Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

A Comprehensive Review on Inorganic Nanoparticles as Effective Modulators of Amyloidogenesis

Author(s): Debashmita Chakraborty, Aniket Mukherjee and Nandini Sarkar*

Volume 30, Issue 8, 2023

Published on: 20 July, 2023

Page: [640 - 652] Pages: 13

DOI: 10.2174/0929866530666230705153229

Price: $65

conference banner
Abstract

Many degenerative disorders have started to develop as a result of the deposition of insoluble protein fibrillar clumps known as amyloid. This deposition mostly limits normal cellular function and signaling. This build-up of amyloid in vivo results in a variety of illnesses in the body, including type 2 diabetes, several neurodegenerative diseases (such as Alzheimer's disease and spongiform encephalopathy), and Alzheimer's disease. Growing interest has been demonstrated in nanoparticles as a potential treatments for amyloidosis throughout the past few decades. Inorganic nanoparticles are one of them and have also been in substantial research as a potential anti-amyloid drug. Inorganic nanoparticles have emerged as a good study candidates because of their nano size, distinctive physical characteristics, and capacity to traverse the blood-brain barrier. In the current review, we have focused on the effects of different types of inorganic nanoparticles on amyloidogenesis and attempted to understand their underlying mechanism of action.

Graphical Abstract

[1]
Sipe, J.D.; Benson, M.D.; Buxbaum, J.N.; Ikeda, S.I.; Merlini, G.; Saraiva, M.J.M.; Westermark, P. Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the International Society of Amyloidosis. Amyloid, 2010, 17(3-4), 101-104.
[http://dx.doi.org/10.3109/13506129.2010.526812] [PMID: 21039326]
[2]
Fink, A.L. Protein aggregation: Folding aggregates, inclusion bodies and amyloid. Fold. Des., 1998, 3(1), R9-R23.
[http://dx.doi.org/10.1016/S1359-0278(98)00002-9] [PMID: 9502314]
[3]
Fowler, D.M.; Koulov, A.V.; Balch, W.E.; Kelly, J.W. Functional amyloid – from bacteria to humans. Trends Biochem. Sci., 2007, 32(5), 217-224.
[http://dx.doi.org/10.1016/j.tibs.2007.03.003] [PMID: 17412596]
[4]
Eisenberg, D.; Jucker, M. The amyloid state of proteins in human diseases. Cell, 2012, 148(6), 1188-1203.
[http://dx.doi.org/10.1016/j.cell.2012.02.022] [PMID: 22424229]
[5]
Kelly, J.W. Mechanisms of amyloidogenesis. Nat. Struct. Biol., 2000, 7(10), 824-826.
[http://dx.doi.org/10.1038/82815] [PMID: 11017183]
[6]
Parijat, P.; Mandeep, D. A brief review on inorganic nanoparticles. J. Crit. Rev., 2016, 3(3), 18-26.
[7]
Fakruddin, M.; Hossain, Z.; Afroz, H. Prospects and applications of nanobiotechnology: A medical perspective. J. Nanobiotechnology, 2012, 10(1), 31.
[http://dx.doi.org/10.1186/1477-3155-10-31] [PMID: 22817658]
[8]
Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1), a020412.
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[9]
Teleanu, D.; Chircov, C.; Grumezescu, A.; Volceanov, A.; Teleanu, R. Blood-brain delivery methods using nanotechnology. Pharmaceutics, 2018, 10(4), 269.
[http://dx.doi.org/10.3390/pharmaceutics10040269] [PMID: 30544966]
[10]
Ceña, V.; Játiva, P. Nanoparticle crossing of blood–brain barrier: A road to new therapeutic approaches to central nervous system diseases. Nanomedicine (Lond.), 2018, 13(13), 1513-1516.
[http://dx.doi.org/10.2217/nnm-2018-0139] [PMID: 29998779]
[11]
Zhou, Y.; Peng, Z.; Seven, E.S.; Leblanc, R.M. Crossing the blood-brain barrier with nanoparticles. J. Control. Release, 2018, 270, 290-303.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.015] [PMID: 29269142]
[12]
Gallardo-Toledo, E.; Velasco-Aguirre, C.; Kogan, M.J. Inorganic nanoparticles and their strategies to enhance Brain Drug Delivery. Neuromethods, 2020, 149-172.
[13]
Lynch, I.; Dawson, K.A. Protein-nanoparticle interactions. Nano Today, 2008, 3(1-2), 40-47.
[http://dx.doi.org/10.1016/S1748-0132(08)70014-8]
[14]
Turci, F.; Ghibaudi, E.; Colonna, M.; Boscolo, B.; Fenoglio, I.; Fubini, B. An integrated approach to the study of the interaction between proteins and nanoparticles. Langmuir, 2010, 26(11), 8336-8346.
[http://dx.doi.org/10.1021/la904758j] [PMID: 20205402]
[15]
Yarjanli, Z.; Ghaedi, K.; Esmaeili, A.; Rahgozar, S.; Zarrabi, A. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neurosci., 2017, 18(1), 51.
[http://dx.doi.org/10.1186/s12868-017-0369-9] [PMID: 28651647]
[16]
Capocefalo, A.; Deckert-Gaudig, T.; Brasili, F.; Postorino, P.; Deckert, V. Unveiling the interaction of protein fibrils with gold nanoparticles by plasmon enhanced nano-spectroscopy. Nanoscale, 2021, 13(34), 14469-14479.
[http://dx.doi.org/10.1039/D1NR03190B] [PMID: 34473176]
[17]
Pansieri, J.; Gerstenmayer, M.; Lux, F.; Mériaux, S.; Tillement, O.; Forge, V.; Larrat, B.; Marquette, C. Magnetic nanoparticles applications for amyloidosis study and detection: A Review. Nanomaterials, 2018, 8(9), 740.
[http://dx.doi.org/10.3390/nano8090740] [PMID: 30231587]
[18]
Antosova, A.; Bednarikova, Z.; Koneracka, M.; Antal, I.; Marek, J.; Kubovcikova, M.; Zavisova, V.; Jurikova, A.; Gazova, Z. Amino acid functionalized superparamagnetic nanoparticles inhibit lysozyme amyloid fibrillization. Chemistry, 2019, 25(31), 7501-7514.
[http://dx.doi.org/10.1002/chem.201806262] [PMID: 30958585]
[19]
Skaat, H.; Belfort, G.; Margel, S. Synthesis and characterization of fluorinated magnetic core–shell nanoparticles for inhibition of insulin amyloid fibril formation. Nanotechnology, 2009, 20(22), 225106.
[http://dx.doi.org/10.1088/0957-4484/20/22/225106] [PMID: 19433878]
[20]
Yan, C.; Zhang, N.; Guan, P.; Chen, P.; Ding, S.; Hou, T.; Hu, X.; Wang, J.; Wang, C. Drug-based magnetic imprinted nanoparticles: Enhanced lysozyme amyloid fibrils cleansing and anti-amyloid fibrils toxicity. Int. J. Biol. Macromol., 2020, 153, 723-735.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.061] [PMID: 32169448]
[21]
Giannousi, K.; Antonoglou, O.; Dendrinou-Samara, C. Interplay between amyloid fibrillation delay and degradation by magnetic zinc-doped ferrite nanoparticles. ACS Chem. Neurosci., 2019, 10(8), 3796-3804.
[http://dx.doi.org/10.1021/acschemneuro.9b00292] [PMID: 31298846]
[22]
Singla, R.; Abidi, S.M.S.; Dar, A.I.; Acharya, A. Inhibition of glycation-induced aggregation of human serum albumin by organic–inorganic hybrid nanocomposites of iron oxide-functionalized nanocellulose. ACS Omega, 2019, 4(12), 14805-14819.
[http://dx.doi.org/10.1021/acsomega.9b01392] [PMID: 31552320]
[23]
Wang, M.; Kakinen, A.; Pilkington, E.H.; Davis, T.P.; Ke, P.C. Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation. Biomater. Sci., 2017, 5(3), 485-493.
[http://dx.doi.org/10.1039/C6BM00764C] [PMID: 28078343]
[24]
Andrikopoulos, N.; Song, Z.; Wan, X.; Douek, A.M.; Javed, I.; Fu, C.; Xing, Y.; Xin, F.; Li, Y.; Kakinen, A.; Koppel, K.; Qiao, R.; Whittaker, A.K.; Kaslin, J.; Davis, T.P.; Song, Y.; Ding, F.; Ke, P.C. Inhibition of amyloid aggregation and toxicity with janus iron oxide nanoparticles. Chem. Mater., 2021, 33(16), 6484-6500.
[http://dx.doi.org/10.1021/acs.chemmater.1c01947] [PMID: 34887621]
[25]
Antosova, A.; Gancar, M.; Bednarikova, Z.; Marek, J.; Zahn, D.; Dutz, S.; Gazova, Z. Surface-modified magnetite nanoparticles affect lysozyme amyloid fibrillization. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(9), 129941.
[http://dx.doi.org/10.1016/j.bbagen.2021.129941] [PMID: 34090976]
[26]
Pradhan, N.; Jana, N.R.; Jana, N.R. Inhibition of protein aggregation by iron oxide nanoparticles conjugated with glutamine- and proline-based osmolytes. ACS Appl. Nano Mater., 2018, 1(3), 1094-1103.
[http://dx.doi.org/10.1021/acsanm.7b00245]
[27]
Mahmoudi, M.; Quinlan-Pluck, F.; Monopoli, M.P.; Sheibani, S.; Vali, H.; Dawson, K.A.; Lynch, I. Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid β protein fibrillation in solution. ACS Chem. Neurosci., 2013, 4(3), 475-485.
[http://dx.doi.org/10.1021/cn300196n] [PMID: 23509983]
[28]
Mirsadeghi, S.; Shanehsazzadeh, S.; Atyabi, F.; Dinarvand, R. Effect of PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) under magnetic field on amyloid beta fibrillation process. Mater. Sci. Eng. C, 2016, 59, 390-397.
[http://dx.doi.org/10.1016/j.msec.2015.10.026] [PMID: 26652388]
[29]
Song, M.; Sun, Y.; Luo, Y.; Zhu, Y.; Liu, Y.; Li, H. Exploring the mechanism of inhibition of au nanoparticles on the aggregation of amyloid-β(16-22) peptides at the atom level by all-atom molecular dynamics. Int. J. Mol. Sci., 2018, 19(6), 1815.
[http://dx.doi.org/10.3390/ijms19061815] [PMID: 29925792]
[30]
Meesaragandla, B.; Karanth, S.; Janke, U.; Delcea, M. Biopolymer-coated gold nanoparticles inhibit human insulin amyloid fibrillation. Sci. Rep., 2020, 10(1), 7862.
[http://dx.doi.org/10.1038/s41598-020-64010-7] [PMID: 32398693]
[31]
Kumar Ban, D.; Paul, S. Functionalized gold and silver nanoparticles modulate amyloid fibrillation, defibrillation and cytotoxicity of lysozyme via altering protein surface character. Appl. Surf. Sci., 2019, 473, 373-385.
[http://dx.doi.org/10.1016/j.apsusc.2018.12.157]
[32]
Zhao, L.; Xin, Y.; Li, Y.; Yang, X.; Luo, L.; Meng, F. Ultraeffective inhibition of amyloid fibril assembly by nanobody–gold nanoparticle conjugates. Bioconjug. Chem., 2019, 30(1), 29-33.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00797] [PMID: 30585717]
[33]
Gao, N.; Sun, H.; Dong, K.; Ren, J.; Qu, X. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chemistry, 2015, 21(2), 829-835.
[http://dx.doi.org/10.1002/chem.201404562] [PMID: 25376633]
[34]
Javed, I.; Peng, G.; Xing, Y.; Yu, T.; Zhao, M.; Kakinen, A.; Faridi, A.; Parish, C.L.; Ding, F.; Davis, T.P.; Ke, P.C.; Lin, S. Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nat. Commun., 2019, 10(1), 3780.
[http://dx.doi.org/10.1038/s41467-019-11762-0] [PMID: 31439844]
[35]
Hou, K.; Zhao, J.; Wang, H.; Li, B.; Li, K.; Shi, X.; Wan, K.; Ai, J.; Lv, J.; Wang, D.; Huang, Q.; Wang, H.; Cao, Q.; Liu, S.; Tang, Z. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat. Commun., 2020, 11(1), 4790.
[http://dx.doi.org/10.1038/s41467-020-18525-2] [PMID: 32963242]
[36]
Peretz, Y.; Malishev, R.; Kolusheva, S.; Jelinek, R. Nanoparticles modulate membrane interactions of human Islet amyloid polypeptide (hIAPP). Biochim. Biophys. Acta Biomembr., 2018, 1860(9), 1810-1817.
[http://dx.doi.org/10.1016/j.bbamem.2018.03.029] [PMID: 29641979]
[37]
Gao, G.; Zhang, M.; Gong, D.; Chen, R.; Hu, X.; Sun, T. The size-effect of gold nanoparticles and nanoclusters in the inhibition of amyloid-β fibrillation. Nanoscale, 2017, 9(12), 4107-4113.
[http://dx.doi.org/10.1039/C7NR00699C] [PMID: 28276561]
[38]
Sharma, V.; Sharma, S.; Rana, S.; Ghosh, K.S. Inhibition of amyloid fibrillation of human γD-crystallin by gold nanoparticles: Studies at molecular level. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 233, 118199.
[http://dx.doi.org/10.1016/j.saa.2020.118199] [PMID: 32151988]
[39]
Alam, M.T.; Rauf, M.A.; Siddiqui, G.A.; Owais, M.; Naeem, A. Green synthesis of silver nanoparticles, its characterization, and chaperone-like activity in the aggregation inhibition of α-chymotrypsinogen A. Int. J. Biol. Macromol., 2018, 120(Pt B), 2381-2389.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.006] [PMID: 30195613]
[40]
Rauf, M.A.; Alam, M.T.; Ishtikhar, M.; Ali, N.; Alghamdi, A.; AlAsmari, A.F. Investigating chaperone like activity of green silver nanoparticles: Possible implications in drug development. Molecules, 2022, 27(3), 944.
[http://dx.doi.org/10.3390/molecules27030944] [PMID: 35164209]
[41]
Vus, K.; Tarabara, U.; Danylenko, I.; Pirko, Y.; Krupodorova, T.; Yemets, A.; Blume, Y.; Turchenko, V.; Klymchuk, D.; Smertenko, P.; Zhytniakivska, O.; Trusova, V.; Petrushenko, S.; Bogatyrenko, S.; Gorbenko, G. Silver nanoparticles as inhibitors of insulin amyloid formation: A fluorescence study. J. Mol. Liq., 2021, 342, 117508.
[http://dx.doi.org/10.1016/j.molliq.2021.117508]
[42]
Sudhakar, S.; Mani, E. Rapid dissolution of amyloid β fibrils by silver nanoplates. Langmuir, 2019, 35(21), 6962-6970.
[http://dx.doi.org/10.1021/acs.langmuir.9b00080] [PMID: 31030521]
[43]
Huma, Z.; Javed, I.; Zhang, Z.; Bilal, H.; Sun, Y.; Hussain, S.Z.; Davis, T.P.; Otzen, D.E.; Landersdorfer, C.B.; Ding, F.; Hussain, I.; Ke, P.C. Nanosilver mitigates biofilm formation via FAPC amyloidosis inhibition. Small, 2020, 16(21), 1906674.
[http://dx.doi.org/10.1002/smll.201906674] [PMID: 31984626]
[44]
Ramshini, H; Moghaddasi, A.S. Ability of silver nanoparticles to inhibit amyloid aggregation and their potential role in prevention of alzheimer's disease. J. School Public Health Inst. Public Health Res., 2018, 16 (2).
[45]
Ban, D.K.; Paul, S. Nano Zinc oxide inhibits fibrillar growth and suppresses cellular toxicity of lysozyme amyloid. ACS Applied Materials &amp. ACS Appl. Mater. Interfaces, 2016, 8(46), 31587-31601.
[http://dx.doi.org/10.1021/acsami.6b11549] [PMID: 27801574]
[46]
Asthana, S.; Bhattacharyya, D.; Kumari, S.; Nayak, P.S.; Saleem, M.; Bhunia, A.; Jha, S. Interaction with zinc oxide nanoparticle kinetically traps α-synuclein fibrillation into off-pathway non-toxic intermediates. Int. J. Biol. Macromol., 2020, 150, 68-79.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.269] [PMID: 32004598]
[47]
Girigoswami, A.; Ramalakshmi, M.; Akhtar, N.; Metkar, S.K.; Girigoswami, K. ZnO Nanoflower petals mediated amyloid degradation - An in vitro electrokinetic potential approach. Mater. Sci. Eng. C, 2019, 101, 169-178.
[http://dx.doi.org/10.1016/j.msec.2019.03.086] [PMID: 31029310]
[48]
Khurana, A.; Tekula, S.; Saifi, M.A.; Venkatesh, P.; Godugu, C. Therapeutic applications of selenium nanoparticles. Biomed. Pharmacother., 2019, 111, 802-812.
[http://dx.doi.org/10.1016/j.biopha.2018.12.146] [PMID: 30616079]
[49]
Rai, M; Yadav, A. Nanobiotechnology in Neurodegenerative Diseases; Springer, 2019.
[http://dx.doi.org/10.1007/978-3-030-30930-5]
[50]
Vicente-Zurdo, D.; Rodríguez-Blázquez, S.; Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. Neuroprotective activity of selenium nanoparticles against the effect of amino acid enantiomers in Alzheimer’s disease. Anal. Bioanal. Chem., 2022, 414(26), 7573-7584.
[http://dx.doi.org/10.1007/s00216-022-04285-z] [PMID: 35982253]
[51]
Yin, T.; Yang, L.; Liu, Y.; Zhou, X.; Sun, J.; Liu, J. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease. Acta Biomater., 2015, 25, 172-183.
[http://dx.doi.org/10.1016/j.actbio.2015.06.035] [PMID: 26143603]
[52]
Ramshini, H.; Rostami, S. Dual function of Selenium nanoparticles: Inhibition or induction of lysozyme amyloid aggregation and evaluation of their cell based cytotoxicity. Arch. Ital. Biol., 2021, 159(2), 82-94.
[http://dx.doi.org/10.12871/00039829202123] [PMID: 34184240]
[53]
Han, Q.; Cai, S.; Yang, L.; Wang, X.; Qi, C.; Yang, R.; Wang, C. Molybdenum disulfide nanoparticles as multifunctional inhibitors against alzheimer’s disease. ACS Applied Materials &amp. ACS Appl. Mater. Interfaces, 2017, 9(25), 21116-21123.
[http://dx.doi.org/10.1021/acsami.7b03816] [PMID: 28613069]
[54]
Ma, Y.; Huang, R.; Qi, W.; Su, R.; He, Z. Fluorescent silicon nanoparticles inhibit the amyloid fibrillation of insulin. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(9), 1397-1403.
[http://dx.doi.org/10.1039/C8TB02964D] [PMID: 32255010]
[55]
Zhou, S.; Zhu, Y.; Yao, X.; Liu, H. Carbon nanoparticles inhibit the aggregation of prion protein as revealed by experiments and atomistic simulations. J. Chem. Inf. Model., 2019, 59(5), 1909-1918.
[http://dx.doi.org/10.1021/acs.jcim.8b00725] [PMID: 30575391]
[56]
Jaragh-Alhadad, L.A.; Falahati, M. Copper oxide nanoparticles promote amyloid-β-triggered neurotoxicity through formation of oligomeric species as a prelude to Alzheimer’s diseases. Int. J. Biol. Macromol., 2022, 207, 121-129.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.006] [PMID: 35259430]
[57]
Lyu, J.; Long, X.; Xie, T.; Jiang, G.; Jiang, J.; Ye, L.; Li, Q. Copper oxide nanoparticles promote α-synuclein oligomerization and underlying neurotoxicity as a model of Parkinson’s disease. J. Mol. Liq., 2021, 323, 115051.
[http://dx.doi.org/10.1016/j.molliq.2020.115051]
[58]
Mou, X.; Pilozzi, A.; Tailor, B.; Yi, J.; Cahill, C.; Rogers, J.; Huang, X. Exposure to cuo nanoparticles mediates NFKB activation and enhances amyloid precursor protein expression. Biomedicines, 2020, 8(3), 45.
[http://dx.doi.org/10.3390/biomedicines8030045] [PMID: 32120908]
[59]
Migliorini, C.; Sinicropi, A.; Kozlowski, H.; Luczkowski, M.; Valensin, D. Copper-induced structural propensities of the amyloidogenic region of human prion protein. J. Biol. Inorg. Chem., 2014, 19(4-5), 635-645.
[http://dx.doi.org/10.1007/s00775-014-1132-7] [PMID: 24737041]
[60]
Atwood, C.S.; Moir, R.D.; Huang, X.; Scarpa, R.C.; Bacarra, N.M.E.; Romano, D.M.; Hartshorn, M.A.; Tanzi, R.E.; Bush, A.I. Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem., 1998, 273(21), 12817-12826.
[http://dx.doi.org/10.1074/jbc.273.21.12817] [PMID: 9582309]
[61]
Cendrowska-Pinkosz, M.; Krauze, M.; Juśkiewicz, J.; Ognik, K. The effect of the use of copper carbonate and copper nanoparticles in the diet of rats on the level of β-amyloid and acetylcholinesterase in selected organs. J. Trace Elem. Med. Biol., 2021, 67, 126777.
[http://dx.doi.org/10.1016/j.jtemb.2021.126777] [PMID: 33984546]
[62]
Tahaei, G.S.S.; Yahya, R.D.; Ahmed, M.T.; Aziz, F.M.; Shahpasand, K.; Akhtari, K.; Salihi, A.; Abou-Zied, O.K.; Falahati, M. α-synuclein interaction with zero-valent iron nanoparticles accelerates structural rearrangement into amyloid-susceptible structure with increased cytotoxic tendency. Int. J. Nanomedicine, 2019, 14, 4637-4648.
[http://dx.doi.org/10.2147/IJN.S212387] [PMID: 31417259]
[63]
Wu, W.; Sun, X.; Yu, Y.; Hu, J.; Zhao, L.; Liu, Q.; Zhao, Y.; Li, Y. TiO2 nanoparticles promote β-amyloid fibrillation in vitro. Biochem. Biophys. Res. Commun., 2008, 373(2), 315-318.
[http://dx.doi.org/10.1016/j.bbrc.2008.06.035] [PMID: 18571499]
[64]
Slekiene, N.; Snitka, V.; Bruzaite, I.; Ramanavicius, A. Influence of tio2 and zno nanoparticles on α-synuclein and β-amyloid aggregation and formation of protein fibrils. Materials (Basel), 2022, 15(21), 7664.
[http://dx.doi.org/10.3390/ma15217664] [PMID: 36363256]
[65]
Mohammadi, S.; Nikkhah, M. TiO2 nanoparticles as potential promoting agents of fibrillation of α-synuclein, a parkinson’s disease-related protein. Iran. J. Biotechnol., 2017, 15(2), 87-94.
[http://dx.doi.org/10.15171/ijb.1519] [PMID: 29845055]
[66]
Wu, J.; Xie, H. Effects of titanium dioxide nanoparticles on α-synuclein aggregation and the ubiquitin-proteasome system in dopaminergic neurons. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 690-694.
[http://dx.doi.org/10.3109/21691401.2014.980507] [PMID: 25386730]
[67]
Bush, A.; Pettingell, W.; Multhaup, G.; d Paradis, M.; Vonsattel, J.; Gusella, J.; Beyreuther, K.; Masters, C.; Tanzi, R. Rapid induction of Alzheimer A beta amyloid formation by zinc. Science, 1994, 265(5177), 1464-1467.
[http://dx.doi.org/10.1126/science.8073293] [PMID: 8073293]
[68]
Asthana, S.; Hazarika, Z.; Nayak, P.S.; Roy, J.; Jha, A.N.; Mallick, B.; Jha, S. Insulin adsorption onto zinc oxide nanoparticle mediates conformational rearrangement into amyloid-prone structure with enhanced cytotoxic propensity. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(1), 153-166.
[http://dx.doi.org/10.1016/j.bbagen.2018.10.004] [PMID: 30315849]
[69]
Yadav, K.K.; Ojha, M.; Pariary, R.; Arakha, M.; Bhunia, A.; Jha, S. Zinc oxide nanoparticle interface moderation with tyrosine and tryptophan reverses the pro-amyloidogenic property of the particle. Biochimie, 2022, 193, 64-77.
[http://dx.doi.org/10.1016/j.biochi.2021.10.011] [PMID: 34699915]
[70]
Talmard, C.; Leuma Yona, R.; Faller, P. Mechanism of zinc(II)-promoted amyloid formation: zinc(II) binding facilitates the transition from the partially α-helical conformer to aggregates of amyloid β protein(1–28). J. Biol. Inorg. Chem., 2009, 14(3), 449-455.
[http://dx.doi.org/10.1007/s00775-008-0461-9] [PMID: 19083027]
[71]
Brender, J.R.; Hartman, K.; Nanga, R.P.R.; Popovych, N.; de la Salud Bea, R.; Vivekanandan, S.; Marsh, E.N.G.; Ramamoorthy, A. Role of zinc in human islet amyloid polypeptide aggregation. J. Am. Chem. Soc., 2010, 132(26), 8973-8983.
[http://dx.doi.org/10.1021/ja1007867] [PMID: 20536124]
[72]
Sukhanova, A.; Poly, S.; Shemetov, A.; Nabiev, I.R. Quantum dots induce charge-specific amyloid-like fibrillation of insulin at physiological conditions. SPIE Proceedings, 2012, 8548, p. 85485.
[http://dx.doi.org/10.1117/12.946606]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy