Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

A Review of the Physiological Role of Hypocretin in the Ventral Tegmental Area in Reward and Drug Dependence

Author(s): Masoumeh Kourosh-Arami*, Alireza Komaki and Masoumeh Gholami

Volume 30, Issue 8, 2023

Published on: 19 July, 2023

Page: [619 - 625] Pages: 7

DOI: 10.2174/0929866530666230705145446

Price: $65

Abstract

Orexin (OX, hypocretin: HCRT) as a neuropeptide is produced in a distinct population of neurons in the posterior lateral hypothalamus (LH). OX neurons implicate in reward function. OX makes a main input from the hypothalamus to the ventral tegmental area (VTA) of the midbrain. OX, through OX receptors (OXR1, OXR2) activates VTA dopamine (DA) neurons. VTA neurons are involved in reward processing and motivation. In this review, we will discuss the OX effect on addiction through VTA activation and related areas of the brain.

Next »
Graphical Abstract

[1]
de Lecea, L.; Kilduff, T.S.; Peyron, C.; Gao, X.B.; Foye, P.E.; Danielson, P.E.; Fukuhara, C.; Battenberg, E.L.F.; Gautvik, V.T.; Bartlett, F.S., II; Frankel, W.N.; van den Pol, A.N.; Bloom, F.E.; Gautvik, K.M.; Sutcliffe, J.G. The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA, 1998, 95(1), 322-327.
[http://dx.doi.org/10.1073/pnas.95.1.322] [PMID: 9419374]
[2]
Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richardson, J.A.; Kozlowski, G.P.; Wilson, S.; Arch, J.R.S.; Buckingham, R.E.; Haynes, A.C.; Carr, S.A.; Annan, R.S.; McNulty, D.E.; Liu, W.S.; Terrett, J.A.; Elshourbagy, N.A.; Bergsma, D.J.; Yanagisawa, M. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 1998, 92(4), 573-585.
[http://dx.doi.org/10.1016/S0092-8674(00)80949-6] [PMID: 9491897]
[3]
Hoyer, D.; Jacobson, L.H. Orexin in sleep, addiction and more: Is the perfect insomnia drug at hand? Neuropeptides, 2013, 47(6), 477-488.
[http://dx.doi.org/10.1016/j.npep.2013.10.009] [PMID: 24215799]
[4]
Inutsuka, A.; Yamanaka, A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front. Endocrinol. (Lausanne), 2013, 4, 18.
[http://dx.doi.org/10.3389/fendo.2013.00018] [PMID: 23508038]
[5]
Gotter, A.L.; Webber, A.L.; Coleman, P.J.; Renger, J.J.; Winrow, C.J. International union of basic and clinical pharmacology. LXXXVI. Orexin receptor function, nomenclature and pharmacology. Pharmacol. Rev., 2012, 64(3), 389-420.
[http://dx.doi.org/10.1124/pr.111.005546] [PMID: 22759794]
[6]
Wong, K.K.Y.; Ng, S.Y.L.; Lee, L.T.O.; Ng, H.K.H.; Chow, B.K.C. Orexins and their receptors from fish to mammals: A comparative approach. Gen. Comp. Endocrinol., 2011, 171(2), 124-130.
[http://dx.doi.org/10.1016/j.ygcen.2011.01.001] [PMID: 21216246]
[7]
Kourosh-Arami, M.; Komaki, A.; Joghataei, M.T.; Mohsenzadegan, M. Phospholipase Cβ3 in the hippocampus may mediate impairment of memory by long-term blockade of orexin 1 receptors assessed by the Morris water maze. Life Sci., 2020, 257, 118046.
[http://dx.doi.org/10.1016/j.lfs.2020.118046] [PMID: 32622948]
[8]
Samani, F.; Arami, M.K. Repeated administration of orexin into the thalamic paraventricular nucleus inhibits the development of morphine-induced analgesia. Protein Pept. Lett., 2022, 29(1), 57-63.
[PMID: 34906051]
[9]
Piri, Z.; Kourosh, A.M.; Shahidi, M.; Nazari, S. Alteration of hematologic parameters in morphine-dependent rats by long-term administration of orexin type 1 receptor antagonist. Int. J. High Risk Behav. Addict., 2020, 9(3)
[http://dx.doi.org/10.5812/ijhrba.99081]
[10]
Babaie, F.; Kourosh-Arami, M.; Farhadi, M. Administration of Orexin-A into the rat thalamic paraventricular nucleus enhances the naloxone induced morphine withdrawal. Drug Res. (Stuttg.), 2022, 72(4), 209-214.
[http://dx.doi.org/10.1055/a-1744-5868] [PMID: 35385881]
[11]
Mousavi, Z.; Kourosh-Arami, M.; Mohsenzadegan, M.; Komaki, A. An immunohistochemical study of the effects of orexin receptor blockade on phospholipase C-β3 level in rat hippocampal dentate gyrus neurons. Biotech. Histochem., 2021, 96(3), 191-196.
[http://dx.doi.org/10.1080/10520295.2020.1778088] [PMID: 32580652]
[12]
Majidinezhad, M.; Amirteymouri, H.; Karimi-haghighi, S.; Kourosh-Arami, M.; Haghparast, A. Orexin system in the ventral tegmental area is implicated in the rewarding properties of methamphetamine. Eur. J. Pharmacol., 2022, 930, 175170.
[http://dx.doi.org/10.1016/j.ejphar.2022.175170] [PMID: 35921956]
[13]
Rezaei, Z.; Kourosh-Arami, M.; Azizi, H.; Semnanian, S. Orexin type-1 receptor inhibition in the rat lateral paragigantocellularis nucleus attenuates development of morphine dependence. Neurosci. Lett., 2020, 724, 134875.
[http://dx.doi.org/10.1016/j.neulet.2020.134875] [PMID: 32114118]
[14]
Sharf, R.; Sarhan, M.; DiLeone, R.J. Orexin mediates the expression of precipitated morphine withdrawal and concurrent activation of the nucleus accumbens shell. Biol. Psychiatry, 2008, 64(3), 175-183.
[http://dx.doi.org/10.1016/j.biopsych.2008.03.006] [PMID: 18423425]
[15]
Georgescu, D.; Zachariou, V.; Barrot, M.; Mieda, M.; Willie, J.T.; Eisch, A.J.; Yanagisawa, M.; Nestler, E.J.; DiLeone, R.J. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J. Neurosci., 2003, 23(8), 3106-3111.
[http://dx.doi.org/10.1523/JNEUROSCI.23-08-03106.2003] [PMID: 12716916]
[16]
Harris, G.C.; Wimmer, M.; Aston-Jones, G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature, 2005, 437(7058), 556-559.
[http://dx.doi.org/10.1038/nature04071] [PMID: 16100511]
[17]
Sadat-Shirazi, M.S.; Soltani, H.; Nikpour, N.; Haghshenas, M.; Khalifeh, S.; Mokri, A.; Zarrindast, M.R. Alteration of orexin-A and PKCα in the postmortem brain of pure-opioid and multi-drug abusers. Neuropeptides, 2020, 83, 102074.
[http://dx.doi.org/10.1016/j.npep.2020.102074] [PMID: 32741526]
[18]
Corrigall, W.A. Heroin self-administration: Effects of antagonist treatment in lateral hypothalamus. Pharmacol. Biochem. Behav., 1987, 27(4), 693-700.
[http://dx.doi.org/10.1016/0091-3057(87)90196-1] [PMID: 3659093]
[19]
Van Der Kooy, D.; Mucha, R.F.; O’Shaughnessy, M.; Bucenieks, P. Reinforcing effects of brain microinjections of morphine revealed by conditioned place preference. Brain Res., 1982, 243(1), 107-117.
[http://dx.doi.org/10.1016/0006-8993(82)91124-6] [PMID: 7116146]
[20]
Kourosh-Arami, M.; Javan, M.; Semnanian, S. Inhibition of orexin receptor 1 contributes to the development of morphine dependence 237 attenuation of cAMP response element-binding protein and phospholipase Cβ3. J. Chem. Neuroanat., 2020, 108, 101801.
[http://dx.doi.org/10.1016/j.jchemneu.2020.101801] [PMID: 32404265]
[21]
Kourosh-Arami, M.; Joghataei, M.T.; Komaki, A.; Gholami, M.; Najafi, Z.; Lavaie, M. Persistent effects of the orexin-1 receptor antagonist SB-334867 on naloxone precipitated morphine withdrawal symptoms and nociceptive behaviors in morphine dependent rats. Int. J. Neurosci., 2022, 132(1), 67-76.
[http://dx.doi.org/10.1080/00207454.2020.1802266] [PMID: 32746675]
[22]
Komaki, A.; Shahidi, S.; Sarihi, A.; Hasanein, P.; Lashgari, R.; Haghparast, A.; Salehi, I.; Arami, M.K. Effects of neonatal c-fiber depletion on interaction between neocortical short-term and long-term plasticity. Basic Clin. Neurosci., 2013, 4(2), 136-145.
[PMID: 25337340]
[23]
Babasafari, M.; Kourosharami, M.; Behman, J.; Farhadi, M.; Komaki, A. Alteration of phospholipase C expression in rat visual cortical neurons by chronic blockade of orexin receptor 1. Int. J. Pept. Res. Ther., 2020, 26(3), 1485-1491.
[http://dx.doi.org/10.1007/s10989-019-09943-y]
[24]
Arami, M.K.; Sarihi, A.; Behzadi, J.; Malakouti, S.M.; Amiri, I.; Ekbatani, R.Z. The effect of hyperglycemia on nitric oxidergic neurons in nucleus tractus solitarius and blood pressure regulation in rats with induced diabetes. Iranian J Diabetes Lipid Disord, 2005, 4(3), E2.
[25]
Arami, M.K.; Sarihi, A.; Malacoti, S.M.; Behzadi, G.; Vahabian, M.; Amiri, I. The effect of nucleus tractus solitarius nitric oxidergic neurons on blood pressure in diabetic rats. Iran. Biomed. J., 2006, 10(1), 15-19.
[26]
Malakouti, S.M.; Kourosh Arami, M.; Sarihi, A.; Hajizadeh, S.; Behzadi, G.; Shahidi, S.; Komaki, A.; Heshmatian, B.; Vahabian, M. Reversible inactivation and excitation of nucleus raphe magnus can modulate tail blood flow of male Wistar rats in response to hypothermia. Iran. Biomed. J., 2008, 12(4), 203-208.
[PMID: 19079538]
[27]
Peyron, C.; Tighe, D.K.; van den Pol, A.N.; de Lecea, L.; Heller, H.C.; Sutcliffe, J.G.; Kilduff, T.S. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci., 1998, 18(23), 9996-10015.
[http://dx.doi.org/10.1523/JNEUROSCI.18-23-09996.1998] [PMID: 9822755]
[28]
Aston-Jones, G.; Smith, R.J.; Sartor, G.C.; Moorman, D.E.; Massi, L.; Tahsili-Fahadan, P.; Richardson, K.A. Lateral hypothalamic orexin/hypocretin neurons: A role in reward-seeking and addiction. Brain Res., 2010, 1314, 74-90.
[http://dx.doi.org/10.1016/j.brainres.2009.09.106] [PMID: 19815001]
[29]
Hollander, J.A.; Lu, Q.; Cameron, M.D.; Kamenecka, T.M.; Kenny, P.J. Insular hypocretin transmission regulates nicotine reward. Proc. Natl. Acad. Sci. USA, 2008, 105(49), 19480-19485.
[http://dx.doi.org/10.1073/pnas.0808023105] [PMID: 19033203]
[30]
Lawrence, A.J.; Cowen, M.S.; Yang, H.J.; Chen, F.; Oldfield, B. The orexin system regulates alcohol-seeking in rats. Br. J. Pharmacol., 2006, 148(6), 752-759.
[http://dx.doi.org/10.1038/sj.bjp.0706789] [PMID: 16751790]
[31]
Pantazis, C.B.; James, M.H.; O’Connor, S.; Shin, N.; Aston-Jones, G. Orexin-1 receptor signaling in ventral tegmental area mediates cue-driven demand for cocaine. Neuropsychopharmacology, 2022, 47(3), 741-751.
[http://dx.doi.org/10.1038/s41386-021-01173-5] [PMID: 34635803]
[32]
James, M.H.; Charnley, J.L.; Levi, E.M.; Jones, E.; Yeoh, J.W.; Smith, D.W.; Dayas, C.V. Orexin-1 receptor signalling within the ventral tegmental area, but not the paraventricular thalamus, is critical to regulating cue-induced reinstatement of cocaine-seeking. Int. J. Neuropsychopharmacol., 2011, 14(5), 684-690.
[http://dx.doi.org/10.1017/S1461145711000423] [PMID: 21447232]
[33]
Kourosh-Arami, M.; Komaki, A.; Zarrindast, M-R. Dopamine as a potential target for learning and memory: Contributing to related neurological disorders. CNS Neurol Disord Drug Targets, 2022, 22(4), 558-576.
[http://dx.doi.org/10.2174/1871527321666220418115503] [PMID: 35440323]
[34]
Vanderschuren, L.J.M.J.; Kalivas, P.W. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: A critical review of preclinical studies. Psychopharmacology (Berl.), 2000, 151(2-3), 99-120.
[http://dx.doi.org/10.1007/s002130000493] [PMID: 10972458]
[35]
Nair-Roberts, R.G.; Chatelain-Badie, S.D.; Benson, E.; White-Cooper, H.; Bolam, J.P.; Ungless, M.A. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience, 2008, 152(4), 1024-1031.
[http://dx.doi.org/10.1016/j.neuroscience.2008.01.046] [PMID: 18355970]
[36]
Stuber, G.D.; Hnasko, T.S.; Britt, J.P.; Edwards, R.H.; Bonci, A. Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J. Neurosci., 2010, 30(24), 8229-8233.
[http://dx.doi.org/10.1523/JNEUROSCI.1754-10.2010] [PMID: 20554874]
[37]
Stamatakis, A.M.; Jennings, J.H.; Ung, R.L.; Blair, G.A.; Weinberg, R.J.; Neve, R.L.; Boyce, F.; Mattis, J.; Ramakrishnan, C.; Deisseroth, K.; Stuber, G.D. A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron, 2013, 80(4), 1039-1053.
[http://dx.doi.org/10.1016/j.neuron.2013.08.023] [PMID: 24267654]
[38]
Holstege, G.; Georgiadis, J.R.; Paans, A.M.J.; Meiners, L.C.; van der Graaf, F.H.C.E.; Reinders, A.A.T.S. Brain activation during human male ejaculation. J. Neurosci., 2003, 23(27), 9185-9193.
[http://dx.doi.org/10.1523/JNEUROSCI.23-27-09185.2003] [PMID: 14534252]
[39]
Juarez, B.; Han, M.H. Diversity of dopaminergic neural circuits in response to drug exposure. Neuropsychopharmacology, 2016, 41(10), 2424-2446.
[http://dx.doi.org/10.1038/npp.2016.32] [PMID: 26934955]
[40]
Kourosh-Arami, M.; Hosseini, N.; Komaki, A. Brain is modulated by neuronal plasticity during postnatal development. J. Physiol. Sci., 2021, 71(1), 34.
[http://dx.doi.org/10.1186/s12576-021-00819-9] [PMID: 34789147]
[41]
Kourosh-Arami, M.; Komaki, A.; Gholami, M. Addiction-induced plasticity in underlying neural circuits. Neurol. Sci., 2022, 43(3), 1605-1615.
[http://dx.doi.org/10.1007/s10072-021-05778-y] [PMID: 35064341]
[42]
Nugent, F.S.; Kauer, J.A. LTP of GABAergic synapses in the ventral tegmental area and beyond. J. Physiol., 2008, 586(6), 1487-1493.
[http://dx.doi.org/10.1113/jphysiol.2007.148098] [PMID: 18079157]
[43]
Gonzales, R.A.; Job, M.O.; Doyon, W.M. The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol. Ther., 2004, 103(2), 121-146.
[http://dx.doi.org/10.1016/j.pharmthera.2004.06.002] [PMID: 15369680]
[44]
Koob, G.F. The neurobiology of addiction: a neuroadaptational view relevant for diagnosis. Addiction, 2006, 101(Suppl. 1), 23-30.
[http://dx.doi.org/10.1111/j.1360-0443.2006.01586.x] [PMID: 16930158]
[45]
Brischoux, F.; Chakraborty, S.; Brierley, D.I.; Ungless, M.A. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc. Natl. Acad. Sci. USA, 2009, 106(12), 4894-4899.
[http://dx.doi.org/10.1073/pnas.0811507106] [PMID: 19261850]
[46]
Korotkova, T.M.; Sergeeva, O.A.; Eriksson, K.S.; Haas, H.L.; Brown, R.E. Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J. Neurosci., 2003, 23(1), 7-11.
[http://dx.doi.org/10.1523/JNEUROSCI.23-01-00007.2003] [PMID: 12514194]
[47]
Vittoz, N.M.; Schmeichel, B.; Berridge, C.W. Hypocretin /orexin preferentially activates caudomedial ventral tegmental area dopamine neurons. Eur. J. Neurosci., 2008, 28(8), 1629-1640.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06453.x] [PMID: 18973582]
[48]
Moorman, D.E.; Aston-Jones, G. Orexin/hypocretin modulates response of ventral tegmental dopamine neurons to prefrontal activation: Diurnal influences. J. Neurosci., 2010, 30(46), 15585-15599.
[http://dx.doi.org/10.1523/JNEUROSCI.2871-10.2010] [PMID: 21084614]
[49]
Wang, B.; You, Z.B.; Wise, R.A. Reinstatement of cocaine seeking by hypocretin (orexin) in the ventral tegmental area: independence from the local corticotropin-releasing factor network. Biol. Psychiatry, 2009, 65(10), 857-862.
[http://dx.doi.org/10.1016/j.biopsych.2009.01.018] [PMID: 19251246]
[50]
Baimel, C.; Borgland, S.L. Hypocretin modulation of drug-induced synaptic plasticity. Prog. Brain Res., 2012, 198, 123-131.
[http://dx.doi.org/10.1016/B978-0-444-59489-1.00008-2] [PMID: 22813972]
[51]
Borgland, S.L.; Taha, S.A.; Sarti, F.; Fields, H.L.; Bonci, A. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron, 2006, 49(4), 589-601.
[http://dx.doi.org/10.1016/j.neuron.2006.01.016] [PMID: 16476667]
[52]
Mahler, S.V.; Smith, R.J.; Moorman, D.E.; Sartor, G.C.; Aston-Jones, G. Multiple roles for orexin/hypocretin in addiction. Prog. Brain Res., 2012, 198, 79-121.
[http://dx.doi.org/10.1016/B978-0-444-59489-1.00007-0] [PMID: 22813971]
[53]
Fadel, J.; Deutch, A.Y. Anatomical substrates of orexin–dopamine interactions: Lateral hypothalamic projections to the ventral tegmental area. Neuroscience, 2002, 111(2), 379-387.
[http://dx.doi.org/10.1016/S0306-4522(02)00017-9] [PMID: 11983323]
[54]
Wise, R.A. Addictive drugs and brain stimulation reward. Annu. Rev. Neurosci., 1996, 19(1), 319-340.
[http://dx.doi.org/10.1146/annurev.ne.19.030196.001535] [PMID: 8833446]
[55]
Schmitt, O.; Usunoff, K.G.; Lazarov, N.E.; Itzev, D.E.; Eipert, P.; Rolfs, A.; Wree, A. Orexinergic innervation of the extended amygdala and basal ganglia in the rat. Brain Struct. Funct., 2012, 217(2), 233-256.
[http://dx.doi.org/10.1007/s00429-011-0343-8] [PMID: 21935673]
[56]
Mahler, S.V.; Aston-Jones, G.S. Fos activation of selective afferents to ventral tegmental area during cue-induced reinstatement of cocaine seeking in rats. J. Neurosci., 2012, 32(38), 13309-13325.
[http://dx.doi.org/10.1523/JNEUROSCI.2277-12.2012] [PMID: 22993446]
[57]
Pantazis, C.B.; James, M.H.; Bentzley, B.S.; Aston-Jones, G. The number of lateral hypothalamus orexin/hypocretin neurons contributes to individual differences in cocaine demand. Addict. Biol., 2020, 25(4), e12795.
[http://dx.doi.org/10.1111/adb.12795] [PMID: 31297913]
[58]
Muschamp, J.W.; Hollander, J.A.; Thompson, J.L.; Voren, G.; Hassinger, L.C.; Onvani, S.; Kamenecka, T.M.; Borgland, S.L.; Kenny, P.J.; Carlezon, W.A., Jr Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proc. Natl. Acad. Sci. USA, 2014, 111(16), E1648-E1655.
[http://dx.doi.org/10.1073/pnas.1315542111] [PMID: 24706819]
[59]
Mahmoudi, D.; Assar, N.; Mousavi, Z.; Katebi, S.N.; Azizi, P.; Haghparast, A. The orexin receptors in the ventral tegmental area are involved in the development of sensitization to expression of morphine-induced preference in rats. Behav. Pharmacol., 2020, 31(8), 759-767.
[http://dx.doi.org/10.1097/FBP.0000000000000587] [PMID: 32925229]
[60]
España, R.A.; Melchior, J.R.; Roberts, D.C.S.; Jones, S.R. Hypocretin 1/orexin A in the ventral tegmental area enhances dopamine responses to cocaine and promotes cocaine self-administration. Psychopharmacology (Berl.), 2011, 214(2), 415-426.
[http://dx.doi.org/10.1007/s00213-010-2048-8] [PMID: 20959967]
[61]
Cheer, J.F.; Aragona, B.J.; Heien, M.L.A.V.; Seipel, A.T.; Carelli, R.M.; Wightman, R.M. Coordinated accumbal dopamine release and neural activity drive goal-directed behavior. Neuron, 2007, 54(2), 237-244.
[http://dx.doi.org/10.1016/j.neuron.2007.03.021] [PMID: 17442245]
[62]
Barrot, M.; Sesack, S.R.; Georges, F.; Pistis, M.; Hong, S.; Jhou, T.C. Braking dopamine systems: A new GABA master structure for mesolimbic and nigrostriatal functions. J. Neurosci., 2012, 32(41), 14094-14101.
[http://dx.doi.org/10.1523/JNEUROSCI.3370-12.2012] [PMID: 23055478]
[63]
Bourdy, R.; Barrot, M. A new control center for dopaminergic systems: Pulling the VTA by the tail. Trends Neurosci., 2012, 35(11), 681-690.
[http://dx.doi.org/10.1016/j.tins.2012.06.007] [PMID: 22824232]
[64]
Jhou, T.C.; Fields, H.L.; Baxter, M.G.; Saper, C.B.; Holland, P.C. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron, 2009, 61(5), 786-800.
[http://dx.doi.org/10.1016/j.neuron.2009.02.001] [PMID: 19285474]
[65]
Schultz, W. Updating dopamine reward signals. Curr. Opin. Neurobiol., 2013, 23(2), 229-238.
[http://dx.doi.org/10.1016/j.conb.2012.11.012] [PMID: 23267662]
[66]
de Guglielmo, G.; Melis, M.; De Luca, M.A.; Kallupi, M.; Li, H.W.; Niswender, K.; Giordano, A.; Senzacqua, M.; Somaini, L.; Cippitelli, A.; Gaitanaris, G.; Demopulos, G.; Damadzic, R.; Tapocik, J.; Heilig, M.; Ciccocioppo, R. PPARγ activation attenuates opioid consumption and modulates mesolimbic dopamine transmission. Neuropsychopharmacology, 2015, 40(4), 927-937.
[http://dx.doi.org/10.1038/npp.2014.268] [PMID: 25311134]
[67]
Kaufling, J.; Aston-Jones, G. Persistent adaptations in afferents to ventral tegmental dopamine neurons after opiate withdrawal. J. Neurosci., 2015, 35(28), 10290-10303.
[http://dx.doi.org/10.1523/JNEUROSCI.0715-15.2015] [PMID: 26180204]
[68]
Lecca, S.; Melis, M.; Luchicchi, A.; Muntoni, A.L.; Pistis, M. Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology, 2012, 37(5), 1164-1176.
[http://dx.doi.org/10.1038/npp.2011.302] [PMID: 22169942]
[69]
Kourosh-Arami, M.; Gholami, M.; Alavi-Kakhki, S.S.; Komaki, A. Neural correlates and potential targets for the contribution of orexin to addiction in cortical and subcortical areas. Neuropeptides, 2022, 95, 102259.
[http://dx.doi.org/10.1016/j.npep.2022.102259] [PMID: 35714437]
[70]
Flanigan, M.E.; Aleyasin, H.; Li, L.; Burnett, C.J.; Chan, K.L.; LeClair, K.B.; Lucas, E.K.; Matikainen-Ankney, B.; Durand-de Cuttoli, R.; Takahashi, A.; Menard, C.; Pfau, M.L.; Golden, S.A.; Bouchard, S.; Calipari, E.S.; Nestler, E.J.; DiLeone, R.J.; Yamanaka, A.; Huntley, G.W.; Clem, R.L.; Russo, S.J. Orexin signaling in GABAergic lateral habenula neurons modulates aggressive behavior in male mice. Nat. Neurosci., 2020, 23(5), 638-650.
[http://dx.doi.org/10.1038/s41593-020-0617-7] [PMID: 32284606]
[71]
Smith, K.S.; Tindell, A.J.; Aldridge, J.W.; Berridge, K.C. Ventral pallidum roles in reward and motivation. Behav. Brain Res., 2009, 196(2), 155-167.
[http://dx.doi.org/10.1016/j.bbr.2008.09.038] [PMID: 18955088]
[72]
Root, D.H.; Melendez, R.I.; Zaborszky, L.; Napier, T.C. The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Prog. Neurobiol., 2015, 130, 29-70.
[http://dx.doi.org/10.1016/j.pneurobio.2015.03.005] [PMID: 25857550]
[73]
Farrar, A.M.; Font, L.; Pereira, M.; Mingote, S.; Bunce, J.G.; Chrobak, J.J.; Salamone, J.D. Forebrain circuitry involved in effort-related choice: Injections of the GABAA agonist muscimol into ventral pallidum alter response allocation in food-seeking behavior. Neuroscience, 2008, 152(2), 321-330.
[http://dx.doi.org/10.1016/j.neuroscience.2007.12.034] [PMID: 18272291]
[74]
Ho, C.Y.; Berridge, K.C. An orexin hotspot in ventral pallidum amplifies hedonic ‘liking’ for sweetness. Neuropsychopharmacology, 2013, 38(9), 1655-1664.
[http://dx.doi.org/10.1038/npp.2013.62] [PMID: 23463152]
[75]
Baldo, B.A.; Daniel, R.A.; Berridge, C.W.; Kelley, A.E. Overlapping distributions of orexin/hypocretin- and dopamine-?-hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress. J. Comp. Neurol., 2003, 464(2), 220-237.
[http://dx.doi.org/10.1002/cne.10783] [PMID: 12898614]
[76]
Marcus, D.M.; Costarides, A.P.; Gokhale, P.; Papastergiou, G.; Miller, J.J.; Johnson, M.H.; Chaudhary, B.A. Sleep disorders: a risk factor for normal-tension glaucoma? J. Glaucoma, 2001, 10(3), 177-183.
[http://dx.doi.org/10.1097/00061198-200106000-00006] [PMID: 11442179]
[77]
Mohammadkhani, A.; Fragale, J.E.; Pantazis, C.B.; Bowrey, H.E.; James, M.H.; Aston-Jones, G. Orexin-1 receptor signaling in ventral pallidum regulates motivation for the opioid remifentanil. J. Neurosci., 2019, 39(49), 9831-9840.
[http://dx.doi.org/10.1523/JNEUROSCI.0255-19.2019] [PMID: 31641055]
[78]
Prasad, A.A.; McNally, G.P. Ventral pallidum output pathways in context-induced reinstatement of alcohol seeking. J. Neurosci., 2016, 36(46), 11716-11726.
[http://dx.doi.org/10.1523/JNEUROSCI.2580-16.2016] [PMID: 27852779]
[79]
James, M.H.; Dayas, C.V. What about me…? The PVT: A role for the paraventricular thalamus (PVT) in drug-seeking behavior. Front. Behav. Neurosci., 2013, 7, 18.
[http://dx.doi.org/10.3389/fnbeh.2013.00018] [PMID: 23509439]
[80]
Matzeu, A.; Kallupi, M.; George, O.; Schweitzer, P.; Martin-Fardon, R. Dynorphin counteracts orexin in the paraventricular nucleus of the thalamus: cellular and behavioral evidence. Neuropsychopharmacology, 2018, 43(5), 1010-1020.
[http://dx.doi.org/10.1038/npp.2017.250] [PMID: 29052613]
[81]
Messina, G.; Chieffi, S.; Monda, M. Orexin A exerts more thermogenic than orexinergic functions. Peer J. PrePrints, 2014, 2, e392v1.
[82]
Bozarth, M.A. Neuroanatomical boundaries of the reward-relevant opiate-receptor field in the ventral tegmental area as mapped by the conditioned place preference method in rats. Brain Res., 1987, 414(1), 77-84.
[http://dx.doi.org/10.1016/0006-8993(87)91327-8] [PMID: 3620924]
[83]
Robledo, P.; Koob, G. Two discrete nucleus accumbens projection areas differentially mediate cocaine self-administration in the rat. Behav. Brain Res., 1993, 55(2), 159-166.
[http://dx.doi.org/10.1016/0166-4328(93)90112-4] [PMID: 8395179]
[84]
Marcus, J.N.; Aschkenasi, C.J.; Lee, C.E.; Chemelli, R.M.; Saper, C.B.; Yanagisawa, M.; Elmquist, J.K. Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol., 2001, 435(1), 6-25.
[http://dx.doi.org/10.1002/cne.1190] [PMID: 11370008]
[85]
Dumont, É.C.; Rycroft, B.K.; Maiz, J.; Williams, J.T. Morphine produces circuit-specific neuroplasticity in the bed nucleus of the stria terminalis. Neuroscience, 2008, 153(1), 232-239.
[http://dx.doi.org/10.1016/j.neuroscience.2008.01.039] [PMID: 18343592]
[86]
Jennings, J.H.; Sparta, D.R.; Stamatakis, A.M.; Ung, R.L.; Pleil, K.E.; Kash, T.L.; Stuber, G.D. Distinct extended amygdala circuits for divergent motivational states. Nature, 2013, 496(7444), 224-228.
[http://dx.doi.org/10.1038/nature12041] [PMID: 23515155]
[87]
Kudo, T.; Uchigashima, M.; Miyazaki, T.; Konno, K.; Yamasaki, M.; Yanagawa, Y.; Minami, M.; Watanabe, M. Three types of neurochemical projection from the bed nucleus of the stria terminalis to the ventral tegmental area in adult mice. J. Neurosci., 2012, 32(50), 18035-18046.
[http://dx.doi.org/10.1523/JNEUROSCI.4057-12.2012] [PMID: 23238719]
[88]
Kudo, T.; Konno, K.; Uchigashima, M.; Yanagawa, Y.; Sora, I.; Minami, M.; Watanabe, M. GABAergic neurons in the ventral tegmental area receive dual GABA/enkephalin-mediated inhibitory inputs from the bed nucleus of the stria terminalis. Eur. J. Neurosci., 2014, 39(11), 1796-1809.
[http://dx.doi.org/10.1111/ejn.12503] [PMID: 24580812]
[89]
van Zessen, R.; Phillips, J.L.; Budygin, E.A.; Stuber, G.D. Activation of VTA GABA neurons disrupts reward consumption. Neuron, 2012, 73(6), 1184-1194.
[http://dx.doi.org/10.1016/j.neuron.2012.02.016] [PMID: 22445345]
[90]
Glangetas, C.; Fois, G.R.; Jalabert, M.; Lecca, S.; Valentinova, K.; Meye, F.J.; Diana, M.; Faure, P.; Mameli, M.; Caille, S.; Georges, F. Ventral subiculum stimulation promotes persistent hyperactivity of dopamine neurons and facilitates behavioral effects of cocaine. Cell Rep., 2015, 13(10), 2287-2296.
[http://dx.doi.org/10.1016/j.celrep.2015.10.076] [PMID: 26628379]
[91]
Sartor, G.C.; Aston-Jones, G. Regulation of the ventral tegmental area by the bed nucleus of the stria terminalis is required for expression of cocaine preference. Eur. J. Neurosci., 2012, 36(11), 3549-3558.
[http://dx.doi.org/10.1111/j.1460-9568.2012.08277.x] [PMID: 23039920]
[92]
Ubaldi, M.; Giordano, A.; Severi, I.; Li, H.; Kallupi, M.; de Guglielmo, G.; Ruggeri, B.; Stopponi, S.; Ciccocioppo, R.; Cannella, N. Activation of hypocretin-1/orexin-a neurons projecting to the bed nucleus of the stria terminalis and paraventricular nucleus is critical for reinstatement of alcohol seeking by neuropeptide S. Biol. Psychiatry, 2016, 79(6), 452-462.
[http://dx.doi.org/10.1016/j.biopsych.2015.04.021] [PMID: 26055195]
[93]
Lungwitz, E.A.; Molosh, A.; Johnson, P.L.; Harvey, B.P.; Dirks, R.C.; Dietrich, A.; Minick, P.; Shekhar, A.; Truitt, W.A. Orexin-A induces anxiety-like behavior through interactions with glutamatergic receptors in the bed nucleus of the stria terminalis of rats. Physiol. Behav., 2012, 107(5), 726-732.
[http://dx.doi.org/10.1016/j.physbeh.2012.05.019] [PMID: 22652097]
[94]
Giardino, W.J.; Eban-Rothschild, A.; Christoffel, D.J.; Li, S.B.; Malenka, R.C.; de Lecea, L. Parallel circuits from the bed nuclei of stria terminalis to the lateral hypothalamus drive opposing emotional states. Nat. Neurosci., 2018, 21(8), 1084-1095.
[http://dx.doi.org/10.1038/s41593-018-0198-x] [PMID: 30038273]
[95]
Hangodi, O.; Urbán, B.; Inkő, P.; Tálos, S.; László, K.; Bagi, É.E. Behavioral effects of orexin-A in the bed nucleus of stria terminalis of rat. Int Congress Series, 2007, 1201, 234-237.
[http://dx.doi.org/10.1016/j.ics.2006.11.005]
[96]
Laorden, M.L.; Ferenczi, S.; Pintér-Kübler, B.; González-Martín, L.L.; Lasheras, M.C.; Kovács, K.J.; Milanés, M.V.; Núñez, C. Hypothalamic orexin--a neurons are involved in the response of the brain stress system to morphine withdrawal. PLoS One, 2012, 7(5), e36871.
[http://dx.doi.org/10.1371/journal.pone.0036871] [PMID: 22590628]
[97]
Kenny, P.J. Tobacco dependence, the insular cortex and the hypocretin connection. Pharmacol. Biochem. Behav., 2011, 97(4), 700-707.
[http://dx.doi.org/10.1016/j.pbb.2010.08.015] [PMID: 20816891]
[98]
Borgland, S.L.; Chang, S.J.; Bowers, M.S.; Thompson, J.L.; Vittoz, N.; Floresco, S.B.; Chou, J.; Chen, B.T.; Bonci, A. Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J. Neurosci., 2009, 29(36), 11215-11225.
[http://dx.doi.org/10.1523/JNEUROSCI.6096-08.2009] [PMID: 19741128]
[99]
Sartor, G.; Smith, R.J.; Aston-Jones, G. Lateral hypothalamic orexin/hypocretin afferents that are necessary for the expression of cocaine conditioned place preference; Neuroscience meeting planner online, Program No. 67.5. Soc. Neurosci., 2010.
[100]
Buffalari, D.M.; See, R.E. Inactivation of the bed nucleus of the stria terminalis in an animal model of relapse: effects on conditioned cue-induced reinstatement and its enhancement by yohimbine. Psychopharmacology (Berl.), 2011, 213(1), 19-27.
[http://dx.doi.org/10.1007/s00213-010-2008-3] [PMID: 20827461]
[101]
Dumont, E.C.; Mark, G.P.; Mader, S.; Williams, J.T. Self-administration enhances excitatory synaptic transmission in the bed nucleus of the stria terminalis. Nat. Neurosci., 2005, 8(4), 413-414.
[http://dx.doi.org/10.1038/nn1414] [PMID: 15735642]
[102]
Leri, F.; Flores, J.; Rodaros, D.; Stewart, J. Blockade of stress-induced but not cocaine-induced reinstatement by infusion of noradrenergic antagonists into the bed nucleus of the stria terminalis or the central nucleus of the amygdala. J. Neurosci., 2002, 22(13), 5713-5718.
[http://dx.doi.org/10.1523/JNEUROSCI.22-13-05713.2002] [PMID: 12097523]
[103]
Etaee, F.; et al., Effects of buprenorphine on the memory and learning deficit induced by methamphetamine administration in male rats. Front. Behav. Neurosci., 2021, 15, 748563.
[104]
Zlebnik, N.E.; et al., Age-specific treatment effects of orexin/ hypocretin-receptor antagonism on methamphetamine-seeking behavior. Drug Alcoh. Depend., 2021, 224, 108719.
[105]
Georges, F.; Aston-Jones, G. Potent regulation of midbrain dopamine neurons by the bed nucleus of the stria terminalis. J. Neurosci., 2001, 21(16), RC160.
[http://dx.doi.org/10.1523/JNEUROSCI.21-16-j0003.2001] [PMID: 11473131]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy