Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Synthesis and Molecular Docking Study of Some New Thiazole-coumarin Molecular Hybrids as Antibacterial Agents

Author(s): Jehan Y. Al-Humaidi, Sobhi M. Gomha*, Fathy M. Abdelrazek, Hassan M. Abdel-aziz and Aboubakr H. Abdelmonsef

Volume 21, Issue 6, 2024

Published on: 09 August, 2023

Page: [810 - 821] Pages: 12

DOI: 10.2174/1570179420666230707142817

Price: $65

conference banner
Abstract

Background: The emergence of drug-resistant bacteria and multidrug-resistant diseases, both of which are associated with high mortality, has posed a serious global health issue. Thiazoles and coumarins were reported as antimicrobial agents.

Objective: This research paper aims to describe the synthesis of some novel thiazole derivatives bearing a coumarin residue as antibacterial agents.

Methods: The thiazole - coumarin hybrids were synthesized starting from the condensation of 3- acetyl coumarin (1) hydrazine carbothioamide (2) or thisemicarbazide then reacting the resulting products with different p-substituted phenacyl bromides (4a-e), hydrazonoyl chlorides (8a-e), and (11). In vitro antibacterial activity was studied in this work. In addition, molecular docking studies for the new compounds have also been carried out to investigate the binding mode of actions against the target DNA gyrase B.

Results: Some of the newly synthesized compounds such as compounds 10b, 7, and 6b showed pronounced activities against Gram (+ve) and Gram (-ve) bacteria compared to a reference antibacterial agent. Compounds 10b, 7, and 6b exhibited the best binding affinity against the target.

Conclusion: We could obtain a series of precious hitherto unknown thiazole derivatives with varied antibacterial activities from cheap laboratory-available starting material following rather simple environmentally friendly techniques avoiding the use of hazardous or heavy metal-containing catalysts.

« Previous
Graphical Abstract

[1]
Levin-Reisman, I.; Ronin, I.; Gefen, O.; Braniss, I.; Shoresh, N.; Balaban, N.Q. Antibiotic tolerance facilitates the evolution of resistance. Science, 2017, 355(6327), 826-830.
[http://dx.doi.org/10.1126/science.aaj2191] [PMID: 28183996]
[2]
Högberg, L.D.; Heddini, A.; Cars, O. The global need for effective antibiotics: Challenges and recent advances. Trends Pharmacol. Sci., 2010, 31(11), 509-515.
[http://dx.doi.org/10.1016/j.tips.2010.08.002] [PMID: 20843562]
[3]
Doherty, T.M.; Hausdorff, W.P.; Kristinsson, K.G. Effect of vaccination on the use of antimicrobial agents: A systematic literature review. Ann. Med., 2020, 52(6), 283-299.
[http://dx.doi.org/10.1080/07853890.2020.1782460] [PMID: 32597236]
[4]
Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev., 2019, 18(1), 241-272.
[http://dx.doi.org/10.1007/s11101-018-9591-z]
[5]
Dye, C. After 2015: Infectious diseases in a new era of health and development. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1645), 20130426.
[http://dx.doi.org/10.1098/rstb.2013.0426] [PMID: 24821913]
[6]
Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Coumarin hybrids as novel therapeutic agents. Bioorg. Med. Chem., 2014, 22(15), 3806-3814.
[http://dx.doi.org/10.1016/j.bmc.2014.05.032] [PMID: 24934993]
[7]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[8]
Vuorela, P.; Leinonen, M.; Saikku, P.; Tammela, P.; Rauha, J.; Wennberg, T.; Vuorela, H. Natural products in the process of finding new drug candidates. Curr. Med. Chem., 2004, 11(11), 1375-1389.
[http://dx.doi.org/10.2174/0929867043365116] [PMID: 15180572]
[9]
Zhang, L.; Xu, Z. Coumarin-containing hybrids and their anticancer activities. Eur. J. Med. Chem., 2019, 181, 111587.
[http://dx.doi.org/10.1016/j.ejmech.2019.111587] [PMID: 31404864]
[10]
Carradori, S.; Toraskar, M.P.; Redij, A.; Petreni, A.; Supuran, C.T. Coumarin-pyrazoline Hybrids as selective inhibitors of the tumor-associated carbonic anhydrase IX and XII. Anticancer. Agents Med. Chem., 2023, 23(10), 1217-1223.
[http://dx.doi.org/10.2174/1871520623666230220162506] [PMID: 36825712]
[11]
Li, G.; Yang, Y.; Zhang, Y.; Huang, P.; Yan, J.; Song, Z.; Yuan, Q.; Huang, J. A reactive oxygen species-tyrosinase cascade-activated prodrug for selectively suppressing melanoma. CCS Chemistry, 2022, 4(5), 1654-1670.
[http://dx.doi.org/10.31635/ccschem.021.202101032]
[12]
Appendino, G.; Mercalli, E.; Fuzzati, N.; Arnoldi, L.; Stavri, M.; Gibbons, S.; Ballero, M.; Maxia, A.; Maxia, A. Antimycobacterial coumarins from the sardinian giant fennel (Ferula communis). J. Nat. Prod., 2004, 67(12), 2108-2110.
[http://dx.doi.org/10.1021/np049706n] [PMID: 15620264]
[13]
Sashidhara, K.V.; Palnati, G.R.; Singh, L.R.; Upadhyay, A.; Avula, S.R.; Kumar, A.; Kant, R. Molecular iodine catalysed one-pot synthesis of chromeno[4,3-b]quinolin-6-ones under microwave irradiation. Green Chem., 2015, 17(7), 3766-3770.
[http://dx.doi.org/10.1039/C5GC00756A]
[14]
Shi, Y.; Zhou, C.H. Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2011, 21(3), 956-960.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.059] [PMID: 21215620]
[15]
Tambo-ong, A.; Chopra, S.; Glaser, B.T.; Matsuyama, K.; Tran, T.; Madrid, P.B. Mannich reaction derivatives of novobiocin with modulated physiochemical properties and their antibacterial activities. Bioorg. Med. Chem. Lett., 2011, 21(19), 5697-5700.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.035] [PMID: 21871799]
[16]
Laurin, P.; Ferroud, D.; Klich, M.; Dupuis-Hamelin, C.; Mauvais, P.; Lassaigne, P.; Bonnefoy, A.; Musicki, B. Synthesis and in vitro evaluation of novel highly potent coumarin inhibitors of gyrase B. Bioorg. Med. Chem. Lett., 1999, 9(14), 2079-2084.
[http://dx.doi.org/10.1016/S0960-894X(99)00329-7] [PMID: 10450985]
[17]
Schimana, J.; Fiedler, H.P.; Groth, I.; Submuth, R.; Beil, W.; Walker, M.; Zeeck, A. Simocyclinones, novel cytostatic angucyclinone antibiotics produced by Streptomyces antibioticus Tü 6040. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot., 2000, 53(8), 779-787.
[http://dx.doi.org/10.7164/antibiotics.53.779] [PMID: 11079799]
[18]
Watt, P.M.; Hickson, I.D. Structure and function of type II DNA topoisomerases. Biochem. J., 1994, 303(3), 681-695.
[http://dx.doi.org/10.1042/bj3030681] [PMID: 7980433]
[19]
Li, B.; Pai, R.; Di, M.; Aiello, D.; Barnes, M.H.; Butler, M.M.; Tashjian, T.F.; Peet, N.P.; Bowlin, T.L.; Moir, D.T. Coumarin-based inhibitors of Bacillus anthracis and Staphylococcus aureus replicative DNA helicase: Chemical optimization, biological evaluation, and antibacterial activities. J. Med. Chem., 2012, 55(24), 10896-10908.
[http://dx.doi.org/10.1021/jm300922h] [PMID: 23231076]
[20]
Sahoo, J.; Paidesetty, S.K. Antimicrobial activity of novel synthesized coumarin based transitional metal complexes. J. Taibah Univ. Med. Sci., 2017, 12(2), 115-124.
[http://dx.doi.org/10.1016/j.jtumed.2016.10.004] [PMID: 31435225]
[21]
Paul, K.; Bindal, S.; Luxami, V. Synthesis of new conjugated coumarin–benzimidazole hybrids and their anticancer activity. Bioorg. Med. Chem. Lett., 2013, 23(12), 3667-3672.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.071] [PMID: 23642480]
[22]
Al-Majedy, Y.K.; Kadhum, A.A.H.; Al-Amiery, A.A.; Mohamad, A.B. Coumarins: The antimicrobial agents. Systematic Reviews in Pharmacy, 2017, 8(1), 62-70.
[http://dx.doi.org/10.5530/srp.2017.1.11]
[23]
Mohammad, H.; Eldesouky, H.E.; Hazbun, T.; Mayhoub, A.S.; Seleem, M.N. Identification of a phenylthiazole small molecule with dual antifungal and antibiofilm activity against candida albicans and candida auris. Sci. Rep., 2019, 9(1), 18941.
[http://dx.doi.org/10.1038/s41598-019-55379-1] [PMID: 31831822]
[24]
Biernasiuk, A.; Kawczyńska, M.; Berecka-Rycerz, A.; Rosada, B.; Gumieniczek, A.; Malm, A.; Dzitko, K.; Łączkowski, K.Z. Synthesis, antimicrobial activity, and determination of the lipophilicity of ((cyclohex-3-enylmethylene)hydrazinyl)thiazole derivatives. Med. Chem. Res., 2019, 28(11), 2023-2036.
[http://dx.doi.org/10.1007/s00044-019-02433-2]
[25]
Adole, V.A.; More, R.A.; Jagdale, B.S.; Pawar, T.B.; Chobe, S.S. Efficient synthesis, antibacterial, antifungal, antioxidant and cytotoxicity study of 2‐(2‐Hydrazineyl)thiazole derivatives. ChemistrySelect, 2020, 5(9), 2778-2786.
[http://dx.doi.org/10.1002/slct.201904609]
[26]
Pricopie, A.I.; Focșan, M.; Ionuț, I.; Marc, G.; Vlase, L.; Găină, L.I.; Vodnar, D.C.; Simon, E.; Barta, G.; Pîrnău, A.; Oniga, O. Novel 2,4-Disubstituted-1,3-Thiazole Derivatives: Synthesis, Anti-Candida Activity Evaluation and Interaction with Bovine Serum Albumine. Molecules, 2020, 25(5), 1079.
[http://dx.doi.org/10.3390/molecules25051079] [PMID: 32121062]
[27]
Kaddouri, Y.; Abrigach, F.; Yousfi, E.B.; El Kodadi, M.; Touzani, R. New thiazole, pyridine and pyrazole derivatives as antioxidant candidates: Synthesis, DFT calculations and molecular docking study. Heliyon, 2020, 6(1), e03185.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03185] [PMID: 31956713]
[28]
Şahi̇n, Z.; Bi̇lteki̇n, S.N.; Yurttaş, L.; Demi̇rayak, Ş. Synthesis, antioxidant and antimicrobial properties of novel pyridyl-carbonyl thiazoles as dendrodoine analogs. Turk. J. Chem., 2020, 44(6), 1733-1741.
[http://dx.doi.org/10.3906/kim-2008-8] [PMID: 33488266]
[29]
Raut, D.G.; Patil, S.B.; Choudhari, P.B.; Kadu, V.D.; Lawand, A.S.; Hublikar, M.G.; Bhosale, R.B. POCl3 mediated syntheses, pharmacological evaluation and molecular docking studies of some novel benzofused thiazole derivatives as a potential antioxidant and anti-inflammatory agents. Curr. Chem. Biol., 2020, 14, 58-68.
[30]
Nikhila, G.R.; Batakurki, S.R.; Yallur, B.C. Synthesis, characterization and antioxidant studies of benzo[4, 5]imidazo[2, 1-b]thiazole derivatives AIP Conf. Proc., 2020, 2274, 050017.
[http://dx.doi.org/10.1063/5.0023101]
[31]
Hossan, A.S.M. Synthesis, modelling and molecular docking of new 5-arylazo-2-chloroacetamido thiazole derivatives as antioxidant agent. J. Mol. Struct., 2020, 1206, 127712.
[http://dx.doi.org/10.1016/j.molstruc.2020.127712]
[32]
Muluk, M.H.; Patil, P.S.; Kasare, S.L.; Kulkarni, R.S.; Dixit, P.P.; Choudhary, P.B.; Haval, K.P. Synthesis and molecular docking studies of novel pyridine-thiazole-hydrazone conjugates as antimicrobial and antioxidant agents. Eur. Chem. Bull., 2020, 9(7), 184-192.
[http://dx.doi.org/10.17628/ecb.2020.9.184-192]
[33]
Ramalingam, A.; Sarvanan J, S. Synthesis, docking and anti-cancerous activity of some novel thiazole derivatives of biological interest. Int. J. Pharm. Investig., 2020, 10(4), 594-603.
[http://dx.doi.org/10.5530/ijpi.2020.4.104]
[34]
Ibrar, A.; Tehseen, Y.; Khan, I.; Hameed, A.; Saeed, A.; Furtmann, N.; Bajorath, J.; Iqbal, J. Coumarin-thiazole and -oxadiazole derivatives: Synthesis, bioactivity and docking studies for aldose/aldehyde reductase inhibitors. Bioorg. Chem., 2016, 68, 177-186.
[http://dx.doi.org/10.1016/j.bioorg.2016.08.005] [PMID: 27544072]
[35]
Prashanth, T.; Avin, B.R.V.; Thirusangu, P.; Ranganatha, V.L.; Prabhakar, B.T.; Sharath Chandra, J.N.N.; Khanum, S.A. Synthesis of coumarin analogs appended with quinoline and thiazole moiety and their apoptogenic role against murine ascitic carcinoma. Biomed. Pharmacother., 2019, 112, 108707.
[http://dx.doi.org/10.1016/j.biopha.2019.108707] [PMID: 30970513]
[36]
Yang, X.C.; Hu, C.F.; Zhang, P.L.; Li, S.; Hu, C.S.; Geng, R.X.; Zhou, C.H. Coumarin thiazoles as unique structural skeleton of potential antimicrobial agents. Bioorg. Chem., 2022, 124, 105855.
[http://dx.doi.org/10.1016/j.bioorg.2022.105855] [PMID: 35576797]
[37]
Kumar, S.; Saini, V.; Maurya, I.K.; Sindhu, J.; Kumari, M.; Kataria, R.; Kumar, V. Design, synthesis, DFT, docking studies and ADME prediction of some new coumarinyl linked pyrazolylthiazoles: Potential standalone or adjuvant antimicrobial agents. PLoS One, 2018, 13(4), e0196016.
[http://dx.doi.org/10.1371/journal.pone.0196016] [PMID: 29672633]
[38]
Parveen, S.; Kalsoom, S.; Bibi, R.; Asghar, A.; Hameed, A.; Ahmed, W.; Hassan, A. Computational and biological studies of novel thiazolyl coumarin derivatives synthesized through Suzuki coupling. Turk. J. Chem., 2020, 44(6), 1610-1622.
[http://dx.doi.org/10.3906/kim-2005-19] [PMID: 33488257]
[39]
Gao, F.; Yang, H.; Lu, T.; Chen, Z.; Ma, L.; Xu, Z.; Schaffer, P.; Lu, G. Design, synthesis and anti-mycobacterial activity evaluation of benzofuran-isatin hybrids. Eur. J. Med. Chem., 2018, 159, 277-281.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.049] [PMID: 30296686]
[40]
Liu, H.; Xia, D.G.; Chu, Z.W.; Hu, R.; Cheng, X.; Lv, X.H. Novel coumarin-thiazolyl ester derivatives as potential DNA gyrase Inhibitors: Design, synthesis, and antibacterial activity. Bioorg. Chem., 2020, 100, 103907.
[http://dx.doi.org/10.1016/j.bioorg.2020.103907] [PMID: 32413631]
[41]
Arshad, A.; Osman, H.; Bagley, M.C.; Lam, C.K.; Mohamad, S.; Zahariluddin, A.S.M. Synthesis and antimicrobial properties of some new thiazolyl coumarin derivatives. Eur. J. Med. Chem., 2011, 46(9), 3788-3794.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.044] [PMID: 21712145]
[42]
Gul, H.I.; Yamali, C.; Sakagami, H.; Angeli, A.; Leitans, J.; Kazaks, A.; Tars, K.; Ozgun, D.O.; Supuran, C.T. New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors. Bioorg. Chem., 2018, 77, 411-419.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.021] [PMID: 29427856]
[43]
Zhang, H.Z.; Kasibhatla, S.; Kuemmerle, J.; Kemnitzer, W.; Ollis-Mason, K.; Qiu, L.; Crogan-Grundy, C.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery and structure-activity relationship of 3-aryl-5-aryl-1,2,4-oxadiazoles as a new series of apoptosis inducers and potential anticancer agents. J. Med. Chem., 2005, 48(16), 5215-5223.
[http://dx.doi.org/10.1021/jm050292k] [PMID: 16078840]
[44]
Agarwal, M.; Singh, V.; Sharma, S.K.; Sharma, P.; Ansari, M.Y.; Jadav, S.S.; Yasmin, S.; Sreenivasulu, R.; Hassan, M.Z.; Saini, V.; Ahsan, M.J. Design and synthesis of new 2,5-disubstituted-1,3,4-oxadiazole analogues as anticancer agents. Med. Chem. Res., 2016, 25(10), 2289-2303.
[http://dx.doi.org/10.1007/s00044-016-1672-1]
[45]
Elmetwally, S.A.; Saied, K.F.; Eissa, I.H.; Elkaeed, E.B. Design, synthesis and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorg. Chem., 2019, 88, 102944.
[http://dx.doi.org/10.1016/j.bioorg.2019.102944] [PMID: 31051400]
[46]
Milik, S.N.; Abdel-Aziz, A.K.; Lasheen, D.S.; Serya, R.A.T.; Minucci, S.; Abouzid, K.A.M. Surmounting the resistance against EGFR inhibitors through the development of thieno[2,3-d]pyrimidine-based dual EGFR/HER2 inhibitors. Eur. J. Med. Chem., 2018, 155, 316-336.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.011] [PMID: 29902719]
[47]
Giri, R.S.; Thaker, H.M.; Giordano, T.; Williams, J.; Rogers, D.; Vasu, K.K.; Sudarsanam, V. Design, synthesis and evaluation of novel 2-thiophen-5-yl-3H-quinazolin-4-one analogues as inhibitors of transcription factors NF-кB and AP-1 mediated transcriptional activation: Their possible utilization as anti-inflammatory and anti-cancer agents. Bioorg. Med. Chem., 2010, 18(7), 2796-2808.
[http://dx.doi.org/10.1016/j.bmc.2010.01.007] [PMID: 20335039]
[48]
Alhilal, M.; Sulaiman, Y.A.M.; Alhilal, S.; Gomha, S.M.; Ouf, S.A. Synthesis of novel acyclic nucleoside analogue starting from 6-aminouracil as potent antimicrobial agent. Polycycl. Aromat. Compd., 2022, 42(9), 6463-6474.
[http://dx.doi.org/10.1080/10406638.2021.1984260]
[49]
Gomha, S.M.; Muhammad, Z.A.; Al-Hussain, S.A.; Zaki, M.E.A.; Abdel-aziz, H.M. Synthesis, Characterization and antimicrobial evaluation of some new 1,4-dihydropyridine hybrid with 1,3,4-thiadiazole. Polycycl. Aromat. Compd., 2022, 42(4), 1697-1709.
[http://dx.doi.org/10.1080/10406638.2020.1804410]
[50]
Kassab, R.M.; Gomha, S.M.; Al-Hussain, S.A.; Abo Dena, A.S.; Abdel-Aziz, M.M.; Zaki, M.E.A.; Muhammad, Z.A. Synthesis and in-silico studies of new bis-thiazole derivatives and their preliminary antimicrobial activity. Arab. J. Chem., 2021, 14, 103396.
[http://dx.doi.org/10.1016/j.arabjc.2021.103396]
[51]
Abu-Melha, S.; Gomha, S.; Abouzied, A.; Edrees, M.; Abo Dena, A.; Muhammad, Z. Microwave-assisted one pot three-component synthesis of novel bioactive thiazolyl-pyridazinediones as potential antimicrobial agents against antibiotic-resistant bacteria. Molecules, 2021, 26(14), 4260.
[http://dx.doi.org/10.3390/molecules26144260] [PMID: 34299535]
[52]
Abu-Melha, S.; Muhammad, Z.A.; Abouzid, A.S.; Edrees, M.M.; Abo Dena, A.S.; Nabil, S.; Gomha, S.M. Multicomponent synthesis, DFT calculations and molecular docking studies of novel thiazolyl-pyridazinones as potential antimicrobial agents against antibiotic-resistant bacteria. J. Mol. Struct., 2021, 1234, 130180.
[http://dx.doi.org/10.1016/j.molstruc.2021.130180]
[53]
Mahmoud, H.K.; Abbas, A.A.; Gomha, S.M. Synthesis, antimicrobial evaluation and molecular docking of new functionalized bis(1,3,4-thiadiazole) and bis(thiazole) derivatives. Polycycl. Aromat. Compd., 2021, 41(9), 2029-2041.
[http://dx.doi.org/10.1080/10406638.2019.1709085]
[54]
Abu-Melha, S.; Edrees, M.; Salem, H.; Kheder, N.; Gomha, S.; Abdelaziz, M. Synthesis and biological evaluation of some novel thiazole-based heterocycles as potential anticancer and antimicrobial agents. Molecules, 2019, 24(3), 539.
[http://dx.doi.org/10.3390/molecules24030539] [PMID: 30717217]
[55]
Abdelhamid, A.O.; Gomha, S.M.; El-Enany, W.A.M.A. Efficient synthesis and antimicrobial evaluation of new azolopyrimidines-bearing pyrazole moiety. J. Heterocycl. Chem., 2019, 56(9), 2487-2493.
[http://dx.doi.org/10.1002/jhet.3638]
[56]
Abdallah, M.A.; Riyadh, S.M.; Abbas, I.M.; Gomha, S.M. Synthesis and biological activities of 7-arylazo-7H-pyrazolo[5,1-c][1,2,4]triazolo-6(5H)-ones and 7-arylhydrazono-7H-[1,2,4] triazolo[3,4-b][1,3,4]thiadiazines. J. Chin. Chem. Soc., 2005, 52(5), 987-994.
[http://dx.doi.org/10.1002/jccs.200500137]
[57]
Al-Mutabagani, L.A.; Abdelrazek, F.M.; Gomha, S.M.; Hebishy, A.S.; Abdelfattah, M.S.; Hassan, S.M.; Sayed, A.R.; Elaasser, M.M. Synthesis and biological evaluation of thiazolyl-ethylidene hydrazino-thiazole derivatives: A novel heterocyclic system. Appl. Sci., 2021, 11(19), 8908.
[http://dx.doi.org/10.3390/app11198908]
[58]
Rashdan, H.R.M.; Abdelmonsef, A.H. Towards Covid-19 TMPRSS2 enzyme inhibitors and antimicrobial agents: Synthesis, antimicrobial potency, molecular docking, and drug-likeness prediction of thiadiazole-triazole hybrids. J. Mol. Struct., 2022, 1268, 133659.
[http://dx.doi.org/10.1016/j.molstruc.2022.133659] [PMID: 35818577]
[59]
Abdelmonsef, A.H.; El-Saghier, A.M.; Kadry, A.M. Ultrasound-assisted green synthesis of triazole-based azomethine/thiazolidin-4-one hybrid inhibitors for cancer therapy through targeting dysregulation signatures of some Rab proteins. Green Chem. Lett. Rev., 2023, 16(1), 2150394.
[http://dx.doi.org/10.1080/17518253.2022.2150394]
[60]
Abdelmonsef, A.H.; Omar, M.; Rashdan, H.R.M.; Taha, M.M.; Abobakr, A.M. Design, synthetic approach, in silico molecular docking and antibacterial activity of quinazolin-2,4-dione hybrids bearing bioactive scaffolds. RSC Advances, 2022, 13(1), 292-308.
[http://dx.doi.org/10.1039/D2RA06527D] [PMID: 36605637]
[61]
Hassan, A.; Mubarak, F.A.F.; Shehadi, I.A.; Mosallam, A.M.; Temairk, H.; Badr, M.; Abdelmonsef, A.H. Design and biological evaluation of 3-substituted quinazoline-2,4(1 H, 3 H)-dione derivatives as dual c-Met/VEGFR-2-TK inhibitors. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 2189578.
[http://dx.doi.org/10.1080/14756366.2023.2189578] [PMID: 36919632]
[62]
Ibrahim, A.; Mosallam, A.; Taha, M.; Temairk, H.; Ahmed, A. Synthesis and In silico Docking Study of Some New Quinazolin-2,4-diones Targeting COVID-19 (SARS-Cov-2) Main Protease: A Search for Anti-Covid19 Drug Candidates. Egypt. J. Chem., 2022, 65, 1553-1560.
[63]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[64]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[65]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy