI: 10.2174/1568009623666230707155145

Price: $65

conference banner
Abstract

Anaplastic thyroid cancer is the rarest, most aggressive, and undifferentiated class of thyroid cancer, accounting for nearly forty percent of all thyroid cancer-related deaths. It is caused by alterations in many cellular pathways like MAPK, PI3K/AKT/mTOR, ALK, Wnt activation, and TP53 inactivation. Although many treatment strategies, such as radiation therapy and chemotherapy, have been proposed to treat anaplastic thyroid carcinoma, they are usually accompanied by concerns such as resistance, which may lead to the lethality of the patient. The emerging nanotechnology-based approaches cater the purposes such as targeted drug delivery and modulation in drug release patterns based on internal or external stimuli, leading to an increase in drug concentration at the site of the action that gives the required therapeutic action as well as modulation in diagnostic intervention with the help of dye property materials. Nanotechnological platforms like liposomes, micelles, dendrimers, exosomes, and various nanoparticles are available and are of high research interest for therapeutic intervention in anaplastic thyroid cancer. The pro gression of the disease can also be traced by using magnetic probes or radio-labeled probes and quantum dots that serve as a diagnostic intervention in anaplastic thyroid cancer.

Graphical Abstract

[1]
Williams, R.H. Textbook of endocrinology. Acad. Med., 1962, 37(5), 527.
[2]
Morris, L.G.T.; Sikora, A.G.; Tosteson, T.D.; Davies, L. The increasing incidence of thyroid cancer: the influence of access to care. Thyroid, 2013, 23(7), 885-891.
[http://dx.doi.org/10.1089/thy.2013.0045] [PMID: 23517343]
[3]
Hundahl, S.A.; Fleming, I.D.; Fremgen, A.M.; Menck, H.R. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985-1995. Cancer, 1998, 83(12), 2638-2648.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19981215)83:12<2638:AID-CNCR31>3.0.CO;2-1] [PMID: 9874472]
[4]
Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Thun, M. J. Cancer statistics. CA Cancer J. Clin., 2009, 59(4), 225-249.
[http://dx.doi.org/10.3322/caac.20006] [PMID: 19474385]
[5]
Kebebew, E.; Greenspan, F.S.; Clark, O.H.; Woeber, K.A.; McMillan, A. Anaplastic thyroid carcinoma. Cancer, 2005, 103(7), 1330-1335.
[http://dx.doi.org/10.1002/cncr.20936] [PMID: 15739211]
[6]
Kihara, M.; Miyauchi, A.; Yamauchi, A.; Yokomise, H. Prognostic factors of anaplastic thyroid carcinoma. Surg. Today, 2004, 34(5), 394-398.
[http://dx.doi.org/10.1007/s00595-003-2737-6] [PMID: 15108075]
[7]
Tan, R.K.; Finley, R.K., III; Driscoll, D.; Bakamjian, V.; Hicks, W.L., Jr; Shedd, D.P. Anaplastic carcinoma of the thyroid: A 24-year experience. Head Neck, 1995, 17(1), 41-48.
[http://dx.doi.org/10.1002/hed.2880170109] [PMID: 7883548]
[8]
Ain, K.B. Anaplastic thyroid carcinoma: behavior, biology, and therapeutic approaches. Thyroid, 1998, 8(8), 715-726.
[http://dx.doi.org/10.1089/thy.1998.8.715] [PMID: 9737368]
[9]
Venkatesh, Y.S.S.; Ordonez, N.G.; Schultz, P.N.; Hickey, R.C.; Goepfert, H.; Samaan, N.A. Anaplastic carcinoma of the thyroid: A clinicopathologic study of 121 cases. Cancer, 1990, 66(2), 321-330.
[http://dx.doi.org/10.1002/1097-0142(19900715)66:2<321:AID-CNCR2820660221>3.0.CO;2-A] [PMID: 1695118]
[10]
Rossi, R.; Cady, B.; Meissner, W.A.; Sedgwick, C.E.; Werber, J. Prognosis of undifferentiated carcinoma and lymphoma of the thyroid. Am. J. Surg., 1978, 135(4), 589-596.
[http://dx.doi.org/10.1016/0002-9610(78)90042-9] [PMID: 637206]
[11]
Besic, N.; Auersperg, M.; Us-Krasovec, M.; Golouh, R.; Frkovic-Grazio, S.; Vodnik, A. Effect of primary treatment on survival in anaplastic thyroid carcinoma. Eur. J. Surg. Oncol., 2001, 27(3), 260-264.
[http://dx.doi.org/10.1053/ejso.2000.1098] [PMID: 11373102]
[12]
Nikiforova, M.N.; Nikiforov, Y.E. Molecular diagnostics and predictors in thyroid cancer. Thyroid, 2009, 19(12), 1351-1361.
[http://dx.doi.org/10.1089/thy.2009.0240] [PMID: 19895341]
[13]
Bronner, M.P. LiVolsi, V.A. Spindle cell squamous carcinoma of the thyroid: an unusual anaplastic tumor associated with tall cell papillary cancer. Mod. Pathol., 1991, 4(5), 637-643.
[PMID: 1722043]
[14]
Xiong, L.; Lin, X.M.; Nie, J.H.; Ye, H.S.; Liu, J. Resveratrol and its nanoparticle suppress doxorubicin/docetaxel-resistant anaplastic thyroid cancer cells in vitro and in vivo. Nanotheranostics, 2021, 5(2), 143-154.
[http://dx.doi.org/10.7150/ntno.53844] [PMID: 33457193]
[15]
Smallridge, RC; Marlow, LA; Copland, J.A. Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocr. Relat. Cancer, 2008, 16(1), 17-44.
[16]
Saini, S.; Tulla, K.; Maker, A.V.; Burman, K.D.; Prabhakar, B.S. Therapeutic advances in anaplastic thyroid cancer: a current perspective. Mol. Cancer, 2018, 17(1), 154.
[http://dx.doi.org/10.1186/s12943-018-0903-0] [PMID: 30352606]
[17]
Hartshorn, C.M.; Bradbury, M.S.; Lanza, G.M.; Nel, A.E.; Rao, J.; Wang, A.Z.; Wiesner, U.B.; Yang, L.; Grodzinski, P. Nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano, 2018, 12(1), 24-43.
[http://dx.doi.org/10.1021/acsnano.7b05108] [PMID: 29257865]
[18]
Jiang, N.; Dai, Q.; Su, X.; Fu, J.; Feng, X.; Peng, J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol. Biol. Rep., 2020, 47(6), 4587-4629.
[http://dx.doi.org/10.1007/s11033-020-05435-1] [PMID: 32333246]
[19]
Martini, M.; De Santis, M.C.; Braccini, L.; Gulluni, F.; Hirsch, E. PI3K/AKT signaling pathway and cancer: an updated review. Ann. Med., 2014, 46(6), 372-383.
[http://dx.doi.org/10.3109/07853890.2014.912836] [PMID: 24897931]
[20]
Wu, G.; Mambo, E.; Guo, Z.; Hu, S.; Huang, X.; Gollin, S.M.; Trink, B.; Ladenson, P.W.; Sidransky, D.; Xing, M. Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors. J. Clin. Endocrinol. Metab., 2005, 90(8), 4688-4693.
[http://dx.doi.org/10.1210/jc.2004-2281] [PMID: 15928251]
[21]
Bartholomeusz, C.; Gonzalez-Angulo, A.M. Targeting the PI3K signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 121-130.
[http://dx.doi.org/10.1517/14728222.2011.644788] [PMID: 22239433]
[22]
Hou, P.; Ji, M.; Xing, M. Association of PTEN gene methylation with genetic alterations in the phosphatidylinositol 3-kinase/AKT signaling pathway in thyroid tumors. Cancer, 2008, 113(9), 2440-2447.
[http://dx.doi.org/10.1002/cncr.23869] [PMID: 18831514]
[23]
Murugan, A.K.; Xing, M. Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res., 2011, 71(13), 4403-4411.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4041] [PMID: 21596819]
[24]
Xing, M.M.; Kannan, M.A. Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. U.S. Patent 9150929B2, 2015.
[25]
Garcia-Rostan, G. Camp, R.L.; Herrero, A.; Carcangiu, M.L.; Rimm, D.L.; Tallini, G. β-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am. J. Pathol., 2001, 158(3), 987-996.
[http://dx.doi.org/10.1016/S0002-9440(10)64045-X] [PMID: 11238046]
[26]
Liu, Z.; Hou, P.; Ji, M.; Guan, H.; Studeman, K.; Jensen, K.; Vasko, V.; El-Naggar, A.K.; Xing, M. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J. Clin. Endocrinol. Metab., 2008, 93(8), 3106-3116.
[http://dx.doi.org/10.1210/jc.2008-0273] [PMID: 18492751]
[27]
Nikiforov, Y.E. Molecular diagnostics of thyroid tumors. Arch. Pathol. Lab. Med., 2011, 135(5), 569-577.
[http://dx.doi.org/10.5858/2010-0664-RAIR.1] [PMID: 21526955]
[28]
Zhang, Z.; Liu, D.; Murugan, A.K.; Liu, Z.; Xing, M. Histone deacetylation of NIS promoter underlies BRAF V600E-promoted NIS silencing in thyroid cancer. Endocr. Relat. Cancer, 2014, 21(2), 161-173.
[http://dx.doi.org/10.1530/ERC-13-0399] [PMID: 24243688]
[29]
Zeng, X.; Huang, H.; Tamai, K.; Zhang, X.; Harada, Y.; Yokota, C.; Almeida, K.; Wang, J.; Doble, B.; Woodgett, J.; Wynshaw-Boris, A.; Hsieh, J.C.; He, X. Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development, 2008, 135(2), 367-375.
[http://dx.doi.org/10.1242/dev.013540] [PMID: 18077588]
[30]
Pandey, M.K.; DeGrado, T.R. Glycogen synthase kinase-3 (GSK-3)-targeted therapy and imaging. Theranostics, 2016, 6(4), 571-593.
[http://dx.doi.org/10.7150/thno.14334] [PMID: 26941849]
[31]
Morin, P.J.; Sparks, A.B.; Korinek, V.; Barker, N.; Clevers, H.; Vogelstein, B.; Kinzler, K.W. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science, 1997, 275(5307), 1787-1790.
[http://dx.doi.org/10.1126/science.275.5307.1787] [PMID: 9065402]
[32]
Rubinfeld, B.; Robbins, P.; El-Gamil, M.; Albert, I.; Porfiri, E.; Polakis, P. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science, 1997, 275(5307), 1790-1792.
[http://dx.doi.org/10.1126/science.275.5307.1790] [PMID: 9065403]
[33]
Garcia-Rostan, G.; Tallini, G.; Herrero, A.; D’Aquila, T.G.; Carcangiu, M.L.; Rimm, D.L. Frequent mutation and nuclear localization of β-catenin in anaplastic thyroid carcinoma. Cancer Res., 1999, 59(8), 1811-1815.
[PMID: 10213482]
[34]
Donghi, R.; Longoni, A.; Pilotti, S.; Michieli, P.; Della Porta, G.; Pierotti, M.A. Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J. Clin. Invest., 1993, 91(4), 1753-1760.
[http://dx.doi.org/10.1172/JCI116385] [PMID: 8473515]
[35]
Fagin, J.A.; Matsuo, K.; Karmakar, A.; Chen, D.L.; Tang, S.H.; Koeffler, H.P. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J. Clin. Invest., 1993, 91(1), 179-184.
[http://dx.doi.org/10.1172/JCI116168] [PMID: 8423216]
[36]
Agarwal, A.; Rashid, M.; Pradhan, R.; George, N.; Kumari, N.; Sabaretnam, M.; Chand, G.; Mishra, A.; Agarwal, G.; Mishra, S. Genetic alterations in anaplastic thyroid carcinoma. Indian J. Endocrinol. Metab., 2019, 23(4), 480-485.
[http://dx.doi.org/10.4103/ijem.IJEM_321_19] [PMID: 31741910]
[37]
Li, Z.; Zhang, Y.; Wang, R.; Zou, K.; Zou, L. Genetic alterations in anaplastic thyroid carcinoma and targeted therapies. (Review) Exp. Ther. Med., 2019, 18(4), 2369-2377.
[http://dx.doi.org/10.3892/etm.2019.7869] [PMID: 31555347]
[38]
Smallridge, R.C.; Copland, J.A. Anaplastic thyroid carcinoma: pathogenesis and emerging therapies. Clin. Oncol. (R. Coll. Radiol.), 2010, 22(6), 486-497.
[http://dx.doi.org/10.1016/j.clon.2010.03.013] [PMID: 20418080]
[39]
Kwon, J.; Kim, B.H.; Jung, H.W.; Besic, N.; Sugitani, I.; Wu, H.G. The prognostic impacts of postoperative radiotherapy in the patients with resected anaplastic thyroid carcinoma: A systematic review and meta-analysis. Eur. J. Cancer, 2016, 59, 34-45.
[http://dx.doi.org/10.1016/j.ejca.2016.02.015] [PMID: 27014798]
[40]
Pezzi, T.A.; Mohamed, A.S.R.; Sheu, T.; Blanchard, P.; Sandulache, V.C.; Lai, S.Y.; Cabanillas, M.E.; Williams, M.D.; Pezzi, C.M.; Lu, C.; Garden, A.S.; Morrison, W.H.; Rosenthal, D.I.; Fuller, C.D.; Gunn, G.B. Radiation therapy dose is associated with improved survival for unresected anaplastic thyroid carcinoma: Outcomes from the National Cancer Data Base. Cancer, 2017, 123(9), 1653-1661.
[http://dx.doi.org/10.1002/cncr.30493] [PMID: 28026871]
[41]
Tennvall, J.; Lundell, G.; Hallquist, A.; Wahlberg, P.; Wallin, G.; Tibblin, S. Combined doxorubicin, hyperfractionated radiotherapy, and surgery in anaplastic thyroid carcinoma. Report on two protocols. Cancer, 1994, 74(4), 1348-1354.
[http://dx.doi.org/10.1002/1097-0142(19940815)74:4<1348:AID-CNCR2820740427>3.0.CO;2-D] [PMID: 8055459]
[42]
Smanik, P.A.; Liu, Q.; Furminger, T.L.; Ryu, K.; Xing, S.; Mazzaferri, E.L.; Jhiang, S.M. Cloning of the human sodium lodide symporter. Biochem. Biophys. Res. Commun., 1996, 226(2), 339-345.
[http://dx.doi.org/10.1006/bbrc.1996.1358] [PMID: 8806637]
[43]
Dai, G.; Levy, O.; Carrasco, N. Cloning and characterization of the thyroid iodide transporter. Nature, 1996, 379(6564), 458-460.
[http://dx.doi.org/10.1038/379458a0] [PMID: 8559252]
[44]
Tavares, C.; Coelho, M.J.; Eloy, C.; Melo, M.; da Rocha, A.G.; Pestana, A.; Batista, R.; Ferreira, L.B.; Rios, E.; Selmi-Ruby, S.; Cavadas, B.; Pereira, L.; Sobrinho Simões, M.; Soares, P. NIS expression in thyroid tumors, relation with prognosis clinicopathological and molecular features. Endocr. Connect., 2018, 7(1), 78-90.
[http://dx.doi.org/10.1530/EC-17-0302] [PMID: 29298843]
[45]
Schmohl, K.A.; Dolp, P.; Schug, C.; Knoop, K.; Klutz, K.; Schwenk, N.; Bartenstein, P.; Nelson, P.J.; Ogris, M.; Wagner, E.; Spitzweg, C. Reintroducing the sodium-iodide symporter to anaplastic thyroid carcinoma. Thyroid, 2017, 27(12), 1534-1543.
[http://dx.doi.org/10.1089/thy.2017.0290] [PMID: 29032724]
[47]
Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol., 2008, 8(1), 59-73.
[http://dx.doi.org/10.1038/nri2216] [PMID: 18097448]
[48]
Dadwal, A.; Baldi, A.; Kumar Narang, R. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46, 295-305.
[http://dx.doi.org/10.1080/21691401.2018.1457039]
[49]
Palazzolo, S.; Bayda, S.; Hadla, M.; Caligiuri, I.; Corona, G.; Toffoli, G.; Rizzolio, F. The clinical translation of organic nanomaterials for cancer therapy: A focus on polymeric nanoparticles, micelles, liposomes and exosomes. Curr. Med. Chem., 2018, 25(34), 4224-4268.
[http://dx.doi.org/10.2174/0929867324666170830113755] [PMID: 28875844]
[50]
Saini, R.; Saini, S.; Sharma, S. Nanotechnology: The future medicine. J. Cutan. Aesthet. Surg., 2010, 3(1), 32-33.
[http://dx.doi.org/10.4103/0974-2077.63301] [PMID: 20606992]
[51]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[52]
Kalyane, D.; Raval, N.; Maheshwari, R.; Tambe, V.; Kalia, K.; Tekade, R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C, 2019, 98, 1252-1276.
[http://dx.doi.org/10.1016/j.msec.2019.01.066] [PMID: 30813007]
[53]
Yang, Q.; Jones, S.W.; Parker, C.L.; Zamboni, W.C.; Bear, J.E.; Lai, S.K. Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation. Mol. Pharm., 2014, 11(4), 1250-1258.
[http://dx.doi.org/10.1021/mp400703d] [PMID: 24521246]
[54]
Zang, X.; Zhao, X.; Hu, H.; Qiao, M.; Deng, Y.; Chen, D. Nanoparticles for tumor immunotherapy. Eur. J. Pharm. Biopharm., 2017, 115, 243-256.
[http://dx.doi.org/10.1016/j.ejpb.2017.03.013] [PMID: 28323111]
[55]
Venturoli, D.; Rippe, B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am. J. Physiol. Renal Physiol., 2005, 288(4), F605-F613.
[http://dx.doi.org/10.1152/ajprenal.00171.2004] [PMID: 15753324]
[56]
Zhang, W.; Shen, J.; Su, H.; Mu, G.; Sun, J.H.; Tan, C.P.; Liang, X.J.; Ji, L.N.; Mao, Z.W. Co-delivery of cisplatin prodrug and chlorin e6 by mesoporous silica nanoparticles for chemo-photodynamic combination therapy to combat drug resistance. ACS Appl. Mater. Interfaces, 2016, 8(21), 13332-13340.
[http://dx.doi.org/10.1021/acsami.6b03881] [PMID: 27164222]
[57]
Yao, Y.; Su, Z.; Liang, Y.; Zhang, N. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery. Int. J. Nanomedicine, 2015, 10, 6185-6197.
[PMID: 26491291]
[58]
Yang, R.; Chen, H.; Guo, D.; Dong, Y.; Miller, D.D.; Li, W.; Mahato, R.I. Polymeric micellar delivery of novel microtubule destabilizer and hedgehog signaling inhibitor for treating chemoresistant prostate cancer. J. Pharmacol. Exp. Ther., 2019, 370(3), 864-875.
[http://dx.doi.org/10.1124/jpet.119.256628] [PMID: 30996033]
[59]
Wang, J.; Xu, W.; Li, S.; Qiu, H.; Li, Z.; Wang, C.; Wang, X.; Ding, J. Polylactide-cholesterol stereocomplex micelle encapsulating chemotherapeutic agent for improved antitumor efficacy and safety. J. Biomed. Nanotechnol., 2018, 14(12), 2102-2113.
[http://dx.doi.org/10.1166/jbn.2018.2624] [PMID: 30305217]
[60]
Zhao, L.; Xiao, C. wang, L.; Gai, G.; Ding, J. Glucose-sensitive polymer nanoparticles for self-regulated drug delivery. Chem. Commun. (Camb.), 2016, 52(49), 7633-7652.
[http://dx.doi.org/10.1039/C6CC02202B] [PMID: 27194104]
[61]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[62]
Gabizon, A.; Chisin, R.; Amselem, S.; Druckmann, S.; Cohen, R.; Goren, D.; Fromer, I.; Peretz, T.; Sulkes, A.; Barenholz, Y. Pharmacokinetic and imaging studies in patients receiving a formulation of liposome-associated adriamycin. Br. J. Cancer, 1991, 64(6), 1125-1132.
[http://dx.doi.org/10.1038/bjc.1991.476] [PMID: 1764376]
[63]
Alexander-Bryant, A.A.; Vanden Berg-Foels, W.S.; Wen, X. Bioengineering strategies for designing targeted cancer therapies. Adv. Cancer Res., 2013, 118, 1-59.
[http://dx.doi.org/10.1016/B978-0-12-407173-5.00002-9] [PMID: 23768509]
[64]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[65]
Koren, E.; Apte, A.; Jani, A.; Torchilin, V.P. Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J. Control. Release, 2012, 160(2), 264-273.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.002] [PMID: 22182771]
[66]
Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond.), 2013, 8(9), 1509-1528.
[http://dx.doi.org/10.2217/nnm.13.118] [PMID: 23914966]
[67]
Cristiano, M.C.; Cosco, D.; Celia, C.; Tudose, A.; Mare, R.; Paolino, D.; Fresta, M. Anticancer activity of all- trans retinoic acid-loaded liposomes on human thyroid carcinoma cells. Colloids Surf. B Biointerfaces, 2017, 150, 408-416.
[http://dx.doi.org/10.1016/j.colsurfb.2016.10.052] [PMID: 27829536]
[68]
Moscetti, L.; Padalino, D.; Capomolla, E.; Nelli, F.; Pollera, C.F. A partial response in anaplastic carcinoma of the thyroid with liposomal doxorubicin. J. Exp. Clin. Cancer Res., 2005, 24(1), 151-154.
[PMID: 15943045]
[69]
Celano, M.; Calvagno, M.G.; Bulotta, S.; Paolino, D.; Arturi, F.; Rotiroti, D.; Filetti, S.; Fresta, M.; Russo, D. Cytotoxic effects of Gemcitabine-loaded liposomes in human anaplastic thyroid carcinoma cells. BMC Cancer, 2004, 4(1), 63.
[http://dx.doi.org/10.1186/1471-2407-4-63] [PMID: 15363094]
[70]
Celia, C.; Grazia Calvagno, M.; Paolino, D.; Bulotta, S.; Anna Ventura, C.; Russo, D.; Fresta, M. Improved in vitro anti-tumoral activity, intracellular uptake and apoptotic induction of gemcitabine-loaded pegylated unilamellar liposomes. J. Nanosci. Nanotechnol., 2008, 8(4), 2102-2113.
[http://dx.doi.org/10.1166/jnn.2008.065] [PMID: 18572621]
[71]
Ravera, S.; Reyna-Neyra, A.; Ferrandino, G.; Amzel, L.M.; Carrasco, N. The sodium/iodide symporter (NIS): Molecular physiology and preclinical and clinical applications. Annu. Rev. Physiol., 2017, 79(1), 261-289.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034125] [PMID: 28192058]
[72]
Li, Q.; Zhang, L.; Lang, J.; Tan, Z.; Feng, Q.; Zhu, F. Lipid-peptide-mRNA nanoparticles augment radioiodine uptake in anaplastic thyroid cancer. Adv. Sci., 2022, 2022, 2204334.
[PMID: 36453580]
[73]
Celano, M.; Schenone, S.; Cosco, D.; Navarra, M.; Puxeddu, E.; Racanicchi, L.; Brullo, C.; Varano, E.; Alcaro, S.; Ferretti, E.; Botta, G.; Filetti, S.; Fresta, M.; Botta, M.; Russo, D. Cytotoxic effects of a novel pyrazolopyrimidine derivative entrapped in liposomes in anaplastic thyroid cancer cells in vitro and in xenograft tumors in vivo. Endocr. Relat. Cancer, 2008, 15(2), 499-510.
[http://dx.doi.org/10.1677/ERC-07-0243] [PMID: 18509002]
[74]
Maroof, H.; Islam, F.; Ariana, A.; Gopalan, V.; Lam, A.K. The roles of microRNA-34b-5p in angiogenesis of thyroid carcinoma. Endocrine, 2017, 58(1), 153-166.
[http://dx.doi.org/10.1007/s12020-017-1393-3] [PMID: 28840508]
[75]
Maroof, H.; Islam, F.; Dong, L.; Ajjikuttira, P.; Gopalan, V.; McMillan, N.; Lam, A. Liposomal delivery of miR-34b-5p induced cancer cell death in thyroid carcinoma. Cells, 2018, 7(12), 265.
[http://dx.doi.org/10.3390/cells7120265] [PMID: 30544959]
[76]
Hsieh, Y.S.; Yang, S.F.; Sethi, G.; Hu, D.N. Natural bioactives in cancer treatment and prevention. Biomaterialsed Res. Int., 2015, 2015, 182835.
[77]
Bishayee, A.; Sethi, G. Bioactive natural products in cancer prevention and therapy: Progress and promise. Seminars in cancer biology; Elsevier, 2016, pp. 1-3.
[http://dx.doi.org/10.1016/j.semcancer.2016.08.006]
[78]
Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J., 2016, 15(1), 99.
[http://dx.doi.org/10.1186/s12937-016-0217-2] [PMID: 27903278]
[79]
Mahale, N.B.; Thakkar, P.D.; Mali, R.G.; Walunj, D.R.; Chaudhari, S.R. Niosomes: Novel sustained release nonionic stable vesicular systems - An overview. Adv. Colloid Interface Sci., 2012, 183-184, 46-54.
[http://dx.doi.org/10.1016/j.cis.2012.08.002] [PMID: 22947187]
[80]
Bartelds, R.; Nematollahi, M.H.; Pols, T.; Stuart, M.C.A.; Pardakhty, A.; Asadikaram, G.; Poolman, B. Niosomes, an alternative for liposomal delivery. PLoS One, 2018, 13(4), e0194179.
[http://dx.doi.org/10.1371/journal.pone.0194179] [PMID: 29649223]
[81]
Ge, X.; Wei, M.; He, S.; Yuan, W.E. Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Application in Drug Delivery. Pharmaceutics, 2019, 11(2), 55.
[http://dx.doi.org/10.3390/pharmaceutics11020055] [PMID: 30700021]
[82]
Hosseinzadeh, S.; Nazari, H.; Esmaeili, E.; Hatamie, S. Polyethylene glycol triggers the anti-cancer impact of curcumin nanoparticles in sw-1736 thyroid cancer cells. J. Mater. Sci. Mater. Med., 2021, 32(9), 112.
[http://dx.doi.org/10.1007/s10856-021-06593-9] [PMID: 34453618]
[83]
Shao, N.; Su, Y.; Hu, J.; Zhang, J.; Zhang, H.; Cheng, Y. Comparison of generation 3 polyamidoamine dendrimer and generation 4 polypropylenimine dendrimer on drug loading, complex structure, release behavior, and cytotoxicity. Int. J. Nanomedicine, 2011, 6, 3361-3372.
[PMID: 22267921]
[84]
Sharma, A.K.; Gothwal, A.; Kesharwani, P.; Alsaab, H.; Iyer, A.K.; Gupta, U. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov. Today, 2017, 22(2), 314-326.
[http://dx.doi.org/10.1016/j.drudis.2016.09.013] [PMID: 27671487]
[85]
Biricova, V.; Laznickova, A. Dendrimers: Analytical characterization and applications. Bioorg. Chem., 2009, 37(6), 185-192.
[http://dx.doi.org/10.1016/j.bioorg.2009.07.006] [PMID: 19703699]
[86]
Tomalia, D.A. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic organic chemistry. Aldrichim Acta, 2004, 37(2), 39-57.
[87]
Tomalia, D.A.; Christensen, J.B.; Boas, U. Dendrimers, dendrons, and dendritic polymers: discovery, applications, and the future; Cambridge University Press, 2012.
[http://dx.doi.org/10.1017/CBO9781139048859]
[88]
Wadhwa, S.; Wadhwa, P.; Dinda, A.K.; Gupta, N.P. Differential expression of potassium ion channels in human renal cell carcinoma. Int. Urol. Nephrol., 2009, 41(2), 251-257.
[http://dx.doi.org/10.1007/s11255-008-9459-z] [PMID: 18777199]
[89]
Masi, A.; Becchetti, A.; Restano-Cassulini, R.; Polvani, S.; Hofmann, G.; Buccoliero, A.M.; Paglierani, M.; Pollo, B.; Taddei, G.L.; Gallina, P.; Di Lorenzo, N.; Franceschetti, S.; Wanke, E.; Arcangeli, A. hERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines. Br. J. Cancer, 2005, 93(7), 781-792.
[http://dx.doi.org/10.1038/sj.bjc.6602775] [PMID: 16175187]
[90]
Pillozzi, S.; Brizzi, M.F.; Balzi, M.; Crociani, O.; Cherubini, A.; Guasti, L.; Bartolozzi, B.; Becchetti, A.; Wanke, E.; Bernabei, P.A.; Olivotto, M.; Pegoraro, L.; Arcangeli, A. HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia, 2002, 16(9), 1791-1798.
[http://dx.doi.org/10.1038/sj.leu.2402572] [PMID: 12200695]
[91]
Wang, Y.; Zhang, Y.; Yang, L.; Cai, B.; Li, J.; Zhou, Y.; Yin, L.; Yang, L.; Yang, B.F.; Lu, Y.J. Arsenic trioxide induces the apoptosis of human breast cancer MCF-7 cells through activation of caspase-3 and inhibition of HERG channels. Exp. Ther. Med., 2011, 2(3), 481-486.
[http://dx.doi.org/10.3892/etm.2011.224] [PMID: 22977528]
[92]
Pardo, L.A.; Contreras-Jurado, C.; Zientkowska, M.; Alves, F.; Stühmer, W. Role of voltage-gated potassium channels in cancer. J. Membr. Biol., 2005, 205(3), 115-124.
[http://dx.doi.org/10.1007/s00232-005-0776-1] [PMID: 16362499]
[93]
Li, G.; Wang, S. Hu; Yin; Li; Zhang; Huang, A novel dendritic nanocarrier of polyamidoamine-polyethylene glycol-cyclic RGD for “smart” small interfering RNA delivery and in vitro antitumor effects by human ether-à-go-go-related gene silencing in anaplastic thyroid carcinoma cells. Int. J. Nanomedicine, 2013, 8, 1293-1306.
[http://dx.doi.org/10.2147/IJN.S41555] [PMID: 23569377]
[94]
Hanafy, N.; El-Kemary, M.; Leporatti, S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers (Basel), 2018, 10(7), 238.
[http://dx.doi.org/10.3390/cancers10070238] [PMID: 30037052]
[95]
Torchilin, V.P. Micellar nanocarriers: pharmaceutical perspectives. Pharm. Res., 2006, 24(1), 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[96]
Gao, Z.; Lukyanov, A.N.; Singhal, A.; Torchilin, V.P. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett., 2002, 2(9), 979-982.
[http://dx.doi.org/10.1021/nl025604a]
[97]
Nie, S.; Xing, Y.; Kim, G.J.; Simons, J.W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng., 2007, 9(1), 257-288.
[http://dx.doi.org/10.1146/annurev.bioeng.9.060906.152025] [PMID: 17439359]
[98]
Carstens, M.G.; Rijcken, C.J.F.; van Nostrum, C.F.; Hennink, W.E. Pharmaceutical Micelles: Combining Longevity, Stability, and Stimuli Sensitivity. In: Multifunctional Pharmaceutical Nanocarriers; Springer: New York, NY, 2008.
[http://dx.doi.org/10.1007/978-0-387-76554-9_9]
[99]
Hussein, Y.; Youssry, M. Polymeric micelles of biodegradable diblock copolymers: enhanced encapsulation of hydrophobic drugs. Materials (Basel), 2018, 11(5), 688.
[http://dx.doi.org/10.3390/ma11050688] [PMID: 29702593]
[100]
Yin, Q.; Shen, J.; Zhang, Z.; Yu, H.; Li, Y. Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1699-1715.
[http://dx.doi.org/10.1016/j.addr.2013.04.011] [PMID: 23611952]
[101]
Yang, X.; Zhang, L.; Zheng, L.; Wang, Y.; Gao, L.; Luo, R.; Li, X.; Gong, C.; Luo, H.; Wu, Q. An in situ spontaneously forming micelle-hydrogel system with programmable release for the sequential therapy of anaplastic thyroid cancer. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(8), 1236-1249.
[http://dx.doi.org/10.1039/D1TB01904J] [PMID: 35119450]
[102]
Li, S.; Dong, S.; Xu, W.; Jiang, Y.; Li, Z. Polymer nanoformulation of sorafenib and all-trans retinoic acid for synergistic inhibition of thyroid cancer. Front. Pharmacol., 2020, 10, 1676.https://www.frontiersin.org/articles/10.3389/fphar.2019.01676
[http://dx.doi.org/10.3389/fphar.2019.01676] [PMID: 32116677]
[103]
Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci., 2020, 7, 193.https://www.frontiersin.org/articles/10.3389/fmolb.2020.00193
[http://dx.doi.org/10.3389/fmolb.2020.00193] [PMID: 32974385]
[104]
Taurin, S.; Nehoff, H.; Greish, K. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? J. Control. Release, 2012, 164(3), 265-275.
[http://dx.doi.org/10.1016/j.jconrel.2012.07.013] [PMID: 22800576]
[105]
Decuzzi, P.; Pasqualini, R.; Arap, W.; Ferrari, M. Intravascular delivery of particulate systems: does geometry really matter? Pharm. Res., 2009, 26(1), 235-243.
[http://dx.doi.org/10.1007/s11095-008-9697-x] [PMID: 18712584]
[106]
Amaral, M.; Charmier, A.J.; Afonso, R.A.; Catarino, J.; Faísca, P.; Carvalho, L.; Ascensão, L.; Coelho, J.M.P.; Gaspar, M.M.; Reis, C.P. Gold-based nanoplataform for the treatment of anaplastic thyroid carcinoma: A step forward. Cancers (Basel), 2021, 13(6), 1242.
[http://dx.doi.org/10.3390/cancers13061242] [PMID: 33808984]
[107]
Cavalli, R.; Bisazza, A.; Trotta, M.; Argenziano, M.; Lembo, D.; Civra, A.; Donalisio, M. New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization. Int. J. Nanomedicine, 2012, 7, 3309-3318.
[http://dx.doi.org/10.2147/IJN.S30912] [PMID: 22802689]
[108]
Gao, Z.; Kennedy, A.M.; Christensen, D.A.; Rapoport, N.Y. Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics, 2008, 48(4), 260-270.
[http://dx.doi.org/10.1016/j.ultras.2007.11.002] [PMID: 18096196]
[109]
Horie, S.; Watanabe, Y.; Ono, M.; Mori, S.; Kodama, T. Evaluation of antitumor effects following tumor necrosis factor-α gene delivery using nanobubbles and ultrasound. Cancer Sci., 2011, 102(11), 2082-2089.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02056.x] [PMID: 21824220]
[110]
Wang, Y.; Li, X.; Zhou, Y.; Huang, P.; Xu, Y. Preparation of nanobubbles for ultrasound imaging and intracelluar drug delivery. Int. J. Pharm., 2010, 384(1-2), 148-153.
[http://dx.doi.org/10.1016/j.ijpharm.2009.09.027] [PMID: 19781609]
[111]
Zhou, M.; Chen, Y.; Adachi, M.; Wen, X.; Erwin, B.; Mawlawi, O.; Lai, S.Y.; Li, C. Single agent nanoparticle for radiotherapy and radio-photothermal therapy in anaplastic thyroid cancer. Biomaterials, 2015, 57, 41-49.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.013] [PMID: 25913249]
[112]
Marano, F.; Argenziano, M.; Frairia, R.; Adamini, A.; Bosco, O.; Rinella, L.; Fortunati, N.; Cavalli, R.; Catalano, M.G. Doxorubicin-loaded nanobubbles combined with extracorporeal shock waves: Basis for a new drug delivery tool in anaplastic thyroid cancer. Thyroid, 2016, 26(5), 705-716.
[http://dx.doi.org/10.1089/thy.2015.0342] [PMID: 26906083]
[113]
Kwon, S.; Singh, R.K.; Perez, R.A.; Abou Neel, E.A.; Kim, H.W.; Chrzanowski, W. Silica-based mesoporous nanoparticles for controlled drug delivery. J. Tissue Eng., 2013, 4.
[http://dx.doi.org/10.1177/2041731413503357] [PMID: 24020012]
[114]
Han, X.; Xu, X.; Tang, Y.; Zhu, F.; Tian, Y.; Liu, W.; He, D.; Lu, G.; Gu, Y.; Wang, S. BSA-Stabilized Mesoporous Organosilica Nanoparticles Reversed Chemotherapy Resistance of Anaplastic Thyroid Cancer by Increasing Drug Uptake and Reducing Cellular Efflux. Front. Mol. Biosci., 2020, 7, 610084.https://www.frontiersin.org/article/10.3389/fmolb.2020.610084
[http://dx.doi.org/10.3389/fmolb.2020.610084] [PMID: 33344508]
[115]
Riela, S.; Massaro, M.; Colletti, C.G.; Bommarito, A.; Giordano, C.; Milioto, S.; Noto, R.; Poma, P.; Lazzara, G. Development and characterization of co-loaded curcumin/triazole-halloysite systems and evaluation of their potential anticancer activity. Int. J. Pharm., 2014, 475(1-2), 613-623.
[http://dx.doi.org/10.1016/j.ijpharm.2014.09.019] [PMID: 25223492]
[116]
Gangadaran, P.; Hong, C.M.; Ahn, B.C. An update on in vivo imaging of extracellular vesicles as drug delivery vehicles. Front. Pharmacol., 2018, 9, 169.
[http://dx.doi.org/10.3389/fphar.2018.00169] [PMID: 29541030]
[117]
Munteanu, R.; Onaciu, A.; Moldovan, C.; Zimta, A.A.; Gulei, D.; Paradiso, A.; Lazar, V.; Berindan-Neagoe, I. Adipocyte-based cell therapy in oncology: The role of cancer-associated adipocytes and their reinterpretation as delivery platforms. Pharmaceutics, 2020, 12(5), 402.
[http://dx.doi.org/10.3390/pharmaceutics12050402] [PMID: 32354024]
[118]
V de. A.F. Exosomes derived from mesenchymal stem cells enhance radiotherapy-induced cell death in tumor and metastatic tumor foci. Molecular cancer, 2018, 17(1), 30111323.
[119]
Lin, J.; Li, J.; Huang, B.; Liu, J.; Chen, X.; Chen, XM Exosomes: novel biomarkers for clinical diagnosis. Sci World J., 2015, 2015, 657086.
[http://dx.doi.org/10.1155/2015/657086]
[120]
Wang, C.; Li, N.; Li, Y.; Hou, S.; Zhang, W.; Meng, Z.; Wang, S.; Jia, Q.; Tan, J.; Wang, R.; Zhang, R. Engineering a HEK-293T exosome-based delivery platform for efficient tumor-targeting chemotherapy/internal irradiation combination therapy. J. Nanobiotechnology, 2022, 20(1), 247.
[http://dx.doi.org/10.1186/s12951-022-01462-1] [PMID: 35642064]
[121]
Wang, M.H.; Ye, Y.; Zhang, M.; Zhou, B.R.; Wang, J.N.; Song, Y.N. Exosome-mediated delivery of SCD-1 siRNA promoted the death of anaplastic thyroid carcinoma cells via regulating ROS level. Clin. Transl. Oncol., 2021, 24(2), 288-296.
[PMID: 34287816]
[122]
Gangadaran, P.; Li, X.J.; Kalimuthu, S.; Min, O.J.; Hong, C.M.; Rajendran, R.L.; Lee, H.W.; Zhu, L.; Baek, S.H.; Jeong, S.Y.; Lee, S.W.; Lee, J.; Ahn, B.C. New optical imaging reporter-labeled anaplastic thyroid cancer-derived extracellular vesicles as a platform for in vivo tumor targeting in a mouse model. Sci. Rep., 2018, 8(1), 13509.
[http://dx.doi.org/10.1038/s41598-018-31998-y] [PMID: 30201988]
[123]
Schmidt, C.W. CT scans: balancing health risks and medical benefits. Environ. Health Perspect., 2012, 120(3), A118-A121.
[http://dx.doi.org/10.1289/ehp.120-a118] [PMID: 22382352]
[124]
Yu, B.; Tai, H.C.; Xue, W.; Lee, L.J.; Lee, R.J. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol. Membr. Biol., 2010, 27(7), 286-298.
[http://dx.doi.org/10.3109/09687688.2010.521200] [PMID: 21028937]
[125]
Wolfbeis, O.S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev., 2015, 44(14), 4743-4768.
[http://dx.doi.org/10.1039/C4CS00392F] [PMID: 25620543]
[126]
Zhao, M.X.; Zhu, B.J. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res. Lett., 2016, 11(1), 207.
[http://dx.doi.org/10.1186/s11671-016-1394-9] [PMID: 27090658]
[127]
Fujioka, K.; Manabe, N.; Nomura, M.; Watanabe, M.; Takeyama, H.; Hoshino, A. Detection of thyroid carcinoma antigen with quantum dots and monoclonal IgM antibody (JT-95) system. Nanomater., 2010, 2010, 7.
[128]
Atchudan, R.; Gangadaran, P.; Edison, T.N.J.I.; Perumal, S.; Sundramoorthy, A.K.; Vinodh, R.; Rajendran, R.L.; Ahn, B-C.; Lee, Y.R. Betel leaf derived multicolor emitting carbon dots as a fluorescent probe for imaging mouse normal fibroblast and human thyroid cancer cells. Physica E, 2022, 136, 115010.
[http://dx.doi.org/10.1016/j.physe.2021.115010]
[129]
Wang, Q.; Sui, G.; Wu, X.; Teng, D.; Zhu, L.; Guan, S.; Ran, H.; Wang, Z.; Wang, H. A sequential targeting nanoplatform for anaplastic thyroid carcinoma theranostics. Acta Biomater., 2020, 102, 367-383.
[http://dx.doi.org/10.1016/j.actbio.2019.11.043] [PMID: 31778831]
[130]
Zhang, X.; Yan, Z.; Meng, Z.; Li, N.; Jia, Q.; Shen, Y.; Ji, Y. Radionuclide 131I-labeled albumin-indocyanine green nanoparticles for synergistic combined radio-photothermal therapy of anaplastic thyroid cancer. Front. Oncol., 2022, 12, 889284.
[http://dx.doi.org/10.3389/fonc.2022.889284]
[131]
Hyman, D.M.; Puzanov, I.; Subbiah, V. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N. Engl. J. Med., 2015, 373, 726-736.
[http://dx.doi.org/10.1056/nejmoa1502309]
[132]
Lim, S.M.; Chang, H.; Yoon, M.J.; Hong, Y.K.; Kim, H.; Chung, W.Y.; Park, C.S.; Nam, K.H.; Kang, S.W.; Kim, M.K.; Kim, S.B.; Lee, S.H.; Kim, H.G.; Na, I.I.; Kim, Y.S.; Choi, M.Y.; Kim, J.G.; Park, K.U.; Yun, H.J.; Kim, J.H.; Cho, B.C. A multicenter, phase II trial of everolimus in locally advanced or metastatic thyroid cancer of all histologic subtypes. Ann. Oncol., 2013, 24(12), 3089-3094.
[http://dx.doi.org/10.1093/annonc/mdt379] [PMID: 24050953]
[133]
Hanna, G.J.; Busaidy, N.L.; Chau, N.G.; Wirth, L.J.; Barletta, J.A.; Calles, A.; Haddad, R.I.; Kraft, S.; Cabanillas, M.E.; Rabinowits, G.; O’Neill, A.; Limaye, S.A.; Alexander, E.K.; Moore, F.D., Jr; Misiwkeiwicz, K.; Thomas, T.; Nehs, M.; Marqusee, E.; Lee, S.L.; Jänne, P.A.; Lorch, J.H. Genomic correlates of response to everolimus in aggressive radioiodine-refractory thyroid cancer: A phase II study. Clin. Cancer Res., 2018, 24(7), 1546-1553.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2297] [PMID: 29301825]
[134]
Sehgal, K. A Phase II study of MLN0128 in metastatic anaplastic thyroid cancer. clinical trial number NCT02244463 2022 2022.
[135]
Khanna, V.; Miles, C.; Sundaram, V.; Sheth, S.; Steffen, M.; Biedermann, S.; Jun, D.; Winters, E.; Khan, S.A. Abemaciclib in metastatic or locally advanced anaplastic thyroid cancer. J. Clin. Oncol., 2022, 40((16_suppl)(Suppl.)), TPS6112-TPS6112.
[http://dx.doi.org/10.1200/JCO.2022.40.16_suppl.TPS6112]
[136]
Stanford University, Abemaciclib in Metastatic or Locally Advanced Anaplastic/Undifferentiated Thyroid Cancer. Clinicaltrial number NCT04552769 2022 2022.
[137]
Cohen, E.E.W.; Rosen, L.S.; Vokes, E.E.; Kies, M.S.; Forastiere, A.A.; Worden, F.P.; Kane, M.A.; Sherman, E.; Kim, S.; Bycott, P.; Tortorici, M.; Shalinsky, D.R.; Liau, K.F.; Cohen, R.B. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J. Clin. Oncol., 2008, 26(29), 4708-4713.
[http://dx.doi.org/10.1200/JCO.2007.15.9566] [PMID: 18541897]
[138]
Higashiyama, T.; Sugino, K.; Hara, H.; Ito, K.I.; Nakashima, N.; Onoda, N.; Tori, M.; Katoh, H.; Kiyota, N.; Ota, I.; Suganuma, N.; Hibi, Y.; Nemoto, T.; Takahashi, S.; Yane, K.; Ioji, T.; Kojima, S.; Kaneda, H.; Sugitani, I.; Tahara, M. Phase II study of the efficacy and safety of lenvatinib for anaplastic thyroid cancer (HOPE). Eur. J. Cancer (Oxford, England: 1990), 2022, 173, 210-218.
[139]
Higashiyama, T.; Sugino, K.; Hara, H.; Ito, K.; Nakashima, N.; Onoda, N.; Tori, M.; Katoh, H.; Kiyota, N.; Ota, I.; Suganuma, N.; Hibi, Y.; Nemoto, T.; Takahashi, S.; Yane, K.; Ioji, T.; Kojima, S.; Kaneda, H.; Sugitani, I.; Tahara, M. Phase II study of the efficacy and safety of lenvatinib for anaplastic thyroid cancer (HOPE). Eur. J. Cancer, 2022, 173, 210-218.
[http://dx.doi.org/10.1016/j.ejca.2022.06.044] [PMID: 35932627]
[140]
Bible, K.C.; Suman, V.J.; Menefee, M.E.; Smallridge, R.C.; Molina, J.R.; Maples, W.J.; Karlin, N.J.; Traynor, A.M.; Kumar, P.; Goh, B.C.; Lim, W.T.; Bossou, A.R.; Isham, C.R.; Webster, K.P.; Kukla, A.K.; Bieber, C.; Burton, J.K.; Harris, P.; Erlichman, C. A multiinstitutional phase 2 trial of pazopanib monotherapy in advanced anaplastic thyroid cancer. J. Clin. Endocrinol. Metab., 2012, 97(9), 3179-3184.
[http://dx.doi.org/10.1210/jc.2012-1520] [PMID: 22774206]
[141]
Di Desidero, T.; Orlandi, P.; Gentile, D.; Bocci, G. Effects of pazopanib monotherapy vs. pazopanib and topotecan combination on anaplastic thyroid cancer cells. Front. Oncol., 2019, 9, 1202.https://www.frontiersin.org/articles/10.3389/fonc.2019.01202
[http://dx.doi.org/10.3389/fonc.2019.01202] [PMID: 31799182]
[142]
Gouda, M.A.; Subbiah, V. Precision oncology with selective RET inhibitor selpercatinib in RET-rearranged cancers. Ther. Adv. Med. Oncol., 2023, 15, 17588359231177015.
[143]
Wirth, L.J.; Sherman, E.; Robinson, B.; Solomon, B.; Kang, H.; Lorch, J.; Worden, F.; Brose, M.; Patel, J.; Leboulleux, S.; Godbert, Y.; Barlesi, F.; Morris, J.C.; Owonikoko, T.K.; Tan, D.S.W.; Gautschi, O.; Weiss, J.; de la Fouchardière, C.; Burkard, M.E.; Laskin, J.; Taylor, M.H.; Kroiss, M.; Medioni, J.; Goldman, J.W.; Bauer, T.M.; Levy, B.; Zhu, V.W.; Lakhani, N.; Moreno, V.; Ebata, K.; Nguyen, M.; Heirich, D.; Zhu, E.Y.; Huang, X.; Yang, L.; Kherani, J.; Rothenberg, S.M.; Drilon, A.; Subbiah, V.; Shah, M.H.; Cabanillas, M.E. Efficacy of selpercatinib in RET - altered thyroid cancers. N. Engl. J. Med., 2020, 383(9), 825-835.
[http://dx.doi.org/10.1056/NEJMoa2005651] [PMID: 32846061]
[144]
Brose, M. Phase II study of BAY 43-9006 in patients with metastatic thyroid cancer. Clinicaltrial number NCT00654238 2019.
[145]
Capdevila, J.; Iglesias, L.; Halperin, I.; Segura, Á.; Martínez-Trufero, J.; Vaz, M.Á.; Corral, J.; Obiols, G.; Grande, E.; Grau, J.J.; Tabernero, J. Sorafenib in metastatic thyroid cancer. Endocr. Relat. Cancer, 2012, 19(2), 209-216.
[http://dx.doi.org/10.1530/ERC-11-0351] [PMID: 22285864]
[146]
Ravaud, A.; de la Fouchardière, C.; Caron, P.; Doussau, A.; Do Cao, C.; Asselineau, J.; Rodien, P.; Pouessel, D.; Nicolli-Sire, P.; Klein, M.; Bournaud-Salinas, C.; Wemeau, J.L.; Gimbert, A.; Picat, M.Q.; Pedenon, D.; Digue, L.; Daste, A.; Catargi, B.; Delord, J.P. A multicenter phase II study of sunitinib in patients with locally advanced or metastatic differentiated, anaplastic or medullary thyroid carcinomas: mature data from the THYSU study. Eur. J. Cancer, 2017, 76, 110-117.
[http://dx.doi.org/10.1016/j.ejca.2017.01.029] [PMID: 28301826]
[147]
Sherman, E.J.; Michel, L.S.; Kriplani, A.; Dunn, L.; Haque, S.; Bang, D.; Stein, S.; Pfister, D.G.; Ho, A.L. A pilot study of trametinib in combination with paclitaxel in the treatment of anaplastic thyroid cancer., 2022, 40(16_suppl), 6088-6088.
[148]
Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Schellens, J.H.M.; Soria, J.C.; Wen, P.Y.; Zielinski, C.; Cabanillas, M.E.; Urbanowitz, G.; Mookerjee, B.; Wang, D.; Rangwala, F.; Keam, B. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J. Clin. Oncol., 2018, 36(1), 7-13.
[http://dx.doi.org/10.1200/JCO.2017.73.6785] [PMID: 29072975]
[149]
Subbiah, V.; Lassen, U.; Élez, E.; Italiano, A.; Curigliano, G.; Javle, M.; de Braud, F.; Prager, G.W.; Greil, R.; Stein, A.; Fasolo, A.; Schellens, J.H.M.; Wen, P.Y.; Viele, K.; Boran, A.D.; Gasal, E.; Burgess, P.; Ilankumaran, P.; Wainberg, Z.A. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutated biliary tract cancer (ROAR): A phase 2, open-label, single-arm, multicentre basket trial. The Lancet Oncol., 2020, 21(9), 1234-1243.
[150]
Dierks, C.; Seufert, J.; Aumann, K.; Ruf, J.; Klein, C.; Kiefer, S.; Rassner, M.; Boerries, M.; Zielke, A.; la Rosee, P.; Meyer, P.T.; Kroiss, M.; Weißenberger, C.; Schumacher, T.; Metzger, P.; Weiss, H.; Smaxwil, C.; Laubner, K.; Duyster, J.; von Bubnoff, N.; Miething, C.; Thomusch, O. Combination of lenvatinib and pembrolizumab is an effective treatment option for anaplastic and poorly differentiated thyroid carcinoma. Thyroid. Official Journal of the American Thyroid Association, 2021, 31(7), 1076-1085.
[151]
Boreddy, S.R.; Nair, R.; Pandey, P.K.; Kuriakose, A.; Marigowda, S.B.; Dey, C.; Banerjee, A.; Kulkarni, H.; Sagar, M.; Krishn, S.R.; Rao, S.; Ar, M.; Tiwari, V.; Alke, B.; Mv, P.K.; Shri, M.; Dhamne, C.; Patel, S.; Sharma, P.; Periyasamy, S.; Bhatnagar, J.; Kuriakose, M.A.; Reddy, R.B.; Suresh, A.; Sreenivas, S.; Govindappa, N.; Moole, P.R.; Bughani, U.; Tan, S.L.; Nair, P. BCA101 is a tumor-targeted bifunctional fusion antibody that simultaneously inhibits EGFR and TGF? Signaling to durably suppress tumor growth. Cancer Res., 2023, 83(11), 1883-1904.
[152]
Roof, L.; Geiger, J.L. Clinical utility of cabozantinib in the treatment of locally advanced or metastatic differentiated thyroid carcinoma: Patient selection and reported outcomes. Cancer Manag. Res., 2023, 15, 343-350.
[153]
Zhao, X.; Wang, J.R.; Dadu, R.; Busaidy, N.L.; Xu, L.; Learned, K.O.; Chasen, N.N.; Vu, T.; Maniakas, A.; Eguia, A.A.; Diersing, J.; Gross, N.D.; Goepfert, R.; Lai, S.Y.; Hofmann, M.C.; Ferrarotto, R.; Lu, C.; Gunn, G.B.; Spiotto, M.T.; Subbiah, V.; Williams, M.D.; Cabanillas, M.E.; Zafereo, M.E. Surgery after BRAF-directed therapy is associated with improved survival in BRAF(V600E) mutant anaplastic thyroid cancer: A single-center retrospective cohort study. Thyroid: Official Journal of the American Thyroid Association, 2023, 33(4), 484-491.
[154]
Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Schellens, J.H.M.; Soria, J.C.; Wen, P.Y.; Zielinski, C.; Cabanillas, M.E.; Urbanowitz, G.; Mookerjee, B.; Wang, D.; Rangwala, F.; Keam, B. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J. Clin. Oncol. Official Journal of the American Society of Clinical Oncology, 2018, 36(1), 7-13.
[155]
Sherman, E.J.; Harris, J.; Bible, K.C.; Xia, P.; Ghossein, R.A.; Chung, C.H.; Riaz, N.; Gunn, G.B.; Foote, R.L.; Yom, S.S.; Wong, S.J.; Koyfman, S.A.; Dzeda, M.F.; Clump, D.A.; Khan, S.A.; Shah, M.H.; Redmond, K.; Torres-Saavedra, P.A.; Le, Q.T.; Lee, N.Y. Radiotherapy and paclitaxel plus pazopanib or placebo in anaplastic thyroid cancer (NRG/RTOG 0912): A randomised, double-blind, placebo-controlled, multicentre, phase 2 trial. The Lancet Oncol., 2023, 24(2), 175-186.
[156]
Iyer, P.C.; Dadu, R.; Gule-Monroe, M.; Busaidy, N.L.; Ferrarotto, R.; Habra, M.A.; Zafereo, M.; Williams, M.D.; Gunn, G.B.; Grosu, H.; Skinner, H.D.; Sturgis, E.M.; Gross, N.; Cabanillas, M.E. Salvage pembrolizumab added to kinase inhibitor therapy for the treatment of anaplastic thyroid carcinoma. J. Immunother. Cancer, 2018, 6(1), 68.
[157]
Lamberti, M.; Zappavigna, S.; Sannolo, N.; Porto, S.; Caraglia, M. Advantages and risks of nanotechnologies in cancer patients and occupationally exposed workers. Expert Opin. Drug Deliv., 2014, 11(7), 1087-1101.
[http://dx.doi.org/10.1517/17425247.2014.913568] [PMID: 24773227]
[158]
Kahraman, E.; Güngör, S.; Özsoy, Y. Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery. Ther. Deliv., 2017, 8(11), 967-985.
[http://dx.doi.org/10.4155/tde-2017-0075] [PMID: 29061106]
[159]
Ratemi, E.; Sultana Shaik, A.; Al Faraj, A.; Halwani, R. Alternative approaches for the treatment of airway diseases: focus on nanoparticle medicine. Clin. Exp. Allergy, 2016, 46(8), 1033-1042.
[http://dx.doi.org/10.1111/cea.12771] [PMID: 27404025]
[160]
Huang, S.; Wu, Y.; Li, C.; Xu, L.; Huang, J.; Huang, Y.; Cheng, W.; Xue, B.; Zhang, L.; Liang, S.; Jin, X.; Zhu, X.; Xiong, S.; Su, Y.; Wang, H. Tailoring morphologies of mesoporous polydopamine nanoparticles to deliver high-loading radioiodine for anaplastic thyroid carcinoma imaging and therapy. Nanoscale, 2021, 13(35), 15021-15030.
[http://dx.doi.org/10.1039/D1NR02892H] [PMID: 34533142]
[161]
Draz, M.S.; Fang, B.A.; Zhang, P.; Hu, Z.; Gu, S.; Weng, K.C.; Gray, J.W.; Chen, F.F. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics, 2014, 4(9), 872-892.
[http://dx.doi.org/10.7150/thno.9404] [PMID: 25057313]
[162]
Ha, D.; Yang, N.; Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm. Sin. B, 2016, 6(4), 287-296.
[http://dx.doi.org/10.1016/j.apsb.2016.02.001] [PMID: 27471669]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy