Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Review Article

A Review of Drug-related Associations Prediction Based on Artificial Intelligence Methods

Author(s): Mei Ma, Xiujuan Lei* and Yuchen Zhang

Volume 19, Issue 6, 2024

Published on: 25 September, 2023

Page: [530 - 550] Pages: 21

DOI: 10.2174/1574893618666230707123817

Price: $65

conference banner
Abstract

Background: Predicting drug-related associations is an important task in drug development and discovery. With the rapid advancement of high-throughput technologies and various biological and medical data, artificial intelligence (AI), especially progress in machine learning (ML) and deep learning (DL), has paved a new way for the development of drug-related associations prediction. Many studies have been conducted in the literature to predict drug-related associations. This study looks at various computational methods used for drug-related associations prediction with the hope of getting a better insight into the computational methods used.

Methods: The various computational methods involved in drug-related associations prediction have been reviewed in this work. We have first summarized the drug, target, and disease-related mainstream public datasets. Then, we have discussed existing drug similarity, target similarity, and integrated similarity measurement approaches and grouped them according to their suitability. We have then comprehensively investigated drug-related associations and introduced relevant computational methods. Finally, we have briefly discussed the challenges involved in predicting drug-related associations.

Results: We discovered that quite a few studies have used implemented ML and DL approaches for drug-related associations prediction. The key challenges were well noted in constructing datasets with reasonable negative samples, extracting rich features, and developing powerful prediction models or ensemble strategies.

Conclusion: This review presents useful knowledge and future challenges on the subject matter with the hope of promoting further studies on predicting drug-related associations.

Graphical Abstract

[1]
Wang Y, Imran A, Shami A, Chaudhary AA, Khan S. Decipher the helicobacter pylori protein targeting in the nucleus of host cell and their implications in gallbladder cancer: An in silico approach. J Cancer 2021; 12(23): 7214-22.
[http://dx.doi.org/10.7150/jca.63517] [PMID: 34729122]
[2]
Wang H, Khan S, Liu S, et al. Predicting drug-mirna resistance with layer attention graph convolution network and multi channel feature extraction. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2021;. Houston, TX, USA. 2021.
[http://dx.doi.org/10.1109/BIBM52615.2021.9669497]
[3]
Li J, Zakariah M, Malik A, et al. Analysis of salmonella typhimurium protein-targeting in the nucleus of host cells and the implications in colon cancer: An in-silico approach. Infect Drug Resist 2020; 13: 2433-42.
[http://dx.doi.org/10.2147/IDR.S258037] [PMID: 32765017]
[4]
Lotfi Shahreza M, Ghadiri N, Mousavi SR, Varshosaz J, Green JR. A review of network-based approaches to drug repositioning. Brief Bioinform 2018; 19(5): 878-92.
[http://dx.doi.org/10.1093/bib/bbx017] [PMID: 28334136]
[5]
Patel L, Shukla T, Huang X, Ussery DW, Wang S. Machine learning methods in drug discovery. Molecules 2020; 25(22): 5277.
[http://dx.doi.org/10.3390/molecules25225277] [PMID: 33198233]
[6]
Hudson IL. Data integration using advances in machine learning in drug discovery and molecular biology. Methods Mol Biol 2021; 2190: 167-84.
[http://dx.doi.org/10.1007/978-1-0716-0826-5_7] [PMID: 32804365]
[7]
Vatansever S, Schlessinger A, Wacker D, et al. Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: State‐of‐the‐arts and future directions. Med Res Rev 2021; 41(3): 1427-73.
[http://dx.doi.org/10.1002/med.21764] [PMID: 33295676]
[8]
Hong E, Jeon J, Kim HU. Recent development of machine learning models for the prediction of drug-drug interactions. Korean J Chem Eng 2023; 40(2): 276-85.
[http://dx.doi.org/10.1007/s11814-023-1377-3] [PMID: 36748027]
[9]
Dai Y, Guo C, Guo W, Eickhoff C. Drug–drug interaction prediction with Wasserstein Adversarial Autoencoder-based knowledge graph embeddings. Brief Bioinform 2021; 22(4): bbaa256.
[http://dx.doi.org/10.1093/bib/bbaa256] [PMID: 33126246]
[10]
Yu Y, Huang K, Zhang C, Glass LM, Sun J, Xiao C. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 2021; 37(18): 2988-95.
[http://dx.doi.org/10.1093/bioinformatics/btab207] [PMID: 33769494]
[11]
Cakir A, Tuncer M, Taymaz-Nikerel H, Ulucan O. Side effect prediction based on drug-induced gene expression profiles and random forest with iterative feature selection. Pharmacogenomics J 2021; 21(6): 673-81.
[http://dx.doi.org/10.1038/s41397-021-00246-4] [PMID: 34155353]
[12]
Xue R, Liao J, Shao X, et al. Prediction of adverse drug reactions by combining biomedical tripartite network and graph representation model. Chem Res Toxicol 2020; 33(1): 202-10.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00238] [PMID: 31777246]
[13]
Zhu J, Liu Y, Zhang Y, Li D. Attribute supervised probabilistic dependent matrix tri-factorization model for the prediction of adverse drug-drug interaction. IEEE J Biomed Health Inform 2021; 25(7): 2820-32.
[http://dx.doi.org/10.1109/JBHI.2020.3048059] [PMID: 33373310]
[14]
Lee CY, Chen YPP. Prediction of drug adverse events using deep learning in pharmaceutical discovery. Brief Bioinform 2021; 22(2): 1884-901.
[http://dx.doi.org/10.1093/bib/bbaa040] [PMID: 32349125]
[15]
Nyamabo AK, Yu H, Shi JY. SSI–DDI: Substructure–substructure interactions for drug–drug interaction prediction. Brief Bioinform 2021; 22(6): bbab133.
[http://dx.doi.org/10.1093/bib/bbab133] [PMID: 33951725]
[16]
Yu H, Zhao S, Shi J. STNN-DDI: A substructure-aware tensor neural network to predict drug-drug interactions. Brief Bioinform 2022; 23(4): bbac209.
[http://dx.doi.org/10.1093/bib/bbac209] [PMID: 35667078]
[17]
Nyamabo AK, Yu H, Liu Z, Shi JY. Drug–drug interaction prediction with learnable size-adaptive molecular substructures. Brief Bioinform 2022; 23(1): bbab441.
[http://dx.doi.org/10.1093/bib/bbab441] [PMID: 34695842]
[18]
Ma M, Lei X. A dual graph neural network for drug–drug interactions prediction based on molecular structure and interactions. PLOS Comput Biol 2023; 19(1): e1010812.
[http://dx.doi.org/10.1371/journal.pcbi.1010812] [PMID: 36701288]
[19]
Zheng Y, Wu Z. Cascade deep forest with heterogeneous similarity measures for drug-target interaction prediction. Front Genet 2021; 12: 702259.
[http://dx.doi.org/10.3389/fgene.2021.702259] [PMID: 34504515]
[20]
Xuan P, Hu K, Cui H, Zhang T, Nakaguchi T. Learning multi-scale heterogeneous representations and global topology for drug-target interaction prediction. IEEE J Biomed Health Inform 2022; 26(4): 1891-902.
[http://dx.doi.org/10.1109/JBHI.2021.3121798] [PMID: 34673498]
[21]
Xuan P, Fan M, Cui H, Zhang T, Nakaguchi T. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug–protein interaction prediction. Brief Bioinform 2022; 23(1): bbab453.
[http://dx.doi.org/10.1093/bib/bbab453] [PMID: 34718408]
[22]
Cheng Z, Zhao Q, Li Y, Wang J. IIFDTI: predicting drug–target interactions through interactive and independent features based on attention mechanism. Bioinformatics 2022; 38(17): 4153-61.
[http://dx.doi.org/10.1093/bioinformatics/btac485] [PMID: 35801934]
[23]
Zhou M, Zheng C, Xu R. Combining phenome-driven drug-target interaction prediction with patients’ electronic health records-based clinical corroboration toward drug discovery. Bioinformatics 2020; 36(S1): i436-44.
[http://dx.doi.org/10.1093/bioinformatics/btaa451] [PMID: 32657406]
[24]
Li F, Zhang Z, Guan J, Zhou S. Effective drug–target interaction prediction with mutual interaction neural network. Bioinformatics 2022; 38(14): 3582-9.
[http://dx.doi.org/10.1093/bioinformatics/btac377] [PMID: 35652721]
[25]
Zhao Q, Duan G, Zhao H. Gifdti: Prediction of drug-target interactions based on global molecular and intermolecular interaction representation learning. IEEE/ACM Trans Comput Biol Bioinform 2022; 20(3): 1943-52.
[26]
Lee J, Yoon W, Kim S, et al. BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 2020; 36(4): 1234-40.
[http://dx.doi.org/10.1093/bioinformatics/btz682] [PMID: 31501885]
[27]
Gu Y, Tinn R, Cheng H, et al. Domain-specific language model pretraining for biomedical natural language processing. ACM Tran Comput Healthc 2022; 3(1): 1-23.
[http://dx.doi.org/10.1145/3458754]
[28]
Luo R, Sun L, Xia Y, et al. BioGPT: Generative pre-trained transformer for biomedical text generation and mining. Brief Bioinform 2022; 23(6): bbac409.
[http://dx.doi.org/10.1093/bib/bbac409] [PMID: 36156661]
[29]
Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res 2018; 46(D1): D1074-82.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[30]
Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. ZINC: A free tool to discover chemistry for biology. J Chem Inf Model 2012; 52(7): 1757-68.
[http://dx.doi.org/10.1021/ci3001277] [PMID: 22587354]
[31]
Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res 2012; 40(D1): D1100-7.
[http://dx.doi.org/10.1093/nar/gkr777] [PMID: 21948594]
[32]
Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res 2016; 44(D1): D1202-13.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[33]
Zhou Y, Zhang Y, Lian X, et al. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res 2022; 50(D1): D1398-407.
[http://dx.doi.org/10.1093/nar/gkab953] [PMID: 34718717]
[34]
Hecker N, Ahmed J, von Eichborn J, et al. SuperTarget goes quantitative: Update on drug-target interactions. Nucleic Acids Res 2012; 40(D1): D1113-7.
[http://dx.doi.org/10.1093/nar/gkr912] [PMID: 22067455]
[35]
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44(D1): D457-62.
[http://dx.doi.org/10.1093/nar/gkv1070] [PMID: 26476454]
[36]
Hewett M, Oliver DE, Rubin DL, et al. PharmGKB: The pharmacogenetics knowledge base. Nucleic Acids Res 2002; 30(1): 163-5.
[http://dx.doi.org/10.1093/nar/30.1.163] [PMID: 11752281]
[37]
Davis AP, Grondin CJ, Johnson RJ, et al. Comparative toxicogenomics database (CTD): Update 2021. Nucleic Acids Res 2021; 49(D1): D1138-43.
[http://dx.doi.org/10.1093/nar/gkaa891] [PMID: 33068428]
[38]
Deng Z, Tu W, Deng Z, Hu QN. PhID: An open-access integrated pharmacology interactions database for drugs, targets, diseases, genes, side-effects, and pathways. J Chem Inf Model 2017; 57(10): 2395-400.
[http://dx.doi.org/10.1021/acs.jcim.7b00175] [PMID: 28906116]
[39]
Kuhn M, Szklarczyk D, Pletscher-Frankild S, et al. STITCH 4: Integration of protein–chemical interactions with user data. Nucleic Acids Res 2014; 42(D1): D401-7.
[http://dx.doi.org/10.1093/nar/gkt1207] [PMID: 24293645]
[40]
Xiong G, Yang Z, Yi J, et al. DDInter: An online drug–drug interaction database towards improving clinical decision-making and patient safety. Nucleic Acids Res 2022; 50(D1): D1200-7.
[http://dx.doi.org/10.1093/nar/gkab880] [PMID: 34634800]
[41]
Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 2007; 35(Database): D198-201.
[http://dx.doi.org/10.1093/nar/gkl999] [PMID: 17145705]
[42]
Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P. A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 2010; 6(1): 343.
[http://dx.doi.org/10.1038/msb.2009.98] [PMID: 20087340]
[43]
Lamb J, Crawford ED, Peck D, et al. The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease. Science 2006; 313(5795): 1929-35.
[http://dx.doi.org/10.1126/science.1132939] [PMID: 17008526]
[44]
Sun YZ, Zhang DH, Cai SB, Ming Z, Li JQ, Chen X. MDAD: A special resource for microbe-drug associations. Front Cell Infect Microbiol 2018; 8: 424.
[http://dx.doi.org/10.3389/fcimb.2018.00424] [PMID: 30581775]
[45]
Rajput A, Thakur A, Sharma S, Kumar M. aBiofilm: A resource of anti-biofilm agents and their potential implications in targeting antibiotic drug resistance. Nucleic Acids Res 2018; 46(D1): D894-900.
[http://dx.doi.org/10.1093/nar/gkx1157] [PMID: 29156005]
[46]
Andersen PI, Ianevski A, Lysvand H, et al. Discovery and development of safe-in-man broad-spectrum antiviral agents. Int J Infect Dis 2020; 93: 268-76.
[http://dx.doi.org/10.1016/j.ijid.2020.02.018]
[47]
Peri S, Navarro JD, Amanchy R, et al. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 2003; 13(10): 2363-71.
[http://dx.doi.org/10.1101/gr.1680803] [PMID: 14525934]
[48]
Coudert E, Gehant S, de Castro E, et al. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics 2023; 39(1): btac793.
[http://dx.doi.org/10.1093/bioinformatics/btac793] [PMID: 36484697]
[49]
Gutmanas A, Alhroub Y, Battle GM, et al. PDBe: Protein data bank in europe. Nucleic Acids Res 2014; 42(D1): D285-91.
[http://dx.doi.org/10.1093/nar/gkt1180] [PMID: 24288376]
[50]
Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43(D1): D447-52.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[51]
Ashburner M, Ball CA, Blake JA, et al. Gene Ontology: Tool for the unification of biology. Nat Genet 2000; 25(1): 25-9.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[52]
Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, et al. The Dis-GeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 2020; 48(D1): D845-55.
[PMID: 31680165]
[53]
Babbi G, Martelli PL, Profiti G, Bovo S, Savojardo C, Casadio R. eDGAR: A database of disease-gene associations with annotated relationships among genes. BMC Genomics 2017; 18(S5): 554.
[http://dx.doi.org/10.1186/s12864-017-3911-3] [PMID: 28812536]
[54]
The Lancet. ICD-11. Lancet 2019; 393(10188): 2275.
[http://dx.doi.org/10.1016/S0140-6736(19)31205-X] [PMID: 31180012]
[55]
Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 2015; 43(D1): D789-98.
[http://dx.doi.org/10.1093/nar/gku1205] [PMID: 25428349]
[56]
Safran M, Dalah I, Alexander J, et al. Genecards version 3: The human gene integrator. Database 2010; 2010: baq020.
[57]
Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 1988; 28(1): 31-6.
[http://dx.doi.org/10.1021/ci00057a005]
[58]
Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E. The chemistry development kit (CDK): An open-source java library for chemo- and bioinformatics. J Chem Inf Comput Sci 2003; 43(2): 493-500.
[http://dx.doi.org/10.1021/ci025584y] [PMID: 12653513]
[59]
Hattori M, Tanaka N, Kanehisa M, Goto S. SIMCOMP/SUBCOMP: Chemical structure search servers for network analyses. Nucleic Acids Res 2010; 38(Web Server): W652-6.
[http://dx.doi.org/10.1093/nar/gkq367] [PMID: 20460463]
[60]
Perlman L, Gottlieb A, Atias N, et al. Combining drug and gene similarity measures for drug-target elucidation. J Comput Biol 2011; 18(2): 133-45.
[http://dx.doi.org/10.1089/cmb.2010.0213]
[61]
Skrbo A, Begović B, Skrbo S. Classification of drugs using the ATC system (Anatomic, Therapeutic, Chemical Classification) and the latest changes. Med Arh 2004; 58(1 (S2)): 138-41.
[PMID: 15137231]
[62]
Zeng X, Zhu S, Lu W, et al. Target identification among known drugs by deep learning from heterogeneous networks. Chem Sci 2020; 11(7): 1775-97.
[http://dx.doi.org/10.1039/C9SC04336E] [PMID: 34123272]
[63]
Subeesh V, Maheswari E, Singh H, Beulah TE, Swaroop AM. Novel adverse events of iloperidone: A disproportionality analysis in us food and drug administration adverse event reporting system (FAERS) database. Curr Drug Saf 2019; 14(1): 21-6.
[http://dx.doi.org/10.2174/1574886313666181026100000] [PMID: 30362421]
[64]
Takarabe M, Kotera M, Nishimura Y, Goto S, Yamanishi Y. Drug target prediction using adverse event report systems: A pharmacogenomic approach. Bioinformatics 2012; 28(18): i611-8.
[http://dx.doi.org/10.1093/bioinformatics/bts413] [PMID: 22962489]
[65]
Zhang X, Li L, Ng MK, Zhang S. Drug–target interaction prediction by integrating multiview network data. Comput Biol Chem 2017; 69: 185-93.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.03.011] [PMID: 28648470]
[66]
Holmes AB, Hawson A, Liu F, Friedman C, Khiabanian H, Rabadan R. Discovering disease associations by integrating electronic clinical data and medical literature. PLoS One 2011; 6(6): e21132.
[http://dx.doi.org/10.1371/journal.pone.0021132] [PMID: 21731656]
[67]
Wu PY, Cheng CW, Kaddi CD, Venugopalan J, Hoffman R, Wang MD. Omic and electronic health record big data analytics for precision medicine. IEEE Trans Biomed Eng 2017; 64(2): 263-73.
[http://dx.doi.org/10.1109/TBME.2016.2573285] [PMID: 27740470]
[68]
Guo J, Yuan C, Shang N, et al. Similarity-based health risk prediction using Domain Fusion and electronic health records data. J Biomed Inform 2021; 116: 103711.
[http://dx.doi.org/10.1016/j.jbi.2021.103711] [PMID: 33610881]
[69]
Zhang P, Wang F, Hu J, et al. Towards personalized medicine: Leveraging patient similarity and drug similarity analytics. AMIA Jt Summits Transl Sci Proc 2014; 2014: 132-6.
[70]
Zeng X, Jia Z, He Z, et al. Measure clinical drug–drug similarity using Electronic Medical Records. Int J Med Inform 2019; 124: 97-103.
[http://dx.doi.org/10.1016/j.ijmedinf.2019.02.003] [PMID: 30784433]
[71]
Zhang W, Chen Y, Liu F, Luo F, Tian G, Li X. Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinformatics 2017; 18(1): 18.
[http://dx.doi.org/10.1186/s12859-016-1415-9] [PMID: 28056782]
[72]
Rohani N, Eslahchi C. Drug-drug interaction predicting by neural network using integrated similarity. Sci Rep 2019; 9(1): 13645.
[http://dx.doi.org/10.1038/s41598-019-50121-3] [PMID: 31541145]
[73]
Liu H, Song Y, Guan J, Luo L, Zhuang Z. Inferring new indications for approved drugs via random walk on drug-disease heterogenous networks. BMC Bioinformatics 2016; 17(S17): 539.
[http://dx.doi.org/10.1186/s12859-016-1336-7] [PMID: 28155639]
[74]
Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol 1981; 147(1): 195-7.
[http://dx.doi.org/10.1016/0022-2836(81)90087-5] [PMID: 7265238]
[75]
Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S. GOSemSim: An R package for measuring semantic similarity among GO terms and gene products. Bioinformatics 2010; 26(7): 976-8.
[http://dx.doi.org/10.1093/bioinformatics/btq064] [PMID: 20179076]
[76]
Bleakley K, Yamanishi Y. Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics 2009; 25(18): 2397-403.
[http://dx.doi.org/10.1093/bioinformatics/btp433] [PMID: 19605421]
[77]
Kim E, Choi A, Nam H. Drug repositioning of herbal compounds via a machine-learning approach. BMC Bioinformatics 2019; 20(S10): 247.
[http://dx.doi.org/10.1186/s12859-019-2811-8] [PMID: 31138103]
[78]
Griffith M, Griffith OL, Coffman AC, et al. DGIdb: Mining the druggable genome. Nat Methods 2013; 10(12): 1209-10.
[http://dx.doi.org/10.1038/nmeth.2689] [PMID: 24122041]
[79]
Resnik P. Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. J Artif Intell Res 1999; 11(1): 95-130.
[http://dx.doi.org/10.1613/jair.514]
[80]
Pant N, Madhumita M, Paul S, Cor GO. An integrated method for clustering functionally similar genes. Interdiscip Sci 2021; 13(4): 624-37.
[http://dx.doi.org/10.1007/s12539-021-00424-9] [PMID: 33761117]
[81]
Wang JZ, Du Z, Payattakool R, Yu PS, Chen CF. A new method to measure the semantic similarity of GO terms. Bioinformatics 2007; 23(10): 1274-81.
[http://dx.doi.org/10.1093/bioinformatics/btm087] [PMID: 17344234]
[82]
Asur S, Ucar D, Parthasarathy S. An ensemble framework for clustering protein–protein interaction networks. Bioinformatics 2007; 23(13): i29-40.
[http://dx.doi.org/10.1093/bioinformatics/btm212] [PMID: 17646309]
[83]
Nascimento ACA, Prudêncio RBC, Costa IG. A multiple kernel learning algorithm for drug-target interaction prediction. BMC Bioinformatics 2016; 17(1): 46.
[http://dx.doi.org/10.1186/s12859-016-0890-3] [PMID: 26801218]
[84]
McDonald AG, Boyce S, Tipton KF. ExplorEnz: The primary source of the IUBMB enzyme list. Nucleic Acids Res 2009; 37(Database): D593-7.
[http://dx.doi.org/10.1093/nar/gkn582] [PMID: 18776214]
[85]
Jacob L, Vert JP. Protein-ligand interaction prediction: An improved chemogenomics approach. Bioinformatics 2008; 24(19): 2149-56.
[http://dx.doi.org/10.1093/bioinformatics/btn409] [PMID: 18676415]
[86]
Kim S, Jin D, Lee H. Predicting drug-target interactions using drug-drug interactions. PLoS One 2013; 8(11): e80129.
[http://dx.doi.org/10.1371/journal.pone.0080129] [PMID: 24278248]
[87]
Yan C, Wang J, Lan W, Wu F-X, Pan Y. SDTRLS: Predicting drug-target interactions for complex diseases based on chemical substructures. Complexity 2017; 2017: 1-10.
[http://dx.doi.org/10.1155/2017/2713280]
[88]
Zheng Y, Wu Z. A machine learning-based biological drug-target interaction prediction method for a tripartite heterogeneous network. ACS Omega 2021; 6(4): 3037-45.
[http://dx.doi.org/10.1021/acsomega.0c05377] [PMID: 33553921]
[89]
Olayan RS, Ashoor H, Bajic VB. DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches. Bioinformatics 2018; 34(7): 1164-73.
[http://dx.doi.org/10.1093/bioinformatics/btx731] [PMID: 29186331]
[90]
Monteiro NRC, Ribeiro B, Arrais JP. Drug-target interaction prediction: End-to-end deep learning approach. IEEE/ACM Trans Comput Biol Bioinformatics 2021; 18(6): 2364-74.
[http://dx.doi.org/10.1109/TCBB.2020.2977335] [PMID: 32142454]
[91]
Yan C, Duan G, Zhang Y, Wu FX, Pan Y, Wang J. Predicting drug-drug interactions based on integrated similarity and semi-supervised learning. IEEE/ACM Trans Comput Biol Bioinformatics 2022; 19(1): 168-79.
[http://dx.doi.org/10.1109/TCBB.2020.2988018] [PMID: 32310779]
[92]
Yan XY, Zhang SW, Zhang SY. Prediction of drug–target interaction by label propagation with mutual interaction information derived from heterogeneous network. Mol Biosyst 2016; 12(2): 520-31.
[http://dx.doi.org/10.1039/C5MB00615E] [PMID: 26675534]
[93]
Cheng F, Li W, Wu Z, et al. Prediction of polypharmacological profiles of drugs by the integration of chemical, side effect, and therapeutic space. J Chem Inf Model 2013; 53(4): 753-62.
[http://dx.doi.org/10.1021/ci400010x] [PMID: 23527559]
[94]
Yan XY, Zhang SW, He CR. Prediction of drug-target interaction by integrating diverse heterogeneous information source with multiple kernel learning and clustering methods. Comput Biol Chem 2019; 78: 460-7.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.11.028] [PMID: 30528728]
[95]
Hao M, Wang Y, Bryant SH. Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique. Anal Chim Acta 2016; 909: 41-50.
[http://dx.doi.org/10.1016/j.aca.2016.01.014] [PMID: 26851083]
[96]
Wang B, Mezlini AM, Demir F, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 2014; 11(3): 333-7.
[http://dx.doi.org/10.1038/nmeth.2810] [PMID: 24464287]
[97]
Rohani N, Eslahchi C, Katanforoush A. ISCMF: Integrated similarity-constrained matrix factorization for drug–drug interaction prediction. Netw Model Anal Health Inform Bioinform 2020; 9(1): 11.
[http://dx.doi.org/10.1007/s13721-019-0215-3]
[98]
Lin X, Xu M, Yu H. Prediction of drug-target interactions with cnns and random forest. International Conference on Intelligent Computing. Bari, Italy. 2020; pp. 361-70.
[http://dx.doi.org/10.1007/978-3-030-60802-6_32]
[99]
Jiang M, Li Z, Zhang S, et al. Drug–target affinity prediction using graph neural network and contact maps. RSC Advances 2020; 10(35): 20701-12.
[http://dx.doi.org/10.1039/D0RA02297G] [PMID: 35517730]
[100]
Jin X, Liu M, Wang L, et al. Multi-resolutional collaborative heterogeneous graph convolutional auto-encoder for drug-target interaction prediction IEEE International Conference on Bioinformatics and Biomedicine. Seoul, Korea. 2020; pp. 150-3.
[http://dx.doi.org/10.1109/BIBM49941.2020.9313489]
[101]
Cai L, Lu C, Xu J, et al. Drug repositioning based on the heterogeneous information fusion graph convolutional network. Brief Bioinform 2021; 22(6): bbab319.
[http://dx.doi.org/10.1093/bib/bbab319] [PMID: 34378011]
[102]
Pliakos K, Vens C. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction. BMC Bioinformatics 2020; 21(1): 49.
[http://dx.doi.org/10.1186/s12859-020-3379-z] [PMID: 32033537]
[103]
Sachdev K, Gupta MK. A comprehensive review of feature based methods for drug target interaction prediction. J Biomed Inform 2019; 93: 103159.
[http://dx.doi.org/10.1016/j.jbi.2019.103159] [PMID: 30926470]
[104]
Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M. Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 2008; 24(13): i232-40.
[http://dx.doi.org/10.1093/bioinformatics/btn162] [PMID: 18586719]
[105]
Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596(7873): 583-9.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[106]
Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021; 373(6557): 871-6.
[http://dx.doi.org/10.1126/science.abj8754] [PMID: 34282049]
[107]
Dodaro A, Pavan M, Moro S. Targeting the i7l protease: A rational design for anti-monkeypox drugs? Int J Mol Sci 2023; 24(8): 7119.
[http://dx.doi.org/10.3390/ijms24087119] [PMID: 37108279]
[108]
Wong F, Krishnan A, Zheng EJ, et al. Benchmarking AlphaFold‐enabled molecular docking predictions for antibiotic discovery. Mol Syst Biol 2022; 18(9): e11081.
[http://dx.doi.org/10.15252/msb.202211081] [PMID: 36065847]
[109]
Heo L, Feig M. Multi‐state modeling of G‐protein coupled receptors at experimental accuracy. Proteins 2022; 90(11): 1873-85.
[http://dx.doi.org/10.1002/prot.26382] [PMID: 35510704]
[110]
Guedes IA, Barreto AMS, Marinho D, et al. New machine learning and physics-based scoring functions for drug discovery. Sci Rep 2021; 11(1): 3198.
[http://dx.doi.org/10.1038/s41598-021-82410-1] [PMID: 33542326]
[111]
Ross GA, Morris GM, Biggin PC. One size does not fit all: The limits of structure-based models in drug discovery. J Chem Theory Comput 2013; 9(9): 4266-74.
[http://dx.doi.org/10.1021/ct4004228] [PMID: 24124403]
[112]
Veríssimo GC, Serafim MSM, Kronenberger T, Ferreira RS, Honorio KM, Maltarollo VG. Designing drugs when there is low data availability: One-shot learning and other approaches to face the issues of a long-term concern. Expert Opin Drug Discov 2022; 17(9): 929-47.
[http://dx.doi.org/10.1080/17460441.2022.2114451] [PMID: 35983695]
[113]
van Laarhoven T, Marchiori E. Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS One 2013; 8(6): e66952.
[http://dx.doi.org/10.1371/journal.pone.0066952] [PMID: 23840562]
[114]
van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 2011; 27(21): 3036-43.
[http://dx.doi.org/10.1093/bioinformatics/btr500] [PMID: 21893517]
[115]
Cao DS, Zhang LX, Tan GS, et al. Computational prediction of drug-target interactions using chemical, biological, and network features. Mol Inform 2014; 33(10): 669-81.
[http://dx.doi.org/10.1002/minf.201400009] [PMID: 27485302]
[116]
Zong N, Kim H, Ngo V, Harismendy O. Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations. Bioinformatics 2017; 33(15): 2337-44.
[http://dx.doi.org/10.1093/bioinformatics/btx160] [PMID: 28430977]
[117]
Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. New York, New York, USA. 2014; pp. 701-10.
[http://dx.doi.org/10.1145/2623330.2623732]
[118]
Wen M, Zhang Z, Niu S, et al. Deep-learning-based drug-target interaction prediction. J Proteome Res 2017; 16(4): 1401-9.
[http://dx.doi.org/10.1021/acs.jproteome.6b00618] [PMID: 28264154]
[119]
Öztürk H, Özgür A, Ozkirimli E. DeepDTA: deep drug–target binding affinity prediction. Bioinformatics 2018; 34(17): i821-9.
[http://dx.doi.org/10.1093/bioinformatics/bty593] [PMID: 30423097]
[120]
Wang YB, You ZH, Yang S, Yi HC, Chen ZH, Zheng K. A deep learning-based method for drug-target interaction prediction based on long short-term memory neural network. BMC Med Inform Decis Mak 2020; 20(S2): 49.
[http://dx.doi.org/10.1186/s12911-020-1052-0] [PMID: 32183788]
[121]
Nguyen T, Le H, Quinn TP, Nguyen T, Le TD, Venkatesh S. GraphDTA: Predicting drug–target binding affinity with graph neural networks. Bioinformatics 2021; 37(8): 1140-7.
[http://dx.doi.org/10.1093/bioinformatics/btaa921] [PMID: 33119053]
[122]
Wan F, Hong L, Xiao A, Jiang T, Zeng J. NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug–target interactions. Bioinformatics 2019; 35(1): 104-11.
[http://dx.doi.org/10.1093/bioinformatics/bty543] [PMID: 30561548]
[123]
Li Y, Qiao G, Wang K, Wang G. Drug–target interaction predication via multi-channel graph neural networks. Brief Bioinform 2022; 23(1): bbab346.
[http://dx.doi.org/10.1093/bib/bbab346] [PMID: 34661237]
[124]
Wang S, Shan P, Zhao Y, Zuo L. GanDTI: A multi-task neural network for drug-target interaction prediction. Comput Biol Chem 2021; 92: 107476.
[http://dx.doi.org/10.1016/j.compbiolchem.2021.107476] [PMID: 33799080]
[125]
Huang K, Xiao C, Glass LM, Sun J. MolTrans: Molecular interaction transformer for drug–target interaction prediction. Bioinformatics 2021; 37(6): 830-6.
[http://dx.doi.org/10.1093/bioinformatics/btaa880] [PMID: 33070179]
[126]
Zhang P, Wei Z, Che C, Jin B. DeepMGT-DTI: Transformer network incorporating multilayer graph information for Drug–Target interaction prediction. Comput Biol Med 2022; 142: 105214.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105214] [PMID: 35030496]
[127]
Hou Y, Xia Y, Wu L, et al. Discovering drug–target interaction knowledge from biomedical literature. Bioinformatics 2022; 38(22): 5100-7.
[http://dx.doi.org/10.1093/bioinformatics/btac648] [PMID: 36205562]
[128]
Wang M, Tang C, Chen J. Drug-target interaction prediction via dual laplacian graph regularized matrix completion. BioMed Res Int 2018; 2018: 1-12.
[http://dx.doi.org/10.1155/2018/1425608] [PMID: 30627536]
[129]
Liu Y, Wu M, Miao C, Zhao P, Li XL. Neighborhood regularized logistic matrix factorization for drug-target interaction prediction. PLOS Comput Biol 2016; 12(2): e1004760.
[http://dx.doi.org/10.1371/journal.pcbi.1004760] [PMID: 26872142]
[130]
Sajadi SZ, Zare Chahooki MA, Tavakol M, Gharaghani S. Matrix factorization with denoising autoencoders for prediction of drug–target interactions. Mol Divers 2023; 27: 1333-43.
[http://dx.doi.org/10.1007/s11030-022-10492-8] [PMID: 35871213]
[131]
Cheng F, Liu C, Jiang J, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLOS Comput Biol 2012; 8(5): e1002503.
[http://dx.doi.org/10.1371/journal.pcbi.1002503] [PMID: 22589709]
[132]
Wang W, Yang S, Li J. Drug target predictions based on heterogeneous graph inference. Pac Symp Biocomput 2013; 53-64.
[133]
Chen X, Liu MX, Yan GY. Drug–target interaction prediction by random walk on the heterogeneous network. Mol Biosyst 2012; 8(7): 1970-8.
[http://dx.doi.org/10.1039/c2mb00002d] [PMID: 22538619]
[134]
Qian S, Liang S, Yu H. Leveraging genetic interactions for adverse drug-drug interaction prediction. PLOS Comput Biol 2019; 15(5): e1007068.
[http://dx.doi.org/10.1371/journal.pcbi.1007068] [PMID: 31125330]
[135]
Guo L, Lei X, Chen M, Pan Y. Msresg: Using gae and residual gcn to predict drug–drug interactions based on multi-source drug features. Interdiscip Sci 2023; 15(2): 171-88.
[http://dx.doi.org/10.1007/s12539-023-00550-6] [PMID: 36646843]
[136]
Gottlieb A, Stein GY, Oron Y, Ruppin E, Sharan R. INDI: A computational framework for inferring drug interactions and their associated recommendations. Mol Syst Biol 2012; 8(1): 592.
[http://dx.doi.org/10.1038/msb.2012.26] [PMID: 22806140]
[137]
Ferdousi R, Safdari R, Omidi Y. Computational prediction of drug-drug interactions based on drugs functional similarities. J Biomed Inform 2017; 70: 54-64.
[http://dx.doi.org/10.1016/j.jbi.2017.04.021] [PMID: 28465082]
[138]
Ryu JY, Kim HU, Lee SY. Deep learning improves prediction of drug–drug and drug–food interactions. Proc Natl Acad Sci 2018; 115(18): E4304-11.
[http://dx.doi.org/10.1073/pnas.1803294115] [PMID: 29666228]
[139]
Chu X, Lin Y, Wang Y, et al. Mlrda: A multi-task semi-supervised learning framework for drug-drug interaction prediction. Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao, China. 2019; pp. 4518-24.
[http://dx.doi.org/10.24963/ijcai.2019/628]
[140]
Zhang Y, Qiu Y, Cui Y, Liu S, Zhang W. Predicting drug-drug interactions using multi-modal deep auto-encoders based network embedding and positive-unlabeled learning. Methods 2020; 179: 37-46.
[http://dx.doi.org/10.1016/j.ymeth.2020.05.007] [PMID: 32497603]
[141]
Zhang Y, Lu Z. Exploring semi-supervised variational autoencoders for biomedical relation extraction. Methods 2019; 166: 112-9.
[http://dx.doi.org/10.1016/j.ymeth.2019.02.021] [PMID: 30822516]
[142]
Feng YH, Zhang SW, Shi JY. DPDDI: a deep predictor for drug-drug interactions. BMC Bioinformatics 2020; 21(1): 419.
[http://dx.doi.org/10.1186/s12859-020-03724-x] [PMID: 32972364]
[143]
Wang J, Zhang S, Li R, Chen G, Yan S, Ma L. Multi-view feature representation and fusion for drug-drug interactions prediction. BMC Bioinformatics 2023; 24(1): 93.
[http://dx.doi.org/10.1186/s12859-023-05212-4] [PMID: 36918766]
[144]
Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018; 34(13): i457-66.
[http://dx.doi.org/10.1093/bioinformatics/bty294] [PMID: 29949996]
[145]
Karim MR, Cochez M, Jares JB, et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. Niagara Falls, NY, USA. 2019; pp. 113-23.
[http://dx.doi.org/10.1145/3307339.3342161]
[146]
Lin X, Quan Z, Wang Z-J, et al. KGNN: Knowledge graph neural network for drug-drug interaction prediction. Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. Yokohama, Yokohama, Japan. 2021; pp. 2739-45.
[147]
Duan B, Peng J, Zhang Y. IMSE: interaction information attention and molecular structure based drug drug interaction extraction. BMC Bioinformatics 2022; 23(S7): 338.
[http://dx.doi.org/10.1186/s12859-022-04876-8] [PMID: 35965308]
[148]
Zaikis D, Vlahavas I. TP-DDI: Transformer-based pipeline for the extraction of Drug-Drug Interactions. Artif Intell Med 2021; 119: 102153.
[http://dx.doi.org/10.1016/j.artmed.2021.102153] [PMID: 34531012]
[149]
Lin S, Wang Y, Zhang L, et al. MDF-SA-DDI: Predicting drug–drug interaction events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism. Brief Bioinform 2022; 23(1): bbab421.
[http://dx.doi.org/10.1093/bib/bbab421] [PMID: 34671814]
[150]
Zhang P, Wang F, Hu J, Sorrentino R. Label propagation prediction of drug-drug interactions based on clinical side effects. Sci Rep 2015; 5(1): 12339.
[http://dx.doi.org/10.1038/srep12339] [PMID: 26196247]
[151]
Sridhar D, Fakhraei S, Getoor L. A probabilistic approach for collective similarity-based drug–drug interaction prediction. Bioinformatics 2016; 32(20): 3175-82.
[http://dx.doi.org/10.1093/bioinformatics/btw342] [PMID: 27354693]
[152]
Shi JY, Huang H, Li JX, et al. TMFUF: A triple matrix factorization-based unified framework for predicting comprehensive drug-drug interactions of new drugs. BMC Bioinformatics 2018; 19(S14): 411.
[http://dx.doi.org/10.1186/s12859-018-2379-8] [PMID: 30453924]
[153]
Zhang W, Chen Y, Li D, Yue X. Manifold regularized matrix factorization for drug-drug interaction prediction. J Biomed Inform 2018; 88: 90-7.
[http://dx.doi.org/10.1016/j.jbi.2018.11.005] [PMID: 30445219]
[154]
Zhang W, Jing K, Huang F, et al. SFLLN: A sparse feature learning ensemble method with linear neighborhood regularization for predicting drug–drug interactions. Inf Sci 2019; 497: 189-201.
[http://dx.doi.org/10.1016/j.ins.2019.05.017]
[155]
Jain S, Chouzenoux E, Kumar K, Majumdar A. Graph regularized probabilistic matrix factorization for drug-drug interactions prediction. IEEE J Biomed Health Inform 2023; 27(5): 2565-74.
[http://dx.doi.org/10.1109/JBHI.2023.3246225] [PMID: 37027562]
[156]
Segura-Bedmar I, Martínez P, de Pablo-Sánchez C. Extracting drug-drug interactions from biomedical texts. BMC Bioinformatics 2010; 11(S5): 9.
[http://dx.doi.org/10.1186/1471-2105-11-S5-P9]
[157]
Segura-Bedmar I, Martínez P, de Pablo-Sánchez C. A linguistic rule-based approach to extract drug-drug interactions from pharmacological documents. BMC bioinformatics 2011; 12(S2): S1.
[http://dx.doi.org/10.1186/1471-2105-12-S2-S1]
[158]
Zhao Z, Yang Z, Luo L, Lin H, Wang J. Drug drug interaction extraction from biomedical literature using syntax convolutional neural network. Bioinformatics 2016; 32(22): 3444-53.
[http://dx.doi.org/10.1093/bioinformatics/btw486] [PMID: 27466626]
[159]
Zhou D, Miao L, He Y. Position-aware deep multi-task learning for drug–drug interaction extraction. Artif Intell Med 2018; 87: 1-8.
[http://dx.doi.org/10.1016/j.artmed.2018.03.001] [PMID: 29559249]
[160]
Sahu SK, Anand A. Drug-drug interaction extraction from biomedical texts using long short-term memory network. J Biomed Inform 2018; 86: 15-24.
[http://dx.doi.org/10.1016/j.jbi.2018.08.005] [PMID: 30142385]
[161]
Zhu Y, Li L, Lu H, Zhou A, Qin X. Extracting drug-drug interactions from texts with BioBERT and multiple entity-aware attentions. J Biomed Inform 2020; 106: 103451.
[http://dx.doi.org/10.1016/j.jbi.2020.103451] [PMID: 32454243]
[162]
Yang J, Ding Y, Long S, et al. Ddi-mug: Multi-aspect graphs for drug-drug interaction extraction. Front digit health 2023; 5: 1154133.
[163]
Deng S, Sun Y, Zhao T, Hu Y, Zang T. A review of drug side effect identification methods. Curr Pharm Des 2020; 26(26): 3096-104.
[http://dx.doi.org/10.2174/1381612826666200612163819] [PMID: 32532187]
[164]
Yamanishi Y, Pauwels E, Kotera M. Drug side-effect prediction based on the integration of chemical and biological spaces. J Chem Inf Model 2012; 52(12): 3284-92.
[http://dx.doi.org/10.1021/ci2005548] [PMID: 23157436]
[165]
Huang LC, Wu X, Chen JY. Predicting adverse side effects of drugs. BMC Genomics 2011; 5(S5): S11.
[http://dx.doi.org/10.1186/1471-2164-12-S5-S11]
[166]
Zhang W, Yue X, Liu F, Chen Y, Tu S, Zhang X. A unified frame of predicting side effects of drugs by using linear neighborhood similarity. BMC Syst Biol 2017; 11(S6): 101.
[http://dx.doi.org/10.1186/s12918-017-0477-2] [PMID: 29297371]
[167]
Pauwels E, Stoven V, Yamanishi Y. Predicting drug side-effect profiles: A chemical fragment-based approach. BMC Bioinformatics 2011; 12(1): 169.
[http://dx.doi.org/10.1186/1471-2105-12-169] [PMID: 21586169]
[168]
Zhang W, Zou H, Luo L, Liu Q, Wu W, Xiao W. Predicting potential side effects of drugs by recommender methods and ensemble learning. Neurocomputing 2016; 173: 979-87.
[http://dx.doi.org/10.1016/j.neucom.2015.08.054]
[169]
Zhang W, Liu F, Luo L, Zhang J. Predicting drug side effects by multi-label learning and ensemble learning. BMC Bioinformatics 2015; 16(1): 365.
[http://dx.doi.org/10.1186/s12859-015-0774-y] [PMID: 26537615]
[170]
Guo X, Zhou W, Yu Y, Ding Y, Tang J, Guo F. A novel triple matrix factorization method for detecting drug-side effect association based on kernel target alignment. BioMed Res Int 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/4675395] [PMID: 32596314]
[171]
Ding Y, Tang J, Guo F. Identification of drug-side effect association via semisupervised model and multiple kernel learning. IEEE J Biomed Health Inform 2019; 23(6): 2619-32.
[http://dx.doi.org/10.1109/JBHI.2018.2883834] [PMID: 30507518]
[172]
Jiang H, Qiu Y, Hou W, Cheng X, Yim MY, Ching WK. Drug side-effect profiles prediction: From empirical to structural risk minimization. IEEE/ACM Trans Comput Biol Bioinformatics 2020; 17(2): 402-10.
[PMID: 29994681]
[173]
Ietswaart R, Arat S, Chen AX, et al. Machine learning guided association of adverse drug reactions with in vitro target-based pharmacology. EBioMedicine 2020; 57: 102837.
[http://dx.doi.org/10.1016/j.ebiom.2020.102837] [PMID: 32565027]
[174]
Zhang F, Sun B, Diao X, Zhao W, Shu T. Prediction of adverse drug reactions based on knowledge graph embedding. BMC Med Inform Decis Mak 2021; 21(1): 38.
[http://dx.doi.org/10.1186/s12911-021-01402-3] [PMID: 33541342]
[175]
Xu R, Wang Q. Automatic construction of a large-scale and accurate drug-side-effect association knowledge base from biomedical literature. J Biomed Inform 2014; 51: 191-9.
[http://dx.doi.org/10.1016/j.jbi.2014.05.013] [PMID: 24928448]
[176]
La MK, Sedykh A, Fourches D, Muratov E, Tropsha A. Predicting adverse drug effects from literature- and database-mined assertions. Drug Saf 2018; 41(11): 1059-72.
[http://dx.doi.org/10.1007/s40264-018-0688-5] [PMID: 29876834]
[177]
Jang G, Lee T, Hwang S, et al. PISTON: Predicting drug indications and side effects using topic modeling and natural language processing. J Biomed Inform 2018; 87: 96-107.
[http://dx.doi.org/10.1016/j.jbi.2018.09.015] [PMID: 30268842]
[178]
Sui M, Cui L. Constructing a gene-drug-adverse reactions network and inferring potential gene-adverse reactions associations using a text mining approach. Stud Health Technol Inform 2017; 245: 531-5.
[PMID: 29295151]
[179]
Song M, Baek SH, Heo GE, Lee JH. Inferring drug-protein−side effect relationships from biomedical text. Genes 2019; 10(2): 159.
[http://dx.doi.org/10.3390/genes10020159] [PMID: 30791472]
[180]
Galeano D, Li S, Gerstein M, Paccanaro A. Predicting the frequencies of drug side effects. Nat Commun 2020; 11(1): 4575.
[http://dx.doi.org/10.1038/s41467-020-18305-y] [PMID: 32917868]
[181]
Zhao H, Wang S, Zheng K, Zhao Q, Zhu F, Wang J. A similarity-based deep learning approach for determining the frequencies of drug side effects. Brief Bioinform 2022; 23(1): bbab449.
[http://dx.doi.org/10.1093/bib/bbab449] [PMID: 34718402]
[182]
Xu X, Yue L, Li B, et al. DSGAT: Predicting frequencies of drug side effects by graph attention networks. Brief Bioinform 2022; 23(2): bbab586.
[http://dx.doi.org/10.1093/bib/bbab586] [PMID: 35043189]
[183]
Zhao H, Zheng K, Li Y, Wang J. A novel graph attention model for predicting frequencies of drug–side effects from multi-view data. Brief Bioinform 2021; 22(6): bbab239.
[http://dx.doi.org/10.1093/bib/bbab239] [PMID: 34213525]
[184]
Xuan P, Wang M, Liu Y, Wang D, Zhang T, Nakaguchi T. Integrating specific and common topologies of heterogeneous graphs and pairwise attributes for drug-related side effect prediction. Brief Bioinform 2022; 23(3): bbac126.
[http://dx.doi.org/10.1093/bib/bbac126] [PMID: 35470853]
[185]
Yang M, Wu G, Zhao Q, Li Y, Wang J. Computational drug repositioning based on multi-similarities bilinear matrix factorization. Brief Bioinform 2021; 22(4): bbaa267.
[http://dx.doi.org/10.1093/bib/bbaa267] [PMID: 33147616]
[186]
Xie G, Li J, Gu G, et al. BGMSDDA: A bipartite graph diffusion algorithm with multiple similarity integration for drug–disease association prediction. Mol Omics 2021; 17(6): 997-1011.
[http://dx.doi.org/10.1039/D1MO00237F] [PMID: 34610633]
[187]
Yan CK, Wang WX, Zhang G, et al. Birwdda: A novel drug repositioning method based on multisimilarity fusion. J Comput Biol 2019; 26(11): 1230-42.
[http://dx.doi.org/10.1089/cmb.2019.0063]
[188]
Li Z, Huang Q, Chen X, et al. Identification of drug-disease associations using information of molecular structures and clinical symptoms via deep convolutional neural network. Front Chem 2020; 7: 924.
[http://dx.doi.org/10.3389/fchem.2019.00924] [PMID: 31998700]
[189]
Wang H, Zhao S, Zhao J, Feng Z. A model for predicting drug-disease associations based on dense convolutional attention network. Math Biosci Eng 2021; 18(6): 7419-39.
[http://dx.doi.org/10.3934/mbe.2021367] [PMID: 34814256]
[190]
Xuan P, Cui H, Shen T, Sheng N, Zhang T. Heterodualnet: A dual convolutional neural network with heterogeneous layers for drug-disease association prediction via chou’s five-step rule. Front Pharmacol 2019; 10: 1301.
[http://dx.doi.org/10.3389/fphar.2019.01301] [PMID: 31780934]
[191]
Xuan P, Ye Y, Zhang T, Zhao L, Sun C. Convolutional neural network and bidirectional long short-term memory-based method for predicting drug-disease associations. Cells 2019; 8(7): 705.
[http://dx.doi.org/10.3390/cells8070705] [PMID: 31336774]
[192]
Chen P, Bao T, Yu X, Liu Z. A drug repositioning algorithm based on a deep autoencoder and adaptive fusion. BMC Bioinformatics 2021; 22(1): 532.
[http://dx.doi.org/10.1186/s12859-021-04406-y] [PMID: 34717542]
[193]
Zhao BW, Hu L, You ZH, Wang L, Su XR. HINGRL: Predicting drug–disease associations with graph representation learning on heterogeneous information networks. Brief Bioinform 2022; 23(1): bbab515.
[http://dx.doi.org/10.1093/bib/bbab515] [PMID: 34891172]
[194]
Xuan P, Gao L, Sheng N, Zhang T, Nakaguchi T. Graph convolutional autoencoder and fully-connected autoencoder with attention mechanism based method for predicting drug-disease associations. IEEE J Biomed Health Inform 2021; 25(5): 1793-804.
[http://dx.doi.org/10.1109/JBHI.2020.3039502] [PMID: 33216722]
[195]
Wang Y, Gao YL, Wang J, Li F, Liu JX. Msgca: Drug-disease associations prediction based on multi-similarities graph convolutional autoencoder. IEEE J Biomed Health Inform 2023; 1-9.
[http://dx.doi.org/10.1109/JBHI.2023.3272154] [PMID: 37163398]
[196]
Zimmermann M, Patil KR, Typas A, Maier L. Towards a mechanistic understanding of reciprocal drug–microbiome interactions. Mol Syst Biol 2021; 17(3): e10116.
[http://dx.doi.org/10.15252/msb.202010116] [PMID: 33734582]
[197]
Zhu L, Duan G, Yan C, et al. Prediction of microbe-drug associations based on KATZ measure. IEEE International Conference on Bioinformatics and Biomedicine. San Diego, CA, USA. 2019; pp. 183-7.
[http://dx.doi.org/10.1109/BIBM47256.2019.8983209]
[198]
Katz L. A new status index derived from sociometric analysis. Psychometrika 1953; 18(1): 39-43.
[http://dx.doi.org/10.1007/BF02289026]
[199]
Long Y, Wu M, Kwoh CK, Luo J, Li X. Predicting human microbe–drug associations via graph convolutional network with conditional random field. Bioinformatics 2020; 36(19): 4918-27.
[http://dx.doi.org/10.1093/bioinformatics/btaa598] [PMID: 32597948]
[200]
Long Y, Wu M, Liu Y, Kwoh CK, Luo J, Li X. Ensembling graph attention networks for human microbe–drug association prediction. Bioinformatics 2020; 36(S2): i779-86.
[http://dx.doi.org/10.1093/bioinformatics/btaa891] [PMID: 33381844]
[201]
Long Y, Luo J. Association mining to identify microbe drug interactions based on heterogeneous network embedding representation. IEEE J Biomed Health Inform 2021; 25(1): 266-75.
[http://dx.doi.org/10.1109/JBHI.2020.2998906] [PMID: 32750918]
[202]
Long Y, Zhang Y, Wu M, et al. Heterogeneous graph attention networks for drug virus association prediction. Methods 2022; 198: 11-8.
[http://dx.doi.org/10.1016/j.ymeth.2021.08.003] [PMID: 34419588]
[203]
Deng L, Huang Y, Liu X, et al. Graph2mda: A multi-modal variational graph embedding model for predicting microbe-drug associations. Bioinformatics 2021; 38(4): 1118-25.
[PMID: 34864873]
[204]
Fan L, Wang L, Zhu X. A novel microbe-drug association prediction model based on stacked autoencoder with multi-head attention mechanism. Sci Rep 2023; 13(1): 7396.
[http://dx.doi.org/10.1038/s41598-023-34438-8] [PMID: 37149692]
[205]
Huang H, Sun Y, Lan M, et al. Gnaemda: Microbe-drug associations prediction on graph normalized convolutional network. IEEE J Biomed Health Inform 2023; 27(3): 1635-43.
[http://dx.doi.org/10.1109/JBHI.2022.3233711]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy