Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

NOX-2 Inhibitors may be Potential Drug Candidates for the Management of COVID-19 Complications

Author(s): Bimalendu Chowdhury*, Biswa Mohan Sahoo, Akankshya Priyadarsani Jena, Korikana Hiramani, Amulyaratna Behera and Biswajeet Acharya

Volume 16, Issue 2, 2024

Published on: 17 July, 2023

Page: [128 - 133] Pages: 6

DOI: 10.2174/2589977515666230706114812

Price: $65

conference banner
Abstract

COVID-19 is an RNA virus that attacks the targeting organs, which express angiotensin- converting enzyme-2 (ACE-2), such as the lungs, heart, renal system, and gastrointestinal tract. The virus that enters the cell by endocytosis triggers ROS production within the confines of endosomes via a NOX-2 containing NADPH-oxidase. Various isoforms of NADPH oxidase are expressed in airways and alveolar epithelial cells, endothelial and vascular smooth muscle cells, and inflammatory cells, such as alveolar macrophages, monocytes, neutrophils, and Tlymphocytes. The key NOX isoform expressed in macrophages and neutrophils is the NOX-2 oxidase, whereas, in airways and alveolar epithelial cells, it appears to be NOX-1 and NOX-2. The respiratory RNA viruses induce NOX-2-mediated ROS production in the endosomes of alveolar macrophages. The mitochondrial and NADPH oxidase (NOX) generated ROS can enhance TGF-β signaling to promote fibrosis of the lungs. The endothelium-derived ROS and platelet-derived ROS, due to activation of the NADPH-oxidase enzyme, play a crucial role in platelet activation. It has been observed that NOX-2 is generally activated in COVID-19 patients. The post-COVID complications like pulmonary fibrosis and platelet aggregation may be due to the activation of NOX-2. NOX-2 inhibitors may be a useful drug candidate to prevent COVID-19 complications like pulmonary fibrosis and platelet aggregation.

Graphical Abstract

[1]
Perlman S, Netland J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat Rev Microbiol 2009; 7(6): 439-50.
[http://dx.doi.org/10.1038/nrmicro2147] [PMID: 19430490]
[2]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[3]
Carlos WG, Dela Cruz CS, Cao B, Pasnick S, Jamil S. Novel Wuhan (2019-nCoV) Coronavirus. Am J Respir Crit Care Med 2020; 201(4): 7-P8.
[http://dx.doi.org/10.1164/rccm.2014P7] [PMID: 32004066]
[4]
Chen C, Zhang XR, Ju ZY, He WF. Advances in the research of mechanism and related immunotherapy on the cytokine storm induced by coronavirus disease 2019. Zhonghua Shao Shang Za Zhi 2020; 36(6): 471-5.
[PMID: 32114747]
[5]
Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge. Virol J 2019; 16(1): 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[6]
Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020; 11(1): 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[7]
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese centre of disease control and prevention. JAMA 2020; 323(13): 1239-42.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[8]
Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020; 181(5): 1036-1045.e9.
[http://dx.doi.org/10.1016/j.cell.2020.04.026] [PMID: 32416070]
[9]
Chernyak BV, Popova EN, Prikhodko AS, Grebenchikov OA, Zinovkina LA, Zinovkin RA. COVID-19 and oxidative stress. Biochemistry 2020; 85(12-13): 1543-53.
[http://dx.doi.org/10.1134/S0006297920120068] [PMID: 33705292]
[10]
To EE, Vlahos R, Luong R, et al. Endosomal NOX2 oxidase exacerbates virus pathogenicity and is a target for antiviral therapy. Nat Commun 2017; 8(1): 69.
[http://dx.doi.org/10.1038/s41467-017-00057-x] [PMID: 28701733]
[11]
Griffith B, Pendyala S, Hecker L, Lee PJ, Natarajan V, Thannickal VJ. NOX enzymes and pulmonary disease. Antioxid Redox Signal 2009; 11(10): 2505-16.
[http://dx.doi.org/10.1089/ars.2009.2599] [PMID: 19331546]
[12]
Carnesecchi S, Deffert C, Pagano A, et al. NADPH oxidase-1 plays a crucial role in hyperoxia-induced acute lung injury in mice. Am J Respir Crit Care Med 2009; 180(10): 972-81.
[http://dx.doi.org/10.1164/rccm.200902-0296OC] [PMID: 19661248]
[13]
Tickner J, Fan LM, Du J, Meijles D, Li JM. Nox2-derived ROS in PPARγ signaling and cell-cycle progression of lung alveolar epithelial cells. Free Radic Biol Med 2011; 51(3): 763-72.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.027] [PMID: 21664456]
[14]
Yang CS, Kim JJ, Lee SJ, et al. TLR3-triggered reactive oxygen species contribute to inflammatory responses by activating signal transducer and activator of transcription-1. J Immunol 2013; 190(12): 6368-77.
[http://dx.doi.org/10.4049/jimmunol.1202574] [PMID: 23670194]
[15]
Brinkmann V, Laube B, Abu Abed U, Goosmann C, Zychlinsky A. Neutrophil extracellular traps: How to generate and visualize them. J Vis Exp 2010; 36(36)e1724
[PMID: 20182410]
[16]
Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 2011; 208(3): 417-20.
[http://dx.doi.org/10.1084/jem.20110367] [PMID: 21357740]
[17]
Sheshachalam A, Srivastava N, Mitchell T, Lacy P, Eitzen G. Granule protein processing and regulated secretion in neutrophils. Front Immunol 2014; 5: 448.
[http://dx.doi.org/10.3389/fimmu.2014.00448] [PMID: 25285096]
[18]
King GL, Loeken MR. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol 2004; 122(4): 333-8.
[http://dx.doi.org/10.1007/s00418-004-0678-9] [PMID: 15257460]
[19]
Seyed AJ, Pravin B, Rana S. COVID-19 and pulmonary fibrosis: A potential role of the TGF-β pathway. Int J Pul & Res Sci 2021; 6(1): 001-4.
[20]
Sheppard D. Epithelial-mesenchymal interactions in fibrosis and repair. Transforming growth factor-β activation by epithelial cells and fibroblasts. Ann Am Thorac Soc 2015; 12(S1): S21-3.
[http://dx.doi.org/10.1513/AnnalsATS.201406-245MG] [PMID: 25830829]
[21]
Hecker L, Cheng J, Thannickal VJ. Targeting NOX enzymes in pulmonary fibrosis. Cell Mol Life Sci 2012; 69(14): 2365-71.
[http://dx.doi.org/10.1007/s00018-012-1012-7] [PMID: 22618245]
[22]
Manoury B, Nenan S, Leclerc O, et al. The absence of reactive oxygen species production protects mice against bleomycin-induced pulmonary fibrosis. Respir Res 2005; 6(1): 11.
[http://dx.doi.org/10.1186/1465-9921-6-11] [PMID: 15663794]
[23]
Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[24]
Gentile F, Aimo A, Forfori F, et al. COVID-19 and risk of pulmonary fibrosis: The importance of planning ahead. Eur J Prev Cardiol 2020; 27(13): 1442-6.
[http://dx.doi.org/10.1177/2047487320932695] [PMID: 32551971]
[25]
Loscalzo J. Oxidant stress: A key determinant of atherothrombosis. Biochem Soc Trans 2003; 31(5): 1059-61.
[http://dx.doi.org/10.1042/bst0311059] [PMID: 14505479]
[26]
Krötz F, Sohn HY, Gloe T, et al. NAD(P)H oxidase–dependent platelet superoxide anion release increases platelet recruitment. Blood 2002; 100(3): 917-24.
[http://dx.doi.org/10.1182/blood.V100.3.917] [PMID: 12130503]
[27]
Krötz F, Sohn HY, Pohl U. Reactive oxygen species: players in the platelet game. Arterioscler Thromb Vasc Biol 2004; 24(11): 1988-96.
[http://dx.doi.org/10.1161/01.ATV.0000145574.90840.7d] [PMID: 15374851]
[28]
Iuliano L, Colavita AR, Leo R, Praticò D, Violi F. Oxygen free radicals and platelet activation. Free Radic Biol Med 1997; 22(6): 999-1006.
[http://dx.doi.org/10.1016/S0891-5849(96)00488-1] [PMID: 9034239]
[29]
Cooper D, Stokes KY, Tailor A, Granger DN. Oxidative stress promotes blood cell-endothelial cell interactions in the microcirculation. Cardiovasc Toxicol 2002; 2(3): 165-80.
[http://dx.doi.org/10.1007/s12012-002-0002-7] [PMID: 12665663]
[30]
Long H, Nie L, Xiang X, et al. D-Dimer and prothrombin time are the significant indicators of severe COVID-19 and poor prognosis. BioMed Res Int 2020; 2020: 1-10.
[http://dx.doi.org/10.1155/2020/6159720] [PMID: 32596339]
[31]
Sonkar VK, Kumar R, Jensen M, et al. Nox2 NADPH oxidase is dispensable for platelet activation or arterial thrombosis in mice. Blood Adv 2019; 3(8): 1272-84.
[http://dx.doi.org/10.1182/bloodadvances.2018025569] [PMID: 30995985]
[32]
Violi F, Loffredo L, Carnevale R, Pignatelli P, Pastori D. Atherothrombosis and oxidative stress: Mechanisms and management in elderly. Antioxid Redox Signal 2017; 27(14): 1083-124.
[http://dx.doi.org/10.1089/ars.2016.6963] [PMID: 28816059]
[33]
Begonja AJ, Gambaryan S, Geiger J, et al. Platelet NAD(P)H-oxidase–generated ROS production regulates αIIbβ3-integrin activation independent of the NO/cGMP pathway. Blood 2005; 106(8): 2757-60.
[http://dx.doi.org/10.1182/blood-2005-03-1047] [PMID: 15976180]
[34]
Violi F, Oliva A, Cangemi R, et al. Nox2 activation in Covid-19. Redox Biol 2020.36101655
[http://dx.doi.org/10.1016/j.redox.2020.101655] [PMID: 32738789]
[35]
Patriarca P, Cramer R, Moncalvo S, Rossi F, Romeo D. Enzymatic basis of metabolic stimulation in leucocytes during phagocytosis: The role of activated NADPH oxidase. Arch Biochem Biophys 1971; 145(1): 255-62.
[http://dx.doi.org/10.1016/0003-9861(71)90034-8] [PMID: 4399354]
[36]
Doussière J, Vignais PV. Diphenylene iodonium as an inhibitor of the NADPH oxidase complex of bovine neutrophils. Factors controlling the inhibitory potency of diphenylene iodonium in a cell-free system of oxidase activation. Eur J Biochem 1992; 208(1): 61-71.
[http://dx.doi.org/10.1111/j.1432-1033.1992.tb17159.x] [PMID: 1324836]
[37]
'T Hart BA, Simons JM, Shoshan K-S, Bakker NPM, Labadie RP. Antiarthritic activity of the newly developed neutrophil oxidative burst antagonist apocynin. Free Radic Biol Med 1990; 9(2): 127-31.
[http://dx.doi.org/10.1016/0891-5849(90)90115-Y] [PMID: 2172098]
[38]
Altenhöfer S, Radermacher KA, Kleikers PWM, Wingler K, Schmidt HHHW. Evolution of NADPH oxidase inhibitors: Selectivity and mechanisms for target engagement. Antioxid Redox Signal 2015; 23(5): 406-27.
[http://dx.doi.org/10.1089/ars.2013.5814] [PMID: 24383718]
[39]
Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect Dis 2020; 20(4): 425-34.
[http://dx.doi.org/10.1016/S1473-3099(20)30086-4] [PMID: 32105637]
[40]
Carnevale R, Farcomeni A, Cangemi R, et al. Serum NOX2 and urinary isoprostanes predict vascular events in patients with atrial fibrillation. Thromb Haemost 2015; 113(3): 617-24.
[http://dx.doi.org/10.1160/TH14-07-0571] [PMID: 25392853]
[41]
Loffredo L, Carnevale R, Cangemi R, et al. NOX2 up-regulation is associated with artery dysfunction in patients with peripheral artery disease. Int J Cardiol 2013; 165(1): 184-92.
[http://dx.doi.org/10.1016/j.ijcard.2012.01.069] [PMID: 22336250]
[42]
Violi F, Ceccarelli G, Cangemi R, et al. Hypoalbuminaemia, coagulopathy and vascular disease in COVID-19. Circ Res 2020; 127(3): 400-1.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317173] [PMID: 32508261]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy