Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Impact of Stress on Brain Morphology: Insights into Structural Biomarkers of Stress-related Disorders

Author(s): Narcís Cardoner*, Raül Andero, Marta Cano, Ignacio Marin-Blasco, Daniel Porta-Casteràs, Maria Serra-Blasco, Esther Via, Muriel Vicent-Gil and Maria J. Portella

Volume 22, Issue 5, 2024

Published on: 03 July, 2023

Page: [935 - 962] Pages: 28

DOI: 10.2174/1570159X21666230703091435

Price: $65

Abstract

Exposure to acute and chronic stress has a broad range of structural effects on the brain. The brain areas commonly targeted in the stress response models include the hippocampus, the amygdala, and the prefrontal cortex. Studies in patients suffering from the so-called stress-related disorders -embracing post-traumatic stress, major depressive and anxiety disorders- have fairly replicated animal models of stress response -particularly the neuroendocrine and the inflammatory models- by finding alterations in different brain areas, even in the early neurodevelopment. Therefore, this narrative review aims to provide an overview of structural neuroimaging findings and to discuss how these studies have contributed to our knowledge of variability in response to stress and the ulterior development of stress-related disorders. There are a gross number of studies available but neuroimaging research of stress-related disorders as a single category is still in its infancy. Although the available studies point at particular brain circuitries involved in stress and emotion regulation, the pathophysiology of these abnormalities -involving genetics, epigenetics and molecular pathways-, their relation to intraindividual stress responses -including personality characteristics, self-perception of stress conditions…-, and their potential involvement as biomarkers in diagnosis, treatment prescription and prognosis are discussed.

Graphical Abstract

[1]
Kessler, R.C.; Aguilar-Gaxiola, S.; Alonso, J.; Chatterji, S.; Lee, S.; Ormel, J.; Üstün, T.B.; Wang, P.S. The global burden of mental disorders: An update from the WHO World Mental Health (WMH) Surveys. Epidemiol. Psichiatr. Soc., 2009, 18(1), 23-33.
[http://dx.doi.org/10.1017/S1121189X00001421] [PMID: 19378696]
[2]
GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry, 2022, 9(2), 137-150.
[http://dx.doi.org/10.1016/S2215-0366(21)00395-3] [PMID: 35026139]
[3]
Kessler, R.C.; Aguilar-Gaxiola, S.; Alonso, J.; Benjet, C.; Bromet, E.J.; Cardoso, G. Trauma and PTSD in the WHO world mental health surveys. Eur. J. Psychotraumatol., 2017, 8, 1353383.
[http://dx.doi.org/10.1080/20008198.2017.1353383]
[4]
Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coggeshall, M.; Cornaby, L.; Dandona, L.; Dicker, D.J.; Dilegge, T.; Erskine, H.E.; Ferrari, A.J.; Fitzmaurice, C.; Fleming, T.; Forouzanfar, M.H.; Fullman, N.; Gething, P.W.; Goldberg, E.M.; Graetz, N.; Haagsma, J.A.; Hay, S.I.; Johnson, C.O.; Kassebaum, N.J.; Kawashima, T.; Kemmer, L.; Khalil, I.A.; Kinfu, Y.; Kyu, H.H.; Leung, J.; Liang, X.; Lim, S.S.; Lopez, A.D.; Lozano, R.; Marczak, L.; Mensah, G.A.; Mokdad, A.H.; Naghavi, M.; Nguyen, G.; Nsoesie, E.; Olsen, H.; Pigott, D.M.; Pinho, C.; Rankin, Z.; Reinig, N.; Salomon, J.A.; Sandar, L.; Smith, A.; Stanaway, J.; Steiner, C.; Teeple, S.; Thomas, B.A.; Troeger, C.; Wagner, J.A.; Wang, H.; Wanga, V.; Whiteford, H.A.; Zoeckler, L.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abraham, B.; Abubakar, I.; Abu-Raddad, L.J.; Abu-Rmeileh, N.M.E.; Ackerman, I.N.; Adebiyi, A.O.; Ademi, Z.; Adou, A.K.; Afanvi, K.A.; Agardh, E.E.; Agarwal, A.; Kiadaliri, A.A.; Ahmadieh, H.; Ajala, O.N.; Akinyemi, R.O.; Akseer, N.; Al-Aly, Z.; Alam, K.; Alam, N.K.M.; Aldhahri, S.F.; Alegretti, M.A.; Alemu, Z.A.; Alexander, L.T.; Alhabib, S.; Ali, R.; Alkerwi, A.; Alla, F.; Allebeck, P.; Al-Raddadi, R.; Alsharif, U.; Altirkawi, K.A.; Alvis-Guzman, N.; Amare, A.T.; Amberbir, A.; Amini, H.; Ammar, W.; Amrock, S.M.; Andersen, H.H.; Anderson, G.M.; Anderson, B.O.; Antonio, C.A.T.; Aregay, A.F.; Ärnlöv, J.; Artaman, A.; Asayesh, H.; Assadi, R.; Atique, S.; Avokpaho, E.F.G.A.; Awasthi, A.; Quintanilla, B.P.A.; Azzopardi, P.; Bacha, U.; Badawi, A.; Balakrishnan, K.; Banerjee, A.; Barac, A.; Barker-Collo, S.L.; Bärnighausen, T.; Barregard, L.; Barrero, L.H.; Basu, A.; Bazargan-Hejazi, S.; Beghi, E.; Bell, B.; Bell, M.L.; Bennett, D.A.; Bensenor, I.M.; Benzian, H.; Berhane, A.; Bernabé, E.; Betsu, B.D.; Beyene, A.S.; Bhala, N.; Bhatt, S.; Biadgilign, S.; Bienhoff, K.; Bikbov, B.; Biryukov, S.; Bisanzio, D.; Bjertness, E.; Blore, J.; Borschmann, R.; Boufous, S.; Brainin, M.; Brazinova, A.; Breitborde, N.J.K.; Brown, J.; Buchbinder, R.; Buckle, G.C.; Butt, Z.A.; Calabria, B.; Campos-Nonato, I.R.; Campuzano, J.C.; Carabin, H.; Cárdenas, R.; Carpenter, D.O.; Carrero, J.J.; Castañeda-Orjuela, C.A.; Rivas, J.C.; Catalá-López, F.; Chang, J-C.; Chiang, P.P-C.; Chibueze, C.E.; Chisumpa, V.H.; Choi, J-Y.J.; Chowdhury, R.; Christensen, H.; Christopher, D.J.; Ciobanu, L.G.; Cirillo, M.; Coates, M.M.; Colquhoun, S.M.; Cooper, C.; Cortinovis, M.; Crump, J.A.; Damtew, S.A.; Dandona, R.; Daoud, F.; Dargan, P.I. das Neves, J.; Davey, G.; Davis, A.C.; Leo, D.D.; Degenhardt, L.; Gobbo, L.C.D.; Dellavalle, R.P.; Deribe, K.; Deribew, A.; Derrett, S.; Jarlais, D.C.D.; Dharmaratne, S.D.; Dhillon, P.K.; Diaz-Torné, C.; Ding, E.L.; Driscoll, T.R.; Duan, L.; Dubey, M.; Duncan, B.B.; Ebrahimi, H.; Ellenbogen, R.G.; Elyazar, I.; Endres, M.; Endries, A.Y.; Ermakov, S.P.; Eshrati, B.; Estep, K.; Farid, T.A.; Farinha, C.S.S.; Faro, A.; Farvid, M.S.; Farzadfar, F.; Feigin, V.L.; Felson, D.T.; Fereshtehnejad, S-M.; Fernandes, J.G.; Fernandes, J.C.; Fischer, F.; Fitchett, J.R.A.; Foreman, K.; Fowkes, F.G.R.; Fox, J.; Franklin, R.C.; Friedman, J.; Frostad, J.; Fürst, T.; Futran, N.D.; Gabbe, B.; Ganguly, P.; Gankpé, F.G.; Gebre, T.; Gebrehiwot, T.T.; Gebremedhin, A.T.; Geleijnse, J.M.; Gessner, B.D.; Gibney, K.B.; Ginawi, I.A.M.; Giref, A.Z.; Giroud, M.; Gishu, M.D.; Giussani, G.; Glaser, E.; Godwin, W.W.; Gomez-Dantes, H.; Gona, P.; Goodridge, A.; Gopalani, S.V.; Gotay, C.C.; Goto, A.; Gouda, H.N.; Grainger, R.; Greaves, F.; Guillemin, F.; Guo, Y.; Gupta, R.; Gupta, R.; Gupta, V.; Gutiérrez, R.A.; Haile, D.; Hailu, A.D.; Hailu, G.B.; Halasa, Y.A.; Hamadeh, R.R.; Hamidi, S.; Hammami, M.; Hancock, J.; Handal, A.J.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Harikrishnan, S.; Haro, J.M.; Havmoeller, R.; Hay, R.J.; Heredia-Pi, I.B.; Heydarpour, P.; Hoek, H.W.; Horino, M.; Horita, N.; Hosgood, H.D.; Hoy, D.G.; Htet, A.S.; Huang, H.; Huang, J.J.; Huynh, C.; Iannarone, M.; Iburg, K.M.; Innos, K.; Inoue, M.; Iyer, V.J.; Jacobsen, K.H.; Jahanmehr, N.; Jakovljevic, M.B.; Javanbakht, M.; Jayaraman, S.P.; Jayatilleke, A.U.; Jee, S.H.; Jeemon, P.; Jensen, P.N.; Jiang, Y.; Jibat, T.; Jimenez-Corona, A.; Jin, Y.; Jonas, J.B.; Kabir, Z.; Kalkonde, Y.; Kamal, R.; Kan, H.; Karch, A.; Karema, C.K.; Karimkhani, C.; Kasaeian, A.; Kaul, A.; Kawakami, N.; Keiyoro, P.N.; Kemp, A.H.; Keren, A.; Kesavachandran, C.N.; Khader, Y.S.; Khan, A.R.; Khan, E.A.; Khang, Y-H.; Khera, S.; Khoja, T.A.M.; Khubchandani, J.; Kieling, C.; Kim, P.; Kim, C.; Kim, D.; Kim, Y.J.; Kissoon, N.; Knibbs, L.D.; Knudsen, A.K.; Kokubo, Y.; Kolte, D.; Kopec, J.A.; Kosen, S.; Kotsakis, G.A.; Koul, P.A.; Koyanagi, A.; Kravchenko, M.; Defo, B.K.; Bicer, B.K.; Kudom, A.A.; Kuipers, E.J.; Kumar, G.A.; Kutz, M.; Kwan, G.F.; Lal, A.; Lalloo, R.; Lallukka, T.; Lam, H.; Lam, J.O.; Langan, S.M.; Larsson, A.; Lavados, P.M.; Leasher, J.L.; Leigh, J.; Leung, R.; Levi, M.; Li, Y.; Li, Y.; Liang, J.; Liu, S.; Liu, Y.; Lloyd, B.K.; Lo, W.D.; Logroscino, G.; Looker, K.J.; Lotufo, P.A.; Lunevicius, R.; Lyons, R.A.; Mackay, M.T.; Magdy, M.; Razek, A.E.; Mahdavi, M.; Majdan, M.; Majeed, A.; Malekzadeh, R.; Marcenes, W.; Margolis, D.J.; Martinez-Raga, J.; Masiye, F.; Massano, J.; McGarvey, S.T.; McGrath, J.J.; McKee, M.; McMahon, B.J.; Meaney, P.A.; Mehari, A.; Mejia-Rodriguez, F.; Mekonnen, A.B.; Melaku, Y.A.; Memiah, P.; Memish, Z.A.; Mendoza, W.; Meretoja, A.; Meretoja, T.J.; Mhimbira, F.A.; Millear, A.; Miller, T.R.; Mills, E.J.; Mirarefin, M.; Mitchell, P.B.; Mock, C.N.; Mohammadi, A.; Mohammed, S.; Monasta, L.; Hernandez, J.C.M.; Montico, M.; Mooney, M.D.; Moradi-Lakeh, M.; Morawska, L.; Mueller, U.O.; Mullany, E.; Mumford, J.E.; Murdoch, M.E.; Nachega, J.B.; Nagel, G.; Naheed, A.; Naldi, L.; Nangia, V.; Newton, J.N.; Ng, M.; Ngalesoni, F.N.; Nguyen, Q.L.; Nisar, M.I.; Pete, P.M.N.; Nolla, J.M.; Norheim, O.F.; Norman, R.E.; Norrving, B.; Nunes, B.P.; Ogbo, F.A.; Oh, I-H.; Ohkubo, T.; Olivares, P.R.; Olusanya, B.O.; Olusanya, J.O.; Ortiz, A.; Osman, M.; Ota, E.; Pa, M.; Park, E-K.; Parsaeian, M.; de Azeredo, P.V.M.; Caicedo, A.J.P.; Patten, S.B.; Patton, G.C.; Pereira, D.M.; Perez-Padilla, R.; Perico, N.; Pesudovs, K.; Petzold, M.; Phillips, M.R.; Piel, F.B.; Pillay, J.D.; Pishgar, F.; Plass, D.; Platts-Mills, J.A.; Polinder, S.; Pond, C.D.; Popova, S.; Poulton, R.G.; Pourmalek, F.; Prabhakaran, D.; Prasad, N.M.; Qorbani, M.; Rabiee, R.H.S.; Radfar, A.; Rafay, A.; Rahimi, K.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.U.; Rahman, S.U.; Rai, R.K.; Rajsic, S.; Ram, U.; Rao, P.; Refaat, A.H.; Reitsma, M.B.; Remuzzi, G.; Resnikoff, S.; Reynolds, A.; Ribeiro, A.L.; Blancas, M.J.R.; Roba, H.S.; Rojas-Rueda, D.; Ronfani, L.; Roshandel, G.; Roth, G.A.; Rothenbacher, D.; Roy, A.; Sagar, R.; Sahathevan, R.; Sanabria, J.R.; Sanchez-Niño, M.D.; Santos, I.S.; Santos, J.V.; Sarmiento-Suarez, R.; Sartorius, B.; Satpathy, M.; Savic, M.; Sawhney, M.; Schaub, M.P.; Schmidt, M.I.; Schneider, I.J.C.; Schöttker, B.; Schwebel, D.C.; Scott, J.G.; Seedat, S.; Sepanlou, S.G.; Servan-Mori, E.E.; Shackelford, K.A.; Shaheen, A.; Shaikh, M.A.; Sharma, R.; Sharma, U.; Shen, J.; Shepard, D.S.; Sheth, K.N.; Shibuya, K.; Shin, M-J.; Shiri, R.; Shiue, I.; Shrime, M.G.; Sigfusdottir, I.D.; Silva, D.A.S.; Silveira, D.G.A.; Singh, A.; Singh, J.A.; Singh, O.P.; Singh, P.K.; Sivonda, A.; Skirbekk, V.; Skogen, J.C.; Sligar, A.; Sliwa, K.; Soljak, M.; Søreide, K.; Sorensen, R.J.D.; Soriano, J.B.; Sposato, L.A.; Sreeramareddy, C.T.; Stathopoulou, V.; Steel, N.; Stein, D.J.; Steiner, T.J.; Steinke, S.; Stovner, L.; Stroumpoulis, K.; Sunguya, B.F.; Sur, P.; Swaminathan, S.; Sykes, B.L.; Szoeke, C.E.I.; Tabarés-Seisdedos, R.; Takala, J.S.; Tandon, N.; Tanne, D.; Tavakkoli, M.; Taye, B.; Taylor, H.R.; Ao, B.J.T.; Tedla, B.A.; Terkawi, A.S.; Thomson, A.J.; Thorne-Lyman, A.L.; Thrift, A.G.; Thurston, G.D.; Tobe-Gai, R.; Tonelli, M.; Topor-Madry, R.; Topouzis, F.; Tran, B.X.; Truelsen, T.; Dimbuene, Z.T.; Tsilimbaris, M.; Tura, A.K.; Tuzcu, E.M.; Tyrovolas, S.; Ukwaja, K.N.; Undurraga, E.A.; Uneke, C.J.; Uthman, O.A.; van Gool, C.H.; Varakin, Y.Y.; Vasankari, T.; Venketasubramanian, N.; Verma, R.K.; Violante, F.S.; Vladimirov, S.K.; Vlassov, V.V.; Vollset, S.E.; Wagner, G.R.; Waller, S.G.; Wang, L.; Watkins, D.A.; Weichenthal, S.; Weiderpass, E.; Weintraub, R.G.; Werdecker, A.; Westerman, R.; White, R.A.; Williams, H.C.; Wiysonge, C.S.; Wolfe, C.D.A.; Won, S.; Woodbrook, R.; Wubshet, M.; Xavier, D.; Xu, G.; Yadav, A.K.; Yan, L.L.; Yano, Y.; Yaseri, M.; Ye, P.; Yebyo, H.G.; Yip, P.; Yonemoto, N.; Yoon, S-J.; Younis, M.Z.; Yu, C.; Zaidi, Z.; Zaki, M.E.S.; Zeeb, H.; Zhou, M.; Zodpey, S.; Zuhlke, L.J.; Murray, C.J.L. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1545-1602.
[http://dx.doi.org/10.1016/S0140-6736(16)31678-6] [PMID: 27733282]
[5]
Santomauro, D.F.; Mantilla, H.A.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; Amlag, J.O.; Aravkin, A.Y.; Bang-Jensen, B.L.; Bertolacci, G.J.; Bloom, S.S.; Castellano, R.; Castro, E.; Chakrabarti, S.; Chattopadhyay, J.; Cogen, R.M.; Collins, J.K.; Dai, X.; Dangel, W.J.; Dapper, C.; Deen, A.; Erickson, M.; Ewald, S.B.; Flaxman, A.D.; Frostad, J.J.; Fullman, N.; Giles, J.R.; Giref, A.Z.; Guo, G.; He, J.; Helak, M.; Hulland, E.N.; Idrisov, B.; Lindstrom, A.; Linebarger, E.; Lotufo, P.A.; Lozano, R.; Magistro, B.; Malta, D.C.; Månsson, J.C.; Marinho, F.; Mokdad, A.H.; Monasta, L.; Naik, P.; Nomura, S.; O’Halloran, J.K.; Ostroff, S.M.; Pasovic, M.; Penberthy, L.; Reiner, R.C., Jr; Reinke, G.; Ribeiro, A.L.P.; Sholokhov, A.; Sorensen, R.J.D.; Varavikova, E.; Vo, A.T.; Walcott, R.; Watson, S.; Wiysonge, C.S.; Zigler, B.; Hay, S.I.; Vos, T.; Murray, C.J.L.; Whiteford, H.A.; Ferrari, A.J. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet, 2021, 398(10312), 1700-1712.
[http://dx.doi.org/10.1016/S0140-6736(21)02143-7] [PMID: 34634250]
[6]
Harvard University. Center on the Developing Child. Key Concepts. Toxic Stress 2012. Available from: https://developingchild.harvard.edu/science/key-concepts/toxic-stress/
[7]
Garner, A.S.; Shonkoff, J.P.; Siegel, B.S.; Dobbins, M.I.; Earls, M.F.; Garner, A.S.; McGuinn, L.; Pascoe, J.; Wood, D.L. Committee on psychosocial aspects of child and family health; committee on early childhood, adoption, and dependent care; section on developmental and behavioral pediatrics. Early childhood adversity, toxic stress, and the role of the pediatrician: translating developmental science into lifelong health. Pediatrics, 2012, 129(1), e224-e231.
[http://dx.doi.org/10.1542/peds.2011-2662] [PMID: 22201148]
[8]
Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Merikangas, K.R.; Walters, E.E. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry, 2005, 62(6), 593-602.
[http://dx.doi.org/10.1001/archpsyc.62.6.593] [PMID: 15939837]
[9]
Smoller, J.W. The genetics of stress-related disorders: PTSD, depression, and anxiety disorders. Neuropsychopharmacology, 2016, 41(1), 297-319.
[http://dx.doi.org/10.1038/npp.2015.266] [PMID: 26321314]
[10]
Coleman, J.R.I.; Gaspar, H.A.; Bryois, J.; Breen, G.; Byrne, E.M.; Forstner, A.J.; Holmans, P.A.; de Leeuw, C.A.; Mattheisen, M.; McQuillin, A.; Whitehead Pavlides, J.M.; Pers, T.H.; Ripke, S.; Stahl, E.A.; Steinberg, S.; Trubetskoy, V.; Trzaskowski, M.; Wang, Y.; Abbott, L.; Abdellaoui, A.; Adams, M.J.; Adolfsson, A.N.; Agerbo, E.; Akil, H.; Albani, D.; Alliey-Rodriguez, N.; Als, T.D.; Andlauer, T.F.M.; Anjorin, A.; Antilla, V.; Van der Auwera, S.; Awasthi, S.; Bacanu, S-A.; Badner, J.A.; Bækvad-Hansen, M.; Barchas, J.D.; Bass, N.; Bauer, M.; Beekman, A.T.F.; Belliveau, R.; Bergen, S.E.; Bigdeli, T.B.; Binder, E.B.; Bøen, E.; Boks, M.; Boocock, J.; Budde, M.; Bunney, W.; Burmeister, M.; Buttenschøn, H.N.; Bybjerg-Grauholm, J.; Byerley, W.; Cai, N.; Casas, M.; Castelao, E.; Cerrato, F.; Cervantes, P.; Chambert, K.; Charney, A.W.; Chen, D.; Christensen, J.H.; Churchhouse, C.; St Clair, D.; Clarke, T-K.; Colodro-Conde, L.; Coryell, W.; Couvy-Duchesne, B.; Craig, D.W.; Crawford, G.E.; Cruceanu, C.; Czerski, P.M.; Dale, A.M.; Davies, G.; Deary, I.J.; Degenhardt, F.; Del-Favero, J.; DePaulo, J.R.; Derks, E.M.; Direk, N.; Djurovic, S.; Dobbyn, A.L.; Dolan, C.V.; Dumont, A.; Dunn, E.C.; Eley, T.C.; Elvsåshagen, T.; Escott-Price, V.; Fan, C.C.; Finucane, H.K.; Fischer, S.B.; Flickinger, M.; Foo, J.C.; Foroud, T.M.; Forty, L.; Frank, J.; Fraser, C.; Freimer, N.B.; Frisén, L.; Gade, K.; Gage, D.; Garnham, J.; Giambartolomei, C.; Goes, F.S.; Goldstein, J.; Gordon, S.D.; Gordon-Smith, K.; Green, E.K.; Green, M.J.; Greenwood, T.A.; Grove, J.; Guan, W.; Hall, L.S.; Hamshere, M.L.; Hansen, C.S.; Hansen, T.F.; Hautzinger, M.; Heilbronner, U.; van Hemert, A.M.; Herms, S.; Hickie, I.B.; Hipolito, M.; Hoffmann, P.; Holland, D.; Homuth, G.; Horn, C.; Hottenga, J-J.; Huckins, L.; Ising, M.; Jamain, S.; Jansen, R.; Johnson, J.S.; de Jong, S.; Jorgenson, E.; Juréus, A.; Kandaswamy, R.; Karlsson, R.; Kennedy, J.L.; Hassan Kiadeh, F.F.; Kittel-Schneider, S.; Knowles, J.A.; Kogevinas, M.; Kohane, I.S.; Koller, A.C.; Kraft, J.; Kretzschmar, W.W.; Krogh, J.; Kupka, R.; Kutalik, Z.; Lavebratt, C.; Lawrence, J.; Lawson, W.B.; Leber, M.; Lee, P.H.; Levy, S.E.; Li, J.Z.; Li, Y.; Lind, P.A.; Liu, C.; Olde Loohuis, L.M.; Maaser, A.; MacIntyre, D.J.; MacKinnon, D.F.; Mahon, P.B.; Maier, W.; Maier, R.M.; Marchini, J.; Martinsson, L.; Mbarek, H.; McCarroll, S.; McGrath, P.; McGuffin, P.; McInnis, M.G.; McKay, J.D.; Medeiros, H.; Medland, S.E.; Mehta, D.; Meng, F.; Middeldorp, C.M.; Mihailov, E.; Milaneschi, Y.; Milani, L.; Mirza, S.S.; Mondimore, F.M.; Montgomery, G.W.; Morris, D.W.; Mostafavi, S.; Mühleisen, T.W.; Mullins, N.; Nauck, M.; Ng, B.; Nguyen, H.; Nievergelt, C.M.; Nivard, M.G.; Nwulia, E.A.; Nyholt, D.R.; O’Donovan, C.; O’Reilly, P.F.; Ori, A.P.S.; Oruc, L.; Ösby, U.; Oskarsson, H.; Painter, J.N.; Parra, J.G.; Pedersen, C.B.; Pedersen, M.G.; Perry, A.; Peterson, R.E.; Pettersson, E.; Peyrot, W.J.; Pfennig, A.; Pistis, G.; Purcell, S.M.; Quiroz, J.A.; Qvist, P.; Regeer, E.J.; Reif, A.; Reinbold, C.S.; Rice, J.P.; Riley, B.P.; Rivas, F.; Rivera, M.; Roussos, P.; Ruderfer, D.M.; Ryu, E.; Sánchez-Mora, C.; Schatzberg, A.F.; Scheftner, W.A.; Schoevers, R.; Schork, N.J.; Schulte, E.C.; Shehktman, T.; Shen, L.; Shi, J.; Shilling, P.D.; Shyn, S.I.; Sigurdsson, E.; Slaney, C.; Smeland, O.B.; Smit, J.H.; Smith, D.J.; Sobell, J.L.; Spijker, A.T.; Steffens, M.; Strauss, J.S.; Streit, F.; Strohmaier, J.; Szelinger, S.; Tansey, K.E.; Teismann, H.; Teumer, A.; Thompson, R.C.; Thompson, W.; Thomson, P.A.; Thorgeirsson, T.E.; Traylor, M.; Treutlein, J.; Uitterlinden, A.G.; Umbricht, D.; Vedder, H.; Viktorin, A.; Visscher, P.M.; Wang, W.; Watson, S.J.; Webb, B.T.; Weickert, C.S.; Weickert, T.W.; Weinsheimer, S.M.; Wellmann, J.; Willemsen, G.; Witt, S.H.; Wu, Y.; Xi, H.S.; Xu, W.; Yang, J.; Young, A.H.; Zandi, P.; Zhang, P.; Zhang, F.; Zollner, S.; Adolfsson, R.; Agartz, I.; Alda, M.; Arolt, V.; Backlund, L.; Baune, B.T.; Bellivier, F.; Berger, K.; Berrettini, W.H.; Biernacka, J.M.; Blackwood, D.H.R.; Boehnke, M.; Boomsma, D.I.; Corvin, A.; Craddock, N.; Daly, M.J.; Dannlowski, U.; Domenici, E.; Domschke, K.; Esko, T.; Etain, B.; Frye, M.; Fullerton, J.M.; Gershon, E.S.; de Geus, E.J.C.; Gill, M.; Goes, F.; Grabe, H.J.; Grigoroiu-Serbanescu, M.; Hamilton, S.P.; Hauser, J.; Hayward, C.; Heath, A.C.; Hougaard, D.M.; Hultman, C.M.; Jones, I.; Jones, L.A.; Kahn, R.S.; Kendler, K.S.; Kirov, G.; Kloiber, S.; Landén, M.; Leboyer, M.; Lewis, G.; Li, Q.S.; Lissowska, J.; Lucae, S.; Madden, P.A.F.; Magnusson, P.K.; Martin, N.G.; Mayoral, F.; McElroy, S.L.; McIntosh, A.M.; McMahon, F.J.; Melle, I.; Metspalu, A.; Mitchell, P.B.; Morken, G.; Mors, O.; Mortensen, P.B.; Müller-Myhsok, B.; Myers, R.M.; Neale, B.M.; Nimgaonkar, V.; Nordentoft, M.; Nöthen, M.M.; O’Donovan, M.C.; Oedegaard, K.J.; Owen, M.J.; Paciga, S.A.; Pato, C.; Pato, M.T.; Pedersen, N.L.; Penninx, B.W.J.H.; Perlis, R.H.; Porteous, D.J.; Posthuma, D.; Potash, J.B.; Preisig, M.; Ramos-Quiroga, J.A.; Ribasés, M.; Rietschel, M.; Rouleau, G.A.; Schaefer, C.; Schalling, M.; Schofield, P.R.; Schulze, T.G.; Serretti, A.; Smoller, J.W.; Stefansson, H.; Stefansson, K.; Stordal, E.; Tiemeier, H.; Turecki, G.; Uher, R.; Vaaler, A.E.; Vieta, E.; Vincent, J.B.; Völzke, H.; Weissman, M.M.; Werge, T.; Andreassen, O.A.; Børglum, A.D.; Cichon, S.; Edenberg, H.J.; Di Florio, A.; Kelsoe, J.; Levinson, D.F.; Lewis, C.M.; Nurnberger, J.I.; Ophoff, R.A.; Scott, L.J.; Sklar, P.; Sullivan, P.F.; Wray, N.R.; Byrne, E.M.; Forstner, A.J.; Holmans, P.A.; de Leeuw, C.A.; Mattheisen, M.; McQuillin, A.; Whitehead, P.J.M.; Pers, T.H.; Ripke, S.; Stahl, E.A.; Steinberg, S.; Trubetskoy, V.; Trzaskowski, M.; Wang, Y.; Abbott, L.; Abdellaoui, A.; Adams, M.J.; Adolfsson, A.N.; Agerbo, E.; Akil, H.; Albani, D.; Alliey-Rodriguez, N.; Als, T.D.; Andlauer, T.F.M.; Anjorin, A.; Antilla, V.; Van der Auwera, S.; Awasthi, S.; Bacanu, S-A.; Badner, J.A.; Bækvad-Hansen, M.; Barchas, J.D.; Bass, N.; Bauer, M.; Beekman, A.T.F.; Belliveau, R.; Bergen, S.E.; Bigdeli, T.B.; Binder, E.B.; Bøen, E.; Boks, M.; Boocock, J.; Budde, M.; Bunney, W.; Burmeister, M.; Buttenschøn, H.N.; Bybjerg-Grauholm, J.; Byerley, W.; Cai, N.; Casas, M.; Castelao, E.; Cerrato, F.; Cervantes, P.; Chambert, K.; Charney, A.W.; Chen, D.; Christensen, J.H.; Churchhouse, C.; St Clair, D.; Clarke, T-K.; Colodro-Conde, L.; Coryell, W.; Couvy-Duchesne, B.; Craig, D.W.; Crawford, G.E.; Cruceanu, C.; Czerski, P.M.; Dale, A.M.; Davies, G.; Deary, I.J.; Degenhardt, F.; Del-Favero, J.; DePaulo, J.R.; Derks, E.M.; Direk, N.; Djurovic, S.; Dobbyn, A.L.; Dolan, C.V.; Dumont, A.; Dunn, E.C.; Eley, T.C.; Elvsåshagen, T.; Escott-Price, V.; Fan, C.C.; Finucane, H.K.; Fischer, S.B.; Flickinger, M.; Foo, J.C.; Foroud, T.M.; Forty, L.; Frank, J.; Fraser, C.; Freimer, N.B.; Frisén, L.; Gade, K.; Gage, D.; Garnham, J.; Giambartolomei, C.; Goes, F.S.; Goldstein, J.; Gordon, S.D.; Gordon-Smith, K.; Green, E.K.; Green, M.J.; Greenwood, T.A.; Grove, J.; Guan, W.; Hall, L.S.; Hamshere, M.L.; Hansen, C.S.; Hansen, T.F.; Hautzinger, M.; Heilbronner, U.; van Hemert, A.M.; Herms, S.; Hickie, I.B.; Hipolito, M.; Hoffmann, P.; Holland, D.; Homuth, G.; Horn, C.; Hottenga, J-J.; Huckins, L.; Ising, M.; Jamain, S.; Jansen, R.; Johnson, J.S.; de Jong, S.; Jorgenson, E.; Juréus, A.; Kandaswamy, R.; Karlsson, R.; Kennedy, J.L.; Hassan Kiadeh, F.F.; Kittel-Schneider, S.; Knowles, J.A.; Kogevinas, M.; Kohane, I.S.; Koller, A.C.; Kraft, J.; Kretzschmar, W.W.; Krogh, J.; Kupka, R.; Kutalik, Z.; Lavebratt, C.; Lawrence, J.; Lawson, W.B.; Leber, M.; Lee, P.H.; Levy, S.E.; Li, J.Z.; Li, Y.; Lind, P.A.; Liu, C.; Olde Loohuis, L.M.; Maaser, A.; MacIntyre, D.J.; MacKinnon, D.F.; Mahon, P.B.; Maier, W.; Maier, R.M.; Marchini, J.; Martinsson, L.; Mbarek, H.; McCarroll, S.; McGrath, P.; McGuffin, P.; McInnis, M.G.; McKay, J.D.; Medeiros, H.; Medland, S.E.; Mehta, D.; Meng, F.; Middeldorp, C.M.; Mihailov, E.; Milaneschi, Y.; Milani, L.; Mirza, S.S.; Mondimore, F.M.; Montgomery, G.W.; Morris, D.W.; Mostafavi, S.; Mühleisen, T.W.; Mullins, N.; Nauck, M.; Ng, B.; Nguyen, H.; Nievergelt, C.M.; Nivard, M.G.; Nwulia, E.A.; Nyholt, D.R.; O’Donovan, C.; O’Reilly, P.F.; Ori, A.P.S.; Oruc, L.; Ösby, U.; Oskarsson, H.; Painter, J.N.; Parra, J.G.; Pedersen, C.B.; Pedersen, M.G.; Perry, A.; Peterson, R.E.; Pettersson, E.; Peyrot, W.J.; Pfennig, A.; Pistis, G.; Purcell, S.M.; Quiroz, J.A.; Qvist, P.; Regeer, E.J.; Reif, A.; Reinbold, C.S.; Rice, J.P.; Riley, B.P.; Rivas, F.; Rivera, M.; Roussos, P.; Ruderfer, D.M.; Ryu, E.; Sánchez-Mora, C.; Schatzberg, A.F.; Scheftner, W.A.; Schoevers, R.; Schork, N.J.; Schulte, E.C.; Shehktman, T.; Shen, L.; Shi, J.; Shilling, P.D.; Shyn, S.I.; Sigurdsson, E.; Slaney, C.; Smeland, O.B.; Smit, J.H.; Smith, D.J.; Sobell, J.L.; Spijker, A.T.; Steffens, M.; Strauss, J.S.; Streit, F.; Strohmaier, J.; Szelinger, S.; Tansey, K.E.; Teismann, H.; Teumer, A.; Thompson, R.C.; Thompson, W.; Thomson, P.A.; Thorgeirsson, T.E.; Traylor, M.; Treutlein, J.; Uitterlinden, A.G.; Umbricht, D.; Vedder, H.; Viktorin, A.; Visscher, P.M.; Wang, W.; Watson, S.J.; Webb, B.T.; Weickert, C.S.; Weickert, T.W.; Weinsheimer, S.M.; Wellmann, J.; Willemsen, G.; Witt, S.H.; Wu, Y.; Xi, H.S.; Xu, W.; Yang, J.; Young, A.H.; Zandi, P.; Zhang, P.; Zhang, F.; Zollner, S.; Adolfsson, R.; Agartz, I.; Alda, M.; Arolt, V.; Backlund, L.; Baune, B.T.; Bellivier, F.; Berger, K.; Berrettini, W.H.; Biernacka, J.M.; Blackwood, D.H.R.; Boehnke, M.; Boomsma, D.I.; Corvin, A.; Craddock, N.; Daly, M.J.; Dannlowski, U.; Domenici, E.; Domschke, K.; Esko, T.; Etain, B.; Frye, M.; Fullerton, J.M.; Gershon, E.S.; de Geus, E.J.C.; Gill, M.; Goes, F.; Grabe, H.J.; Grigoroiu-Serbanescu, M.; Hamilton, S.P.; Hauser, J.; Hayward, C.; Heath, A.C.; Hougaard, D.M.; Hultman, C.M.; Jones, I.; Jones, L.A.; Kahn, R.S.; Kendler, K.S.; Kirov, G.; Kloiber, S.; Landén, M.; Leboyer, M.; Lewis, G.; Li, Q.S.; Lissowska, J.; Lucae, S.; Madden, P.A.F.; Magnusson, P.K.; Martin, N.G.; Mayoral, F.; McElroy, S.L.; McIntosh, A.M.; McMahon, F.J.; Melle, I.; Metspalu, A.; Mitchell, P.B.; Morken, G.; Mors, O.; Mortensen, P.B.; Müller-Myhsok, B.; Myers, R.M.; Neale, B.M.; Nimgaonkar, V.; Nordentoft, M.; Nöthen, M.M.; O’Donovan, M.C.; Oedegaard, K.J.; Owen, M.J.; Paciga, S.A.; Pato, C.; Pato, M.T.; Pedersen, N.L.; Penninx, B.W.J.H.; Perlis, R.H.; Porteous, D.J.; Posthuma, D.; Potash, J.B.; Preisig, M.; Ramos-Quiroga, J.A.; Ribasés, M.; Rietschel, M.; Rouleau, G.A.; Schaefer, C.; Schalling, M.; Schofield, P.R.; Schulze, T.G.; Serretti, A.; Smoller, J.W.; Stefansson, H.; Stefansson, K.; Stordal, E.; Tiemeier, H.; Turecki, G.; Uher, R.; Vaaler, A.E.; Vieta, E.; Vincent, J.B.; Völzke, H.; Weissman, M.M.; Werge, T.; Andreassen, O.A.; Børglum, A.D.; Cichon, S.; Edenberg, H.J.; Di Florio, A.; Kelsoe, J.; Levinson, D.F.; Lewis, C.M.; Nurnberger, J.I.; Ophoff, R.A.; Scott, L.J.; Sklar, P.; Sullivan, P.F.; Wray, N.R. The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses of More Than 185,000 Cases and 439,000 Controls. Biol. Psychiatry, 2020, 88(2), 169-184.
[http://dx.doi.org/10.1016/j.biopsych.2019.10.015] [PMID: 31926635]
[11]
Kendler, K.S.; Gatz, M.; Gardner, C.O.; Pedersen, N.L. Clinical indices of familial depression in the Swedish Twin Registry. Acta Psychiatr. Scand., 2007, 115(3), 214-220.
[http://dx.doi.org/10.1111/j.1600-0447.2006.00863.x] [PMID: 17302621]
[12]
Hettema, J.M.; Kettenmann, B.; Ahluwalia, V.; McCarthy, C.; Kates, W.R.; Schmitt, J.E.; Silberg, J.L.; Neale, M.C.; Kendler, K.S.; Fatouros, P. Pilot multimodal twin imaging study of generalized anxiety disorder. Depress. Anxiety, 2012, 29(3), 202-209.
[http://dx.doi.org/10.1002/da.20901] [PMID: 21994092]
[13]
Berardis, D.; Marini, S.; Serroni, N.; Iasevoli, F.; Tomasetti, C.; Bartolomeis, A.; Mazza, M.; Tempesta, D.; Valchera, A.; Fornaro, M.; Pompili, M.; Sepede, G.; Vellante, F.; Orsolini, L.; Martinotti, G.; Giannantonio, M. Targeting the noradrenergic system in posttraumatic stress disorder: A systematic review and meta-analysis of prazosin trials. Curr. Drug Targets, 2015, 16(10), 1094-1106.
[http://dx.doi.org/10.2174/1389450116666150506114108] [PMID: 25944011]
[14]
Tempesta, D.; Mazza, M.; Serroni, N.; Moschetta, F.S.; Di Giannantonio, M.; Ferrara, M.; De Berardis, D. Neuropsychological functioning in young subjects with generalized anxiety disorder with and without pharmacotherapy. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 45, 236-241.
[http://dx.doi.org/10.1016/j.pnpbp.2013.06.006] [PMID: 23796524]
[15]
Ventriglio, A.; Bhugra, D.; Sampogna, G.; Luciano, M.; De Berardis, D.; Sani, G.; Fiorillo, A. From dysthymia to treatment-resistant depression: Evolution of a psychopathological construct. Int. Rev. Psychiatry, 2020, 32(5-6), 471-476.
[http://dx.doi.org/10.1080/09540261.2020.1765517]
[16]
Michopoulos, V.; Powers, A.; Gillespie, C.F.; Ressler, K.J.; Jovanovic, T. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology, 2017, 42(1), 254-270.
[http://dx.doi.org/10.1038/npp.2016.146] [PMID: 27510423]
[17]
Serra-Blasco, M.; Radua, J.; Soriano-Mas, C.; Gómez-Benlloch, A.; Porta-Casteràs, D.; Carulla-Roig, M.; Albajes-Eizagirre, A.; Arnone, D.; Klauser, P.; Canales-Rodríguez, E.J.; Hilbert, K.; Wise, T.; Cheng, Y.; Kandilarova, S.; Mataix-Cols, D.; Vieta, E.; Via, E.; Cardoner, N. Structural brain correlates in major depression, anxiety disorders and post-traumatic stress disorder: A voxel-based morphometry meta-analysis. Neurosci. Biobehav. Rev., 2021, 129, 269-281.
[http://dx.doi.org/10.1016/j.neubiorev.2021.07.002] [PMID: 34256069]
[18]
Verbitsky, A.; Dopfel, D.; Zhang, N. Rodent models of post-traumatic stress disorder: Behavioral assessment. Transl. Psychiatry, 2020, 10(1), 132.
[http://dx.doi.org/10.1038/s41398-020-0806-x] [PMID: 32376819]
[19]
Planchez, B.; Surget, A.; Belzung, C. Animal models of major depression: Drawbacks and challenges. J. Neural Transm., 2019, 126(11), 1383-1408.
[http://dx.doi.org/10.1007/s00702-019-02084-y] [PMID: 31584111]
[20]
Yehuda, R.; Antelman, S.M. Criteria for rationally evaluating animal models of postraumatic stress disorder. Biol. Psychiatry, 1993, 33(7), 479-486.
[http://dx.doi.org/10.1016/0006-3223(93)90001-T] [PMID: 8513032]
[21]
Franklin, T.B.; Saab, B.J.; Mansuy, I.M. Neural mechanisms of stress resilience and vulnerability. Neuron, 2012, 75(5), 747-761.
[http://dx.doi.org/10.1016/j.neuron.2012.08.016] [PMID: 22958817]
[22]
Armario, A.; Escorihuela, R.M.; Nadal, R. Long-term neuroendocrine and behavioural effects of a single exposure to stress in adult animals. Neurosci. Biobehav. Rev., 2008, 32(6), 1121-1135.
[http://dx.doi.org/10.1016/j.neubiorev.2008.04.003] [PMID: 18514314]
[23]
Campos, A.C.; Fogaça, M.V.; Aguiar, D.C.; Guimarães, F.S. Animal models of anxiety disorders and stress. Rev. Bras. Psiquiatr., 2013, 35(Suppl. 2), S101-S111.
[http://dx.doi.org/10.1590/1516-4446-2013-1139] [PMID: 24271222]
[24]
Finnell, J.E.; Lombard, C.M.; Padi, A.R.; Moffitt, C.M.; Wilson, L.B.; Wood, C.S.; Wood, S.K. Physical versus psychological social stress in male rats reveals distinct cardiovascular, inflammatory and behavioral consequences. PLoS One, 2017, 12(2), e0172868.
[http://dx.doi.org/10.1371/journal.pone.0172868] [PMID: 28241050]
[25]
Márquez, C.; Belda, X.; Armario, A. Post-stress recovery of pituitary-adrenal hormones and glucose, but not the response during exposure to the stressor, is a marker of stress intensity in highly stressful situations. Brain Res., 2002, 926(1-2), 181-185.
[http://dx.doi.org/10.1016/S0006-8993(01)03112-2] [PMID: 11814422]
[26]
Belda, X.; Fuentes, S.; Nadal, R.; Armario, A. A single exposure to immobilization causes long-lasting pituitary-adrenal and behavioral sensitization to mild stressors. Horm. Behav., 2008, 54(5), 654-661.
[http://dx.doi.org/10.1016/j.yhbeh.2008.07.003] [PMID: 18675818]
[27]
Andero, R.; Heldt, S.A.; Ye, K.; Liu, X.; Armario, A.; Ressler, K.J. Effect of 7,8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning. Am. J. Psychiatry, 2011, 168(2), 163-172.
[http://dx.doi.org/10.1176/appi.ajp.2010.10030326] [PMID: 21123312]
[28]
Velasco, E.R.; Florido, A.; Flores, Á.; Senabre, E.; Gomez-Gomez, A.; Torres, A.; Roca, A.; Norrholm, S.; Newman, E.L.; Das, P.; Ross, R.A.; Lori, A.; Pozo, O.J.; Ressler, K.J.; Garcia-Esteve, L.L.; Jovanovic, T.; Andero, R. PACAP-PAC1R modulates fear extinction via the ventromedial hypothalamus. Nat. Commun., 2022, 13(1), 4374.
[http://dx.doi.org/10.1038/s41467-022-31442-w] [PMID: 35902577]
[29]
Sanz-García, A.; Knafo, S.; Pereda-Pérez, I.; Esteban, J.A.; Venero, C.; Armario, A. Administration of the TrkB receptor agonist 7,8-dihydroxyflavone prevents traumatic stress-induced spatial memory deficits and changes in synaptic plasticity. Hippocampus, 2016, 26(9), 1179-1188.
[http://dx.doi.org/10.1002/hipo.22599] [PMID: 27068341]
[30]
Zhang, J.H.; Han, F.; Shi, Y.X. Single prolonged stress induces changes in the expression of mineralocorticoid receptor in the medial prefrontal cortex in a rat model of post-traumatic stress disorder. Mol. Med. Rep., 2012, 6(2), 330-334.
[http://dx.doi.org/10.3892/mmr.2012.937] [PMID: 22684778]
[31]
Willner, P. The validity of animal models of depression. Psychopharmacology, 1984, 83(1), 1-16.
[http://dx.doi.org/10.1007/BF00427414] [PMID: 6429692]
[32]
Willner, P.; Belzung, C. Treatment-resistant depression: are animal models of depression fit for purpose? Psychopharmacology, 2015, 232(19), 3473-3495.
[http://dx.doi.org/10.1007/s00213-015-4034-7] [PMID: 26289353]
[33]
Willner, P.; Scheel-Krüger, J.; Belzung, C. The neurobiology of depression and antidepressant action. Neurosci. Biobehav. Rev., 2013, 37(10), 2331-2371.
[http://dx.doi.org/10.1016/j.neubiorev.2012.12.007] [PMID: 23261405]
[34]
Belzung, C.; Willner, P.; Philippot, P. Depression: From psychopathology to pathophysiology. Curr. Opin. Neurobiol., 2015, 30, 24-30.
[http://dx.doi.org/10.1016/j.conb.2014.08.013] [PMID: 25218233]
[35]
Badcock, P.; Allen, N. Adaptive social reasoning in depressed mood and depressive vulnerability. Cogn. Emotion, 2003, 17(4), 647-670.
[http://dx.doi.org/10.1080/02699930302299] [PMID: 29715734]
[36]
Berton, O.; McClung, C.A.; DiLeone, R.J.; Krishnan, V.; Renthal, W.; Russo, S.J. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science, 2006, 311(5762), 864-868.
[37]
Björkqvist, K. Social defeat as a stressor in humans. Physiol. Behav., 2001, 73(3), 435-442.
[http://dx.doi.org/10.1016/S0031-9384(01)00490-5] [PMID: 11438372]
[38]
Rohde, P. The relevance of hierarchies, territories, defeat for depression in humans: Hypotheses and clinical predictions. J. Affect. Disord., 2001, 65(3), 221-230.
[http://dx.doi.org/10.1016/S0165-0327(00)00219-6] [PMID: 11511402]
[39]
Hultman, R.; Mague, S.D.; Li, Q.; Katz, B.M.; Michel, N.; Lin, L.; Wang, J.; David, L.K.; Blount, C.; Chandy, R.; Carlson, D.; Ulrich, K.; Carin, L.; Dunson, D.; Kumar, S.; Deisseroth, K.; Moore, S.D.; Dzirasa, K. Dysregulation of prefrontal cortex-mediated slow-evolving limbic dynamics drives stress-induced emotional pathology. Neuron, 2016, 91(2), 439-452.
[http://dx.doi.org/10.1016/j.neuron.2016.05.038] [PMID: 27346529]
[40]
Han, Q.Q.; Yang, L.; Huang, H.J.; Wang, Y.L.; Yu, R.; Wang, J.; Pilot, A.; Wu, G.C.; Liu, Q.; Yu, J. Differential GR expression and translocation in the hippocampus mediates susceptibility vs. resilience to chronic social defeat stress. Front. Neurosci., 2017, 11, 287.
[http://dx.doi.org/10.3389/fnins.2017.00287] [PMID: 28588443]
[41]
Tsankova, N.M.; Berton, O.; Renthal, W.; Kumar, A.; Neve, R.L.; Nestler, E.J. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci., 2006, 9(4), 519-525.
[http://dx.doi.org/10.1038/nn1659] [PMID: 16501568]
[42]
Hill, M.N.; Hellemans, K.G.C.; Verma, P.; Gorzalka, B.B.; Weinberg, J. Neurobiology of chronic mild stress: Parallels to major depression. Neurosci. Biobehav. Rev., 2012, 36(9), 2085-2117.
[http://dx.doi.org/10.1016/j.neubiorev.2012.07.001] [PMID: 22776763]
[43]
Willner, P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol. Stress, 2017, 6, 78-93.
[http://dx.doi.org/10.1016/j.ynstr.2016.08.002] [PMID: 28229111]
[44]
Kalueff, A.V.; Wheaton, M.; Murphy, D.L. What’s wrong with my mouse model? Behav. Brain Res., 2007, 179(1), 1-18.
[http://dx.doi.org/10.1016/j.bbr.2007.01.023] [PMID: 17306892]
[45]
Gale, G.D.; Anagnostaras, S.G.; Godsil, B.P.; Mitchell, S.; Nozawa, T.; Sage, J.R.; Wiltgen, B.; Fanselow, M.S. Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J. Neurosci., 2004, 24(15), 3810-3815.
[http://dx.doi.org/10.1523/JNEUROSCI.4100-03.2004] [PMID: 15084662]
[46]
McEwen, B.S.; De Kloet, E.R.; Rostene, W. Adrenal steroid receptors and actions in the nervous system. Physiol. Rev., 1986, 66(4), 1121-1188.
[http://dx.doi.org/10.1152/physrev.1986.66.4.1121] [PMID: 3532143]
[47]
Amaya, J.M.; Suidgeest, E.; Sahut-Barnola, I.; Dumontet, T.; Montanier, N.; Pagès, G.; Keller, C.; van der Weerd, L.; Pereira, A.M.; Martinez, A.; Meijer, O.C. Effects of long-term endogenous corticosteroid exposure on brain volume and glial cells in the AdKO mouse. Front. Neurosci., 2021, 15(2), 604103.
[http://dx.doi.org/10.3389/fnins.2021.604103] [PMID: 33642975]
[48]
Wellman, C.L. Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J. Neurobiol., 2001, 49(3), 245-253.
[49]
Cook, S.C.; Wellman, C.L. Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J. Neurobiol., 2004, 60(2), 236-248.
[http://dx.doi.org/10.1002/neu.20025] [PMID: 15266654]
[50]
Sapolsky, R.M.; Krey, L.C.; McEwen, B.S. Prolonged glucocorticoid exposure reduces hippocampal neuron number: Implications for aging. J. Neurosci., 1985, 5(5), 1222-1227.
[http://dx.doi.org/10.1523/JNEUROSCI.05-05-01222.1985] [PMID: 3998818]
[51]
Sapolsky, R.M.; Uno, H.; Rebert, C.S.; Finch, C.E. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J. Neurosci., 1990, 10(9), 2897-2902.
[http://dx.doi.org/10.1523/JNEUROSCI.10-09-02897.1990] [PMID: 2398367]
[52]
Mitra, R.; Sapolsky, R.M. Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc. Natl. Acad. Sci. USA, 2008, 105(14), 5573-5578.
[http://dx.doi.org/10.1073/pnas.0705615105] [PMID: 18391224]
[53]
Magarinos, A.M.; McEwen, B.S. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: Involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience, 1995, 69(1), 89-98.
[http://dx.doi.org/10.1016/0306-4522(95)00259-L] [PMID: 8637636]
[54]
Herman, J.P.; Patel, P.D.; Akil, H.; Watson, S.J. Localization and regulation of glucocorticoid and mineralocorticoid receptor messenger RNAs in the hippocampal formation of the rat. Mol. Endocrinol., 1989, 3(11), 1886-1894.
[http://dx.doi.org/10.1210/mend-3-11-1886] [PMID: 2558306]
[55]
Jacobson, L.; Sapolsky, R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr. Rev., 1991, 12(2), 118-134.
[http://dx.doi.org/10.1210/edrv-12-2-118] [PMID: 2070776]
[56]
Sapolsky, R.M.; Zola-Morgan, S.; Squire, L.R. Inhibition of glucocorticoid secretion by the hippocampal formation in the primate. J. Neurosci., 1991, 11(12), 3695-3704.
[http://dx.doi.org/10.1523/JNEUROSCI.11-12-03695.1991] [PMID: 1744687]
[57]
Herman, J.P.; Cullinan, W.E. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci., 1997, 20(2), 78-84.
[http://dx.doi.org/10.1016/S0166-2236(96)10069-2] [PMID: 9023876]
[58]
Alexandra, K.M.; Fenster, R.J.; Laurent, E.S.; Ressler, K.J.; Phelps, E.A. Prefrontal cortex, amygdala, and threat processing: implications for PTSD. Neuropsychopharmacology, 2022, 47(1), 247-259.
[http://dx.doi.org/10.1038/s41386-021-01155-7] [PMID: 34545196]
[59]
Watanabe, Y.; Gould, E.; McEwen, B.S. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res., 1992, 588(2), 341-345.
[http://dx.doi.org/10.1016/0006-8993(92)91597-8] [PMID: 1393587]
[60]
Magariños, A.M.; McEwen, B.S.; Flügge, G.; Fuchs, E. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J. Neurosci., 1996, 16(10), 3534-3540.
[http://dx.doi.org/10.1523/JNEUROSCI.16-10-03534.1996] [PMID: 8627386]
[61]
Conrad, C.D.; Galea, L.A.M.; Kuroda, Y.; McEwen, B.S. Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine treatment. Behav. Neurosci., 1996, 110(6), 1321-1334.
[http://dx.doi.org/10.1037/0735-7044.110.6.1321] [PMID: 8986335]
[62]
Sousa, N.; Lukoyanov, N.V.; Madeira, M.D.; Almeida, O.F.X.; Paula-Barbosa, M.M. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience, 2000, 97(2), 253-266.
[http://dx.doi.org/10.1016/S0306-4522(00)00050-6] [PMID: 10799757]
[63]
Kole, M.H.P.; Czéh, B.; Fuchs, E. Homeostatic maintenance in excitability of tree shrew hippocampal CA3 pyramidal neurons after chronic stress. Hippocampus, 2004, 14(6), 742-751.
[http://dx.doi.org/10.1002/hipo.10212] [PMID: 15318332]
[64]
Vyas, A.; Mitra, R.; Shankaranarayana, R.B.S.; Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci., 2002, 22(15), 6810-6818.
[http://dx.doi.org/10.1523/JNEUROSCI.22-15-06810.2002] [PMID: 12151561]
[65]
Oitzl, M.S.; Champagne, D.L.; van der Veen, R.; de Kloet, E.R. Brain development under stress: Hypotheses of glucocorticoid actions revisited. Neurosci. Biobehav. Rev., 2010, 34(6), 853-866.
[http://dx.doi.org/10.1016/j.neubiorev.2009.07.006] [PMID: 19631685]
[66]
Sapolsky, R.M.; Krey, L.C.; Mcewen, B.S. The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis. Endocr. Rev., 1986, 7(3), 284-301.
[http://dx.doi.org/10.1210/edrv-7-3-284] [PMID: 3527687]
[67]
Conrad, C.D. Chronic stress-induced hippocampal vulnerability: The glucocorticoid vulnerability hypothesis. Rev. Neurosci., 2008, 19(6), 395-411.
[http://dx.doi.org/10.1515/REVNEURO.2008.19.6.395] [PMID: 19317179]
[68]
Andero, R.; Choi, D.C.; Ressler, K.J. BDNF-TrkB receptor regulation of distributed adult neural plasticity, memory formation, and psychiatric disorders. Prog. Mol. Biol. Transl. Sci., 2014, 122, 169-192.
[http://dx.doi.org/10.1016/B978-0-12-420170-5.00006-4] [PMID: 24484701]
[69]
Duric, V.; Duman, R.S. Depression and treatment response: Dynamic interplay of signaling pathways and altered neural processes. Cell. Mol. Life Sci., 2013, 70(1), 39-53.
[http://dx.doi.org/10.1007/s00018-012-1020-7] [PMID: 22585060]
[70]
Felger, J.C.; Lotrich, F.E. Inflammatory cytokines in depression: Neurobiological mechanisms and therapeutic implications. Neuroscience, 2013, 246, 199-229.
[http://dx.doi.org/10.1016/j.neuroscience.2013.04.060] [PMID: 23644052]
[71]
Stepanichev, M.; Dygalo, N.N.; Grigoryan, G.; Shishkina, G.T.; Gulyaeva, N. Rodent models of depression: Neurotrophic and neuroinflammatory biomarkers. BioMed Res. Int., 2014, 2014, 932757.
[72]
Lowy, M.T.; Gault, L.; Yamamoto, B.K. Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus. J. Neurochem., 1993, 61(5), 1957-1960.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb09839.x] [PMID: 7901339]
[73]
Lowy, M.T.; Wittenberg, L.; Yamamoto, B.K. Effect of acute stress on hippocampal glutamate levels and spectrin proteolysis in young and aged rats. J. Neurochem., 1995, 65(1), 268-274.
[http://dx.doi.org/10.1046/j.1471-4159.1995.65010268.x] [PMID: 7790870]
[74]
Reznikov, L.R.; Grillo, C.A.; Piroli, G.G.; Pasumarthi, R.K.; Reagan, L.P.; Fadel, J. Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: differential effects of antidepressant treatment. Eur. J. Neurosci., 2007, 25(10), 3109-3114.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05560.x] [PMID: 17561824]
[75]
Venero, C.; Borrell, J. Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus: a microdialysis study in freely moving rats. Eur. J. Neurosci., 1999, 11(7), 2465-2473.
[http://dx.doi.org/10.1046/j.1460-9568.1999.00668.x] [PMID: 10383636]
[76]
Bagley, J.; Moghaddam, B. Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam. Neuroscience, 1997, 77(1), 65-73.
[http://dx.doi.org/10.1016/S0306-4522(96)00435-6] [PMID: 9044375]
[77]
Moghaddam, B. Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J. Neurochem., 1993, 60(5), 1650-1657.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb13387.x] [PMID: 8097232]
[78]
Martin, K.P.; Wellman, C.L. NMDA receptor blockade alters stress-induced dendritic remodeling in medial prefrontal cortex. Cereb. Cortex, 2011, 21(10), 2366-2373.
[http://dx.doi.org/10.1093/cercor/bhr021] [PMID: 21383235]
[79]
Yin, Y.; Edelman, G.M.; Vanderklish, P.W. The brain-derived neurotrophic factor enhances synthesis of Arc in synaptoneurosomes. Proc. Natl. Acad. Sci. USA, 2002, 99(4), 2368-2373.
[http://dx.doi.org/10.1073/pnas.042693699] [PMID: 11842217]
[80]
Okuno, H. Regulation and function of immediate-early genes in the brain: Beyond neuronal activity markers. Neurosci. Res., 2011, 69(3), 175-186.
[http://dx.doi.org/10.1016/j.neures.2010.12.007] [PMID: 21163309]
[81]
Hunter, C.J.; Remenyi, J.; Correa, S.A.; Privitera, L.; Reyskens, K.M.S.E.; Martin, K.J.; Toth, R.; Frenguelli, B.G.; Arthur, J.S.C. MSK1 regulates transcriptional induction of Arc/Arg3.1 in response to neurotrophins. FEBS Open Bio, 2017, 7(6), 821-834.
[http://dx.doi.org/10.1002/2211-5463.12232] [PMID: 28593137]
[82]
Robinson, S.; Mogul, A.S.; Taylor-Yeremeeva, E.M.; Khan, A.; Tirabassi, A.D.; Wang, H.Y. Stress diminishes BDNF-stimulated TrkB signaling, TrkB-NMDA receptor linkage and neuronal activity in the rat brain. Neuroscience, 2021, 473, 142-158.
[http://dx.doi.org/10.1016/j.neuroscience.2021.07.011] [PMID: 34298123]
[83]
Messaoudi, E.; Ying, S.W.; Kanhema, T.; Croll, S.D.; Bramham, C.R. Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J. Neurosci., 2002, 22(17), 7453-7461.
[http://dx.doi.org/10.1523/JNEUROSCI.22-17-07453.2002] [PMID: 12196567]
[84]
Ying, S.W.; Futter, M.; Rosenblum, K.; Webber, M.J.; Hunt, S.P.; Bliss, T.V.P.; Bramham, C.R. Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J. Neurosci., 2002, 22(5), 1532-1540.
[http://dx.doi.org/10.1523/JNEUROSCI.22-05-01532.2002] [PMID: 11880483]
[85]
Bramham, C.R.; Alme, M.N.; Bittins, M.; Kuipers, S.D.; Nair, R.R.; Pai, B.; Panja, D.; Schubert, M.; Soule, J.; Tiron, A.; Wibrand, K. The Arc of synaptic memory. Exp. Brain Res., 2010, 200(2), 125-140.
[http://dx.doi.org/10.1007/s00221-009-1959-2] [PMID: 19690847]
[86]
Bekinschtein, P.; Cammarota, M.; Katche, C.; Slipczuk, L.; Rossato, J.I.; Goldin, A.; Izquierdo, I.; Medina, J.H. BDNF is essential to promote persistence of long-term memory storage. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2711-2716.
[http://dx.doi.org/10.1073/pnas.0711863105] [PMID: 18263738]
[87]
Bramham, C.R.; Messaoudi, E. BDNF function in adult synaptic plasticity: The synaptic consolidation hypothesis. Prog. Neurobiol., 2005, 76(2), 99-125.
[http://dx.doi.org/10.1016/j.pneurobio.2005.06.003] [PMID: 16099088]
[88]
Schmidt, H.D.; Duman, R.S. Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models. Neuropsychopharmacol., 2010, 35(12), 2378-2391.
[http://dx.doi.org/10.1038/npp.2010.114]
[89]
Zhang, W.; Wu, J.; Ward, M.D.; Yang, S.; Chuang, Y.A.; Xiao, M.; Li, R.; Leahy, D.J.; Worley, P.F. Structural basis of arc binding to synaptic proteins: implications for cognitive disease. Neuron, 2015, 86(2), 490-500.
[http://dx.doi.org/10.1016/j.neuron.2015.03.030] [PMID: 25864631]
[90]
Dwivedi, Y.; Rizavi, H.S.; Conley, R.R.; Roberts, R.C.; Tamminga, C.A.; Pandey, G.N. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch. Gen. Psychiatry, 2003, 60(8), 804-815.
[http://dx.doi.org/10.1001/archpsyc.60.8.804] [PMID: 12912764]
[91]
Karege, F.; Vaudan, G.; Schwald, M.; Perroud, N.; La Harpe, R. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res. Mol. Brain Res., 2005, 136(1-2), 29-37.
[http://dx.doi.org/10.1016/j.molbrainres.2004.12.020] [PMID: 15893584]
[92]
Thompson, R.M. Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J. Psychiatry Neurosci., 2011, 36(3), 195-203.
[93]
Nibuya, M.; Takahashi, M.; Russell, D.S.; Duman, R.S. Repeated stress increases catalytic TrkB mRNA in rat hippocampus. Neurosci. Lett., 1999, 267(2), 81-84.
[http://dx.doi.org/10.1016/S0304-3940(99)00335-3] [PMID: 10400217]
[94]
Kozlovsky, N.; Matar, M.A.; Kaplan, Z.; Kotler, M.; Zohar, J.; Cohen, H. Long-term down-regulation of BDNF mRNA in rat hippocampal CA1 subregion correlates with PTSD-like behavioural stress response. Int. J. Neuropsychopharmacol., 2007, 10(6), 741-758.
[http://dx.doi.org/10.1017/S1461145707007560] [PMID: 17291374]
[95]
Shi, S.S.; Shao, S.; Yuan, B.; Pan, F.; Li, Z.L. Acute stress and chronic stress change brain-derived neurotrophic factor (BDNF) and tyrosine kinase-coupled receptor (TrkB) expression in both young and aged rat hippocampus. Yonsei Med. J., 2010, 51(5), 661-671.
[http://dx.doi.org/10.3349/ymj.2010.51.5.661] [PMID: 20635439]
[96]
Nasrallah, P.; Haidar, E.A.; Stephan, J.S.; El Hayek, L.; Karnib, N.; Khalifeh, M.; Barmo, N.; Jabre, V.; Houbeika, R.; Ghanem, A.; Nasser, J.; Zeeni, N.; Bassil, M.; Sleiman, S.F. Branched-chain amino acids mediate resilience to chronic social defeat stress by activating BDNF/TRKB signaling. Neurobiol. Stress, 2019, 11, 100170.
[http://dx.doi.org/10.1016/j.ynstr.2019.100170] [PMID: 31193350]
[97]
Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci., 2008, 9(1), 46-56.
[http://dx.doi.org/10.1038/nrn2297] [PMID: 18073775]
[98]
Koo, J.W.; Duman, R.S. IL-1β is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc. Natl. Acad. Sci. USA, 2008, 105(2), 751-756.
[http://dx.doi.org/10.1073/pnas.0708092105] [PMID: 18178625]
[99]
Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biol. Psychiatry, 2009, 65(9), 732-741.
[http://dx.doi.org/10.1016/j.biopsych.2008.11.029] [PMID: 19150053]
[100]
Koo, J.W.; Russo, S.J.; Ferguson, D.; Nestler, E.J.; Duman, R.S. Nuclear factor-κB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2669-2674.
[http://dx.doi.org/10.1073/pnas.0910658107] [PMID: 20133768]
[101]
Troubat, R.; Barone, P.; Leman, S.; Desmidt, T.; Cressant, A.; Atanasova, B.; Brizard, B.; El Hage, W.; Surget, A.; Belzung, C.; Camus, V. Neuroinflammation and depression: A review. Eur. J. Neurosci., 2021, 53(1), 151-171.
[http://dx.doi.org/10.1111/ejn.14720] [PMID: 32150310]
[102]
Miller, A.H.; Haroon, E.; Raison, C.L.; Felger, J.C. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress. Anxiety, 2013, 30(4), 297-306.
[http://dx.doi.org/10.1002/da.22084] [PMID: 23468190]
[103]
Barrientos, R.M.; Sprunger, D.B.; Campeau, S.; Higgins, E.A.; Watkins, L.R.; Rudy, J.W.; Maier, S.F. Brain-derived neurotrophic factor mRNA downregulation produced by social isolation is blocked by intrahippocampal interleukin-1 receptor antagonist. Neuroscience, 2003, 121(4), 847-853.
[http://dx.doi.org/10.1016/S0306-4522(03)00564-5] [PMID: 14580934]
[104]
ben Menachem-Zidon, O.; Goshen, I.; Kreisel, T.; ben Menahem, Y.; Reinhartz, E.; ben Hur, T. Intrahippocampal transplantation of transgenic neural precursor cells overexpressing Interleukin-1 receptor antagonist blocks chronic isolation-induced impairment in memory and neurogenesis. Neuropsychopharmacology, 2008, 33(9), 2251-2262.
[105]
Wu, C.W.; Chen, Y.C.; Yu, L.; Chen, H.; Jen, C.J.; Huang, A.M.; Tsai, H.J.; Chang, Y.T.; Kuo, Y.M. Treadmill exercise counteracts the suppressive effects of peripheral lipopolysaccharide on hippocampal neurogenesis and learning and memory. J. Neurochem., 2007, 103(6), 2471-2481.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04987.x] [PMID: 17953674]
[106]
Ida, T.; Hara, M.; Nakamura, Y.; Kozaki, S.; Tsunoda, S.; Ihara, H. Cytokine-induced enhancement of calcium-dependent glutamate release from astrocytes mediated by nitric oxide. Neurosci. Lett., 2008, 432(3), 232-236.
[http://dx.doi.org/10.1016/j.neulet.2007.12.047] [PMID: 18255223]
[107]
Haydon, P.G.; Carmignoto, G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol. Rev., 2006, 86(3), 1009-1031.
[http://dx.doi.org/10.1152/physrev.00049.2005] [PMID: 16816144]
[108]
Gavillet, M.; Allaman, I.; Magistretti, P.J. Modulation of astrocytic metabolic phenotype by proinflammatory cytokines. Glia, 2008, 56(9), 975-989.
[http://dx.doi.org/10.1002/glia.20671] [PMID: 18383346]
[109]
Thornton, P.; Pinteaux, E.; Gibson, R.M.; Allan, S.M.; Rothwell, N.J. Interleukin-1-induced neurotoxicity is mediated by glia and requires caspase activation and free radical release. J. Neurochem., 2006, 98(1), 258-266.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03872.x] [PMID: 16805812]
[110]
Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Invest., 2003, 111(12), 1805-1812.
[http://dx.doi.org/10.1172/JCI200318921] [PMID: 12813013]
[111]
Köhler-Forsberg, O.; Buttenschøn, H.N.; Tansey, K.E.; Maier, W.; Hauser, J.; Dernovsek, M.Z.; Henigsberg, N.; Souery, D.; Farmer, A.; Rietschel, M.; McGuffin, P.; Aitchison, K.J.; Uher, R.; Mors, O. Association between C-reactive protein (CRP) with depression symptom severity and specific depressive symptoms in major depression. Brain Behav. Immun., 2017, 62, 344-350.
[http://dx.doi.org/10.1016/j.bbi.2017.02.020] [PMID: 28257825]
[112]
De Berardis, D.; Campanella, D.; Gambi, F.; La Rovere, R.; Carano, A.; Conti, C.M.; Silvestrini, C.; Serroni, N.; Piersanti, D.; Di Giuseppe, B.; Moschetta, F.S.; Cotellessa, C.; Fulcheri, M.; Salerno, R.M.; Ferro, F.M. The role of C-reactive protein in mood disorders. Int. J. Immunopathol. Pharmacol., 2006, 19(4), 721-725.
[http://dx.doi.org/10.1177/039463200601900402] [PMID: 17166394]
[113]
Hsuchou, H.; Kastin, A.J.; Pan, W. Blood-borne metabolic factors in obesity exacerbate injury-induced gliosis. J. Mol. Neurosci., 2012, 47(2), 267-277.
[http://dx.doi.org/10.1007/s12031-012-9734-4]
[114]
Blossom, V.; Gokul, M.; Kumar, N.A.; Kini, R.D.; Nayak, S.; Bhagyalakshmi, K. Chronic unpredictable stress-induced inflammation and quantitative analysis of neurons of distinct brain regions in Wistar rat model of comorbid depression. Vet. World, 2020, 13(9), 1870.
[115]
Hamon, M.; Blier, P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 45, 54-63.
[http://dx.doi.org/10.1016/j.pnpbp.2013.04.009] [PMID: 23602950]
[116]
Maddison, D.C.; Giorgini, F. The kynurenine pathway and neurodegenerative disease. Semin. Cell Dev. Biol., 2015, 40, 134-141.
[http://dx.doi.org/10.1016/j.semcdb.2015.03.002] [PMID: 25773161]
[117]
Henckens, M.J.A.G.; van der Marel, K.; van der Toorn, A.; Pillai, A.G.; Fernández, G.; Dijkhuizen, R.M.; Joëls, M. Stress-induced alterations in large-scale functional networks of the rodent brain. Neuroimage, 2015, 105, 312-322.
[http://dx.doi.org/10.1016/j.neuroimage.2014.10.037] [PMID: 25462693]
[118]
Anacker, C.; Scholz, J.; O’Donnell, K.J.; Allemang-Grand, R.; Diorio, J.; Bagot, R.C.; Nestler, E.J.; Hen, R.; Lerch, J.P.; Meaney, M.J. Neuroanatomic differences associated with stress susceptibility and resilience. Biol. Psychiatry, 2016, 79(10), 840-849.
[http://dx.doi.org/10.1016/j.biopsych.2015.08.009] [PMID: 26422005]
[119]
Magalhães, R.; Bourgin, J.; Boumezbeur, F.; Marques, P.; Bottlaender, M.; Poupon, C.; Djemaï, B.; Duchesnay, E.; Mériaux, S.; Sousa, N.; Jay, T.M.; Cachia, A. White matter changes in microstructure associated with a maladaptive response to stress in rats. Transl. Psychiatry, 2017, 7(1), e1009.
[http://dx.doi.org/10.1038/tp.2016.283] [PMID: 28117841]
[120]
Magalhães, R.; Barrière, D.A.; Novais, A.; Marques, F.; Marques, P.; Cerqueira, J.; Sousa, J.C.; Cachia, A.; Boumezbeur, F.; Bottlaender, M.; Jay, T.M.; Mériaux, S.; Sousa, N. The dynamics of stress: A longitudinal MRI study of rat brain structure and connectome. Mol. Psychiatry, 2018, 23(10), 1998-2006.
[http://dx.doi.org/10.1038/mp.2017.244] [PMID: 29203852]
[121]
Liu, X.; Yuan, J.; Guang, Y.; Wang, X.; Feng, Z. Longitudinal in vivo diffusion tensor imaging detects differential microstructural alterations in the hippocampus of chronic social defeat stress-susceptible and resilient mice. Front. Neurosci., 2018, 12, 613.
[http://dx.doi.org/10.3389/fnins.2018.00613] [PMID: 30210285]
[122]
Nagy, S.A.; Vranesics, A.; Varga, Z.; Csabai, D.; Bruszt, N.; Bali, Z.K.; Perlaki, G.; Hernádi, I.; Berente, Z.; Miseta, A.; Dóczi, T.; Czéh, B. Stress-induced microstructural alterations correlate with the cognitive performance of rats: A longitudinal in vivo diffusion tensor imaging study. Front. Neurosci., 2020, 14, 474.
[http://dx.doi.org/10.3389/fnins.2020.00474] [PMID: 32581670]
[123]
Luby, J.L.; Barch, D.; Whalen, D.; Tillman, R.; Belden, A. Association between early life adversity and risk for poor emotional and physical health in adolescence a putative mechanistic neurodevelopmental pathway. JAMA Pediatr., 2017, 171(12), 1168-1175.
[http://dx.doi.org/10.1001/jamapediatrics.2017.3009] [PMID: 29084329]
[124]
Sowell, E.R.; Peterson, B.S.; Thompson, P.M.; Welcome, S.E.; Henkenius, A.L.; Toga, A.W. Mapping cortical change across the human life span. Nat. Neurosci., 2003, 6(3), 309-315.
[http://dx.doi.org/10.1038/nn1008] [PMID: 12548289]
[125]
Sturman, D.A.; Moghaddam, B. The neurobiology of adolescence: Changes in brain architecture, functional dynamics, and behavioral tendencies. Neurosci. Biobehav. Rev., 2011, 35(8), 1704-1712.
[http://dx.doi.org/10.1016/j.neubiorev.2011.04.003] [PMID: 21527288]
[126]
Tau, G.Z.; Peterson, B.S. Normal development of brain circuits. Neuropsychopharmacology, 2010, 35(1), 147-168.
[http://dx.doi.org/10.1038/npp.2009.115] [PMID: 19794405]
[127]
Fox, S.E.; Levitt, P.; Nelson, C.A., III How the timing and quality of early experiences influence the development of brain architecture. Child Dev., 2010, 81(1), 28-40.
[http://dx.doi.org/10.1111/j.1467-8624.2009.01380.x] [PMID: 20331653]
[128]
Gogtay, N.; Giedd, J.N.; Lusk, L.; Hayashi, K.M.; Greenstein, D.; Vaituzis, A.C.; Nugent, T.F., III; Herman, D.H.; Clasen, L.S.; Toga, A.W.; Rapoport, J.L.; Thompson, P.M. Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl. Acad. Sci. USA, 2004, 101(21), 8174-8179.
[http://dx.doi.org/10.1073/pnas.0402680101] [PMID: 15148381]
[129]
Knickmeyer, R.C.; Gouttard, S.; Kang, C.; Evans, D.; Wilber, K.; Smith, J.K.; Hamer, R.M.; Lin, W.; Gerig, G.; Gilmore, J.H. A structural MRI study of human brain development from birth to 2 years. J. Neurosci., 2008, 28(47), 12176-12182.
[http://dx.doi.org/10.1523/JNEUROSCI.3479-08.2008] [PMID: 19020011]
[130]
Kaczkurkin, A.N.; Raznahan, A.; Satterthwaite, T.D. Sex differences in the developing brain: Insights from multimodal neuroimaging. Neuropsychopharmacology, 2019, 44(1), 71-85.
[http://dx.doi.org/10.1038/s41386-018-0111-z] [PMID: 29930385]
[131]
Hart, H.; Rubia, K. Neuroimaging of child abuse: A critical review. Front. Hum. Neurosci., 2012, 6(6), 52.
[http://dx.doi.org/10.3389/fnhum.2012.00052] [PMID: 22457645]
[132]
Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci., 2009, 10(6), 434-445.
[http://dx.doi.org/10.1038/nrn2639] [PMID: 19401723]
[133]
Bennett, M.; Lagopoulos, J. Stress, trauma and synaptic plasticity; Stress. Trauma Synaptic Plasticity, 2019, pp. 1-231.
[134]
McEwen, B.S.; Nasca, C.; Gray, J.D. Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology, 2016, 41(1), 3-23.
[http://dx.doi.org/10.1038/npp.2015.171] [PMID: 26076834]
[135]
Graham, A.M.; Doyle, O.; Tilden, E.L.; Sullivan, E.L.; Gustafsson, H.C.; Marr, M.; Allen, M.; Mackiewicz, S.K.L. Effects of maternal psychological stress during pregnancy on offspring brain development: Considering the role of inflammation and potential for preventive intervention. Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2022, 7(5), 461-470.
[http://dx.doi.org/10.1016/j.bpsc.2021.10.012] [PMID: 34718150]
[136]
De Asis-Cruz, J.; Andescavage, N.; Limperopoulos, C. Adverse prenatal exposures and fetal brain development: Insights from advanced fetal magnetic resonance imaging. Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2022, 7(5), 480-490.
[http://dx.doi.org/10.1016/j.bpsc.2021.11.009] [PMID: 34848383]
[137]
Lubczyńska, M.J.; Muetzel, R.L.; El Marroun, H.; Hoek, G.; Kooter, I.M.; Thomson, E.M.; Hillegers, M.; Vernooij, M.W.; White, T.; Tiemeier, H.; Guxens, M. Air pollution exposure during pregnancy and childhood and brain morphology in preadolescents. Environ. Res., 2021, 198, 110446.
[http://dx.doi.org/10.1016/j.envres.2020.110446] [PMID: 33221303]
[138]
Triplett, R.L.; Lean, R.E.; Parikh, A.; Miller, J.P.; Alexopoulos, D.; Kaplan, S.; Meyer, D.; Adamson, C.; Smyser, T.A.; Rogers, C.E.; Barch, D.M.; Warner, B.; Luby, J.L.; Smyser, C.D. Association of prenatal exposure to early-life adversity with neonatal brain volumes at birth. JAMA Netw. Open, 2022, 5(4), e227045.
[http://dx.doi.org/10.1001/jamanetworkopen.2022.7045] [PMID: 35412624]
[139]
Herringa, R. J. Trauma, PTSD, and the developing brain. Curr. Psychiatry Rep., 2017, 19(10), 69.
[http://dx.doi.org/10.1007/s11920-017-0825-3] [PMID: 28823091]
[140]
Paquola, C.; Bennett, M.R.; Lagopoulos, J. Understanding heterogeneity in grey matter research of adults with childhood maltreatment-a meta-analysis and review. Neurosci. Biobehav. Rev., 2016, 69, 299-312.
[http://dx.doi.org/10.1016/j.neubiorev.2016.08.011] [PMID: 27531235]
[141]
Teicher, M.H.; Samson, J.A.; Anderson, C.M.; Ohashi, K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat. Rev. Neurosci., 2016, 17(10), 652-666.
[http://dx.doi.org/10.1038/nrn.2016.111] [PMID: 27640984]
[142]
Callaghan, B.L.; Tottenham, N. The Stress Acceleration Hypothesis: Effects of early-life adversity on emotion circuits and behavior. Curr. Opin. Behav. Sci., 2016, 7, 76-81.
[http://dx.doi.org/10.1016/j.cobeha.2015.11.018] [PMID: 29644262]
[143]
Gur, R.E.; Moore, T.M.; Rosen, A.F.G.; Barzilay, R.; Roalf, D.R.; Calkins, M.E.; Ruparel, K.; Scott, J.C.; Almasy, L.; Satterthwaite, T.D.; Shinohara, R.T.; Gur, R.C. Burden of environmental adversity associated with psychopathology, maturation, and brain behavior parameters in youths. JAMA Psychiatry, 2019, 76(9), 966-975.
[http://dx.doi.org/10.1001/jamapsychiatry.2019.0943] [PMID: 31141099]
[144]
McLaughlin, K.A.; Weissman, D.; Bitrán, D. Childhood adversity and neural development: A systematic review. Ann. Rev. Develop. Psychol., 2019, 1(1), 277-312.
[http://dx.doi.org/10.1146/annurev-devpsych-121318-084950] [PMID: 32455344]
[145]
Calem, M.; Bromis, K.; McGuire, P.; Morgan, C.; Kempton, M.J. Meta-analysis of associations between childhood adversity and hippocampus and amygdala volume in non-clinical and general population samples. Neuroimage Clin., 2017, 14, 471-479.
[http://dx.doi.org/10.1016/j.nicl.2017.02.016] [PMID: 28275547]
[146]
Keding, T.J.; Heyn, S.A.; Russell, J.D.; Zhu, X.; Cisler, J.; McLaughlin, K.A.; Herringa, R.J. Differential patterns of delayed emotion circuit maturation in abused girls with and without internalizing psychopathology. Am. J. Psychiatry, 2021, 178(11), 1026-1036.
[http://dx.doi.org/10.1176/appi.ajp.2021.20081192] [PMID: 34407623]
[147]
Whittle, S.; Dennison, M.; Vijayakumar, N.; Simmons, J.G.; Yücel, M.; Lubman, D.I.; Pantelis, C.; Allen, N.B. Childhood maltreatment and psychopathology affect brain development during adolescence. J. Am. Acad. Child Adolesc. Psychiatry, 2013, 52(9), 940-952.e1.
[http://dx.doi.org/10.1016/j.jaac.2013.06.007] [PMID: 23972696]
[148]
Morey, R.A.; Haswell, C.C.; Hooper, S.R.; De Bellis, M.D. Amygdala, hippocampus, and ventral medial prefrontal cortex volumes differ in maltreated youth with and without chronic posttraumatic stress disorder. Neuropsychopharmacology, 2016, 41(3), 791-801.
[http://dx.doi.org/10.1038/npp.2015.205] [PMID: 26171720]
[149]
Keding, T.J.; Herringa, R.J. Abnormal structure of fear circuitry in pediatric post-traumatic stress disorder. Neuropsychopharmacology, 2015, 40(3), 537-545.
[http://dx.doi.org/10.1038/npp.2014.239] [PMID: 25212487]
[150]
Bremner, J.D.; Vythilingam, M.; Vermetten, E.; Southwick, S.M.; McGlashan, T.; Nazeer, A.; Khan, S.; Vaccarino, L.V.; Soufer, R.; Garg, P.K.; Ng, C.K.; Staib, L.H.; Duncan, J.S.; Charney, D.S. MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder. Am. J. Psychiatry, 2003, 160(5), 924-932.
[http://dx.doi.org/10.1176/appi.ajp.160.5.924] [PMID: 12727697]
[151]
Whittle, S.; Lichter, R.; Dennison, M.; Vijayakumar, N.; Schwartz, O.; Byrne, M.L.; Simmons, J.G.; Yücel, M.; Pantelis, C.; McGorry, P.; Allen, N.B. Structural brain development and depression onset during adolescence: a prospective longitudinal study. Am. J. Psychiatry, 2014, 171(5), 564-571.
[http://dx.doi.org/10.1176/appi.ajp.2013.13070920] [PMID: 24577365]
[152]
Frodl, T.; Reinhold, E.; Koutsouleris, N.; Reiser, M.; Meisenzahl, E.M. Interaction of childhood stress with hippocampus and prefrontal cortex volume reduction in major depression. J. Psychiatr. Res., 2010, 44(13), 799-807.
[http://dx.doi.org/10.1016/j.jpsychires.2010.01.006] [PMID: 20122698]
[153]
Gee, D.G.; Gabard-Durnam, L.J.; Flannery, J.; Goff, B.; Humphreys, K.L.; Telzer, E.H.; Hare, T.A.; Bookheimer, S.Y.; Tottenham, N. Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. Proc. Natl. Acad. Sci. USA, 2013, 110(39), 15638-15643.
[http://dx.doi.org/10.1073/pnas.1307893110] [PMID: 24019460]
[154]
Rickard, I.J.; Frankenhuis, W.E.; Nettle, D. Why are childhood family factors associated with timing of maturation? a role for internal prediction. Perspect. Psychol. Sci., 2014, 9(1), 3-15.
[http://dx.doi.org/10.1177/1745691613513467] [PMID: 26173236]
[155]
Herringa, R.J.; Burghy, C.A.; Stodola, D.E.; Fox, M.E.; Davidson, R.J.; Essex, M.J. Enhanced prefrontal-amygdala connectivity following childhood adversity as a protective mechanism against internalizing in adolescence. Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2016, 1(4), 326-334.
[http://dx.doi.org/10.1016/j.bpsc.2016.03.003] [PMID: 27725969]
[156]
Luby, J.L.; Tillman, R.; Barch, D.M. Association of timing of adverse childhood experiences and caregiver support with regionally specific brain development in adolescents. JAMA Netw. Open, 2019, 2(9), e1911426-e1911426.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.11426] [PMID: 31532514]
[157]
Killion, B.E.; Weyandt, L.L. Brain structure in childhood maltreatment-related PTSD across the lifespan: A systematic review. Appl. Neuropsychol. Child, 2020, 9(1), 68-82.
[http://dx.doi.org/10.1080/21622965.2018.1515076] [PMID: 30351191]
[158]
Opel, N.; Redlich, R.; Dohm, K.; Zaremba, D.; Goltermann, J.; Repple, J.; Kaehler, C.; Grotegerd, D.; Leehr, E.J.; Böhnlein, J.; Förster, K.; Meinert, S.; Enneking, V.; Sindermann, L.; Dzvonyar, F.; Emden, D.; Leenings, R.; Winter, N.; Hahn, T.; Kugel, H.; Heindel, W.; Buhlmann, U.; Baune, B.T.; Arolt, V.; Dannlowski, U. Mediation of the influence of childhood maltreatment on depression relapse by cortical structure: A 2-year longitudinal observational study. Lancet Psychiatry, 2019, 6(4), 318-326.
[http://dx.doi.org/10.1016/S2215-0366(19)30044-6] [PMID: 30904126]
[159]
Fujisawa, T.X.; Shimada, K.; Takiguchi, S.; Mizushima, S.; Kosaka, H.; Teicher, M.H. Type and timing of childhood maltreatment and reduced visual cortex volume in children and adolescents with reactive attachment disorder. Neuroimage Clin., 2018, 20, 216-221.
[http://dx.doi.org/10.1016/j.nicl.2018.07.018]
[160]
Shimada, K.; Takiguchi, S.; Mizushima, S.; Fujisawa, T.X.; Saito, D.N.; Kosaka, H.; Okazawa, H.; Tomoda, A. Reduced visual cortex grey matter volume in children and adolescents with reactive attachment disorder. Neuroimage Clin., 2015, 9, 13-19.
[http://dx.doi.org/10.1016/j.nicl.2015.07.001] [PMID: 26288752]
[161]
Madonna, D.; Delvecchio, G.; Soares, J.C.; Brambilla, P. Structural and functional neuroimaging studies in generalized anxiety disorder: A systematic review. Br. J. Psychiatry, 2019, 41(4), 336-362.
[http://dx.doi.org/10.1590/1516-4446-2018-0108] [PMID: 31116259]
[162]
Woon, F.L.; Sood, S.; Hedges, D.W. Hippocampal volume deficits associated with exposure to psychological trauma and posttraumatic stress disorder in adults: A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34(7), 1181-1188.
[http://dx.doi.org/10.1016/j.pnpbp.2010.06.016]
[163]
Rauch, S.L.; Shin, L.M.; Phelps, E.A. Neurocircuitry models of posttraumatic stress disorder and extinction: Human neuroimaging research—past, present, and future. Biol. Psychiatry, 2006, 60(4), 376-382.
[http://dx.doi.org/10.1016/j.biopsych.2006.06.004]
[164]
Shin, L.M.; Rauch, S.L.; Pitman, R.K. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. In: Ann. N. Y. Acad. Sci., 2006, 1071, 67-79.
[http://dx.doi.org/10.1196/annals.1364.007]
[165]
Tavanti, M.; Battaglini, M.; Borgogni, F.; Bossini, L.; Calossi, S.; Marino, D.; Vatti, G.; Pieraccini, F.; Federico, A.; Castrogiovanni, P.; De Stefano, N. Evidence of diffuse damage in frontal and occipital cortex in the brain of patients with post-traumatic stress disorder. Neurol. Sci., 2012, 33(1), 59-68.
[http://dx.doi.org/10.1007/s10072-011-0659-4] [PMID: 21710131]
[166]
Bossini, L.; Santarnecchi, E.; Casolaro, I.; Koukouna, D.; Caterini, C.; Cecchini, F.; Fortini, V.; Vatti, G.; Marino, D.; Fernandez, I.; Rossi, A.; Fagiolini, A. Morphovolumetric changes after EMDR treatment in drug-naïve PTSD patients. Riv. Psichiatr., 2017, 52(1), 24-31.
[PMID: 28287194]
[167]
Nardo, D.; Högberg, G.; Looi, J.C.L.; Larsson, S.; Hällström, T.; Pagani, M. Gray matter density in limbic and paralimbic cortices is associated with trauma load and EMDR outcome in PTSD patients. J. Psychiatr. Res., 2010, 44(7), 477-485.
[http://dx.doi.org/10.1016/j.jpsychires.2009.10.014] [PMID: 19942229]
[168]
Tan, L.; Zhang, L.; Qi, R.; Lu, G.; Li, L.; Liu, J.; Li, W. Brain structure in post-traumatic stress disorder: A voxel-based morphometry analysis. Neural Regen. Res., 2013, 8(26), 2405-2414.
[PMID: 25206550]
[169]
Zhang, J.; Tan, Q.; Yin, H.; Zhang, X.; Huan, Y.; Tang, L.; Wang, H.; Xu, J.; Li, L. Decreased gray matter volume in the left hippocampus and bilateral calcarine cortex in coal mine flood disaster survivors with recent onset PTSD. Psychiatry Res. Neuroimaging, 2011, 192(2), 84-90.
[http://dx.doi.org/10.1016/j.pscychresns.2010.09.001] [PMID: 21498053]
[170]
Del Casale, A.; Ferracuti, S.; Barbetti, A.S.; Bargagna, P.; Zega, P.; Iannuccelli, A.; Caggese, F.; Zoppi, T.; De Luca, G.P.; Parmigiani, G.; Berardelli, I.; Pompili, M. Grey matter volume reductions of the left hippocampus and amygdala in PTSD: A coordinate-based meta-analysis of magnetic resonance imaging studies. Neuropsychobiology, 2022, 81(4), 257-264.
[http://dx.doi.org/10.1159/000522003] [PMID: 35158360]
[171]
Boccia, M.; D’Amico, S.; Bianchini, F.; Marano, A.; Giannini, A.M.; Piccardi, L. Different neural modifications underpin PTSD after different traumatic events: An fMRI meta-analytic study. Brain Imaging Behav., 2016, 10(1), 226-237.
[http://dx.doi.org/10.1007/s11682-015-9387-3] [PMID: 25913645]
[172]
Baldaçara, L.; Borgio, J.G.F.; Araújo, C.; Nery-Fernandes, F.; Lacerda, A.L.T.; Moraes, W.A.S.; Montaño, M.B.M.M.; Rocha, M.; Quarantini, L.C.; Schoedl, A.; Pupo, M.; Mello, M.F.; Andreoli, S.B.; Miranda-Scippa, A.; Ramos, L.R.; Mari, J.J.; Bressan, R.A.; Jackowski, A.P. Relationship between structural abnormalities in the cerebellum and dementia, posttraumatic stress disorder and bipolar disorder. Dement. Neuropsychol., 2012, 6(4), 203-211.
[http://dx.doi.org/10.1590/S1980-57642012DN06040003] [PMID: 29213799]
[173]
Tae, W-S. Regional gray matter volume reduction associated with major depressive disorder: A voxel-based morphometry. Investig. Magn. Reson. Imaging, 2015, 19(1), 10-18.
[http://dx.doi.org/10.13104/imri.2015.19.1.10]
[174]
Vythilingam, M.; Heim, C.; Newport, J.; Miller, A.H.; Anderson, E.; Bronen, R.; Brummer, M.; Staib, L.; Vermetten, E.; Charney, D.S.; Nemeroff, C.B.; Bremner, J.D. Childhood trauma associated with smaller hippocampal volume in women with major depression. Am. J. Psychiatry, 2002, 159(12), 2072-2080.
[http://dx.doi.org/10.1176/appi.ajp.159.12.2072] [PMID: 12450959]
[175]
Opel, N.; Redlich, R.; Zwanzger, P.; Grotegerd, D.; Arolt, V.; Heindel, W.; Konrad, C.; Kugel, H.; Dannlowski, U. Hippocampal atrophy in major depression: A function of childhood maltreatment rather than diagnosis? Neuropsychopharmacology, 2014, 39(12), 2723-2731.
[http://dx.doi.org/10.1038/npp.2014.145] [PMID: 24924799]
[176]
Soriano-Mas, C.; Hernández-Ribas, R.; Pujol, J.; Urretavizcaya, M.; Deus, J.; Harrison, B.J.; Ortiz, H.; López-Solà, M.; Menchón, J.M.; Cardoner, N. Cross-sectional and longitudinal assessment of structural brain alterations in melancholic depression. Biol. Psychiatry, 2011, 69(4), 318-325.
[http://dx.doi.org/10.1016/j.biopsych.2010.07.029] [PMID: 20875637]
[177]
Colle, R.; Dupong, I.; Colliot, O.; Deflesselle, E.; Hardy, P.; Falissard, B.; Ducreux, D.; Chupin, M.; Corruble, E. Smaller hippocampal volumes predict lower antidepressant response/remission rates in depressed patients: A meta-analysis. World J. Biol. Psychiatry, 2018, 19(5), 360-367.
[http://dx.doi.org/10.1080/15622975.2016.1208840] [PMID: 27376473]
[178]
Gyger, L.; Ramponi, C.; Mall, J.F.; Swierkosz-Lenart, K.; Stoyanov, D.; Lutti, A.; von Gunten, A.; Kherif, F.; Draganski, B. Temporal trajectory of brain tissue property changes induced by electroconvulsive therapy. Neuroimage, 2021, 232, 117895.
[http://dx.doi.org/10.1016/j.neuroimage.2021.117895] [PMID: 33617994]
[179]
Fonseka, T.M.; MacQueen, G.M.; Kennedy, S.H. Neuroimaging biomarkers as predictors of treatment outcome in major depressive disorder. J. Affect. Disord., 2018, 233, 21-35.
[http://dx.doi.org/10.1016/j.jad.2017.10.049] [PMID: 29150145]
[180]
Watanabe, K.; Kakeda, S.; Katsuki, A.; Ueda, I.; Ikenouchi, A.; Yoshimura, R.; Korogi, Y. Whole-brain structural covariance network abnormality in first-episode and drug-naïve major depressive disorder. Psychiatry Res. Neuroimaging, 2020, 300, 111083.
[http://dx.doi.org/10.1016/j.pscychresns.2020.111083] [PMID: 32298948]
[181]
Shen, Z.; Cheng, Y.; Yang, S.; Dai, N.; Ye, J.; Liu, X.; Lu, J.; Li, N.; Liu, F.; Lu, Y.; Sun, X.; Xu, X. Changes of grey matter volume in first-episode drug-naive adult major depressive disorder patients with different age-onset. Neuroimage Clin., 2016, 12, 492-498.
[http://dx.doi.org/10.1016/j.nicl.2016.08.016] [PMID: 27668175]
[182]
Espinoza Oyarce, D.A.; Shaw, M.E.; Alateeq, K.; Cherbuin, N. Volumetric brain differences in clinical depression in association with anxiety: A systematic review with meta-analysis. J. Psychiatry Neurosci., 2020, 45(6), 406-429.
[http://dx.doi.org/10.1503/jpn.190156] [PMID: 32726102]
[183]
Hamilton, J.P.; Siemer, M.; Gotlib, I.H. Amygdala volume in major depressive disorder: A meta-analysis of magnetic resonance imaging studies. Mol. Psychiatry, 2008, 13(11), 993-1000.
[http://dx.doi.org/10.1038/mp.2008.57] [PMID: 18504424]
[184]
Roddy, D.; Kelly, J.R.; Farrell, C.; Doolin, K.; Roman, E.; Nasa, A.; Frodl, T.; Harkin, A.; O’Mara, S.; O’Hanlon, E.; O’Keane, V. Amygdala substructure volumes in Major Depressive Disorder. Neuroimage Clin., 2021, 31, 102781.
[http://dx.doi.org/10.1016/j.nicl.2021.102781] [PMID: 34384996]
[185]
Kim, H.; Han, K.M.; Choi, K.W.; Tae, W.S.; Kang, W.; Kang, Y.; Kim, A.; Ham, B.J. Volumetric alterations in subregions of the amygdala in adults with major depressive disorder. J. Affect. Disord., 2021, 295, 108-115.
[http://dx.doi.org/10.1016/j.jad.2021.08.012] [PMID: 34419778]
[186]
Wise, T.; Radua, J.; Via, E.; Cardoner, N.; Abe, O.; Adams, T.M. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis. Mol. Psychiatry, 2015, 2016, 1-9.
[PMID: 27217146]
[187]
Jung, J.; Kang, J.; Won, E.; Nam, K.; Lee, M.S.; Tae, W.S.; Ham, B.J. Impact of lingual gyrus volume on antidepressant response and neurocognitive functions in Major Depressive Disorder: A voxel-based morphometry study. J. Affect. Disord., 2014, 169, 179-187.
[http://dx.doi.org/10.1016/j.jad.2014.08.018] [PMID: 25200096]
[188]
Lai, C.H.; Wu, Y.T. Frontal-insula gray matter deficits in first-episode medication-naïve patients with major depressive disorder. J. Affect. Disord., 2014, 160, 74-79.
[http://dx.doi.org/10.1016/j.jad.2013.12.036] [PMID: 24445133]
[189]
Abe, O.; Yamasue, H.; Kasai, K.; Yamada, H.; Aoki, S.; Inoue, H.; Takei, K.; Suga, M.; Matsuo, K.; Kato, T.; Masutani, Y.; Ohtomo, K. Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. Psychiatry Res. Neuroimaging, 2010, 181(1), 64-70.
[http://dx.doi.org/10.1016/j.pscychresns.2009.07.007] [PMID: 19959342]
[190]
Vasic, N.; Walter, H.; Höse, A.; Wolf, R.C. Gray matter reduction associated with psychopathology and cognitive dysfunction in unipolar depression: A voxel-based morphometry study. J. Affect. Disord., 2008, 109(1-2), 107-116.
[http://dx.doi.org/10.1016/j.jad.2007.11.011] [PMID: 18191459]
[191]
Leung, K.K.; Lee, T.M.C.; Wong, M.M.C.; Li, L.S.W.; Yip, P.S.F.; Khong, P.L. Neural correlates of attention biases of people with major depressive disorder: A voxel-based morphometric study. Psychol. Med., 2009, 39(7), 1097-1106.
[http://dx.doi.org/10.1017/S0033291708004546] [PMID: 18945378]
[192]
Serra-Blasco, M.; Portella, M.J.; Gómez-Ansón, B.; de Diego-Adeliño, J.; Vives-Gilabert, Y.; Puigdemont, D.; Granell, E.; Santos, A.; Álvarez, E.; Pérez, V. Effects of illness duration and treatment resistance on grey matter abnormalities in majordepression. Br. J. Psychiatry, 2013, 202(6), 434-440.
[http://dx.doi.org/10.1192/bjp.bp.112.116228] [PMID: 23620451]
[193]
Chen, C.; Liu, Z.; Xi, C.; Tan, W.; Fan, Z.; Cheng, Y.; Yang, J.; Palaniyappan, L.; Yang, J. Multimetric structural covariance in first-episode major depressive disorder: A graph theoretical analysis. J. Psychiatry Neurosci., 2022, 47(3), E176-E185.
[http://dx.doi.org/10.1503/jpn.210204] [PMID: 35508328]
[194]
Kandilarova, S.; Stoyanov, D.; Sirakov, N.; Maes, M.; Specht, K. Reduced grey matter volume in frontal and temporal areas in depression: Contributions from voxel-based morphometry study. Acta Neuropsychiatr., 2019, 31(5), 252-257.
[http://dx.doi.org/10.1017/neu.2019.20] [PMID: 31234950]
[195]
Schmaal, L.; Hibar, D.P.; Sämann, P.G.; Hall, G.B.; Baune, B.T.; Jahanshad, N.; Cheung, J.W.; van Erp, T.G.M.; Bos, D.; Ikram, M.A.; Vernooij, M.W.; Niessen, W.J.; Tiemeier, H.; Hofman, A.; Wittfeld, K.; Grabe, H.J.; Janowitz, D.; Bülow, R.; Selonke, M.; Völzke, H.; Grotegerd, D.; Dannlowski, U.; Arolt, V.; Opel, N.; Heindel, W.; Kugel, H.; Hoehn, D.; Czisch, M.; Couvy-Duchesne, B.; Rentería, M.E.; Strike, L.T.; Wright, M.J.; Mills, N.T.; de Zubicaray, G.I.; McMahon, K.L.; Medland, S.E.; Martin, N.G.; Gillespie, N.A.; Goya-Maldonado, R.; Gruber, O.; Krämer, B.; Hatton, S.N.; Lagopoulos, J.; Hickie, I.B.; Frodl, T.; Carballedo, A.; Frey, E.M.; van Velzen, L.S.; Penninx, B.W.J.H.; van Tol, M-J.; van der Wee, N.J.; Davey, C.G.; Harrison, B.J.; Mwangi, B.; Cao, B.; Soares, J.C.; Veer, I.M.; Walter, H.; Schoepf, D.; Zurowski, B.; Konrad, C.; Schramm, E.; Normann, C.; Schnell, K.; Sacchet, M.D.; Gotlib, I.H.; MacQueen, G.M.; Godlewska, B.R.; Nickson, T.; McIntosh, A.M.; Papmeyer, M.; Whalley, H.C.; Hall, J.; Sussmann, J.E.; Li, M.; Walter, M.; Aftanas, L.; Brack, I.; Bokhan, N.A.; Thompson, P.M.; Veltman, D.J. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry, 2017, 22(6), 900-909.
[http://dx.doi.org/10.1038/mp.2016.60] [PMID: 27137745]
[196]
Grieve, S.M.; Korgaonkar, M.S.; Koslow, S.H.; Gordon, E.; Williams, L.M. Widespread reductions in gray matter volume in depression. Neuroimage Clin., 2013, 3, 332-339.
[http://dx.doi.org/10.1016/j.nicl.2013.08.016] [PMID: 24273717]
[197]
Salvadore, G.; Nugent, A.C.; Lemaitre, H.; Luckenbaugh, D.A.; Tinsley, R.; Cannon, D.M.; Neumeister, A.; Zarate, C.A., Jr; Drevets, W.C. Prefrontal cortical abnormalities in currently depressed versus currently remitted patients with major depressive disorder. Neuroimage, 2011, 54(4), 2643-2651.
[http://dx.doi.org/10.1016/j.neuroimage.2010.11.011] [PMID: 21073959]
[198]
Machino, A.; Kunisato, Y.; Matsumoto, T.; Yoshimura, S.; Ueda, K.; Yamawaki, Y.; Okada, G.; Okamoto, Y.; Yamawaki, S. Possible involvement of rumination in gray matter abnormalities in persistent symptoms of major depression: An exploratory magnetic resonance imaging voxel-based morphometry study. J. Affect. Disord., 2014, 168, 229-235.
[http://dx.doi.org/10.1016/j.jad.2014.06.030] [PMID: 25064808]
[199]
Serra-Blasco, M.; de Diego-Adeliño, J.; Vives-Gilabert, Y.; Trujols, J.; Puigdemont, D.; Carceller-Sindreu, M.; Pérez, V.; Álvarez, E.; Portella, M.J. Naturalistic course of major depressive disorder predicted by clinical and structural neuroimaging data: A 5-Year Follow-Up. Depress. Anxiety, 2016, 33(11), 1055-1064.
[http://dx.doi.org/10.1002/da.22522] [PMID: 27159902]
[200]
Costafreda, S.G.; Chu, C.; Ashburner, J.; Fu, C.H.Y. Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS One, 2009, 4(7), e6353.
[http://dx.doi.org/10.1371/journal.pone.0006353] [PMID: 19633718]
[201]
Caetano, S.C.; Kaur, S.; Brambilla, P.; Nicoletti, M.; Hatch, J.P.; Sassi, R.B.; Mallinger, A.G.; Keshavan, M.S.; Kupfer, D.J.; Frank, E.; Soares, J.C. Smaller cingulate volumes in unipolar depressed patients. Biol. Psychiatry, 2006, 59(8), 702-706.
[http://dx.doi.org/10.1016/j.biopsych.2005.10.011] [PMID: 16414029]
[202]
Leech, R.; Sharp, D.J. The role of the posterior cingulate cortex in cognition and disease. Brain, 2014, 137(1), 12-32.
[http://dx.doi.org/10.1093/brain/awt162] [PMID: 23869106]
[203]
Greicius, M.D.; Krasnow, B.; Reiss, A.L.; Menon, V. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA, 2003, 100(1), 253-258.
[http://dx.doi.org/10.1073/pnas.0135058100] [PMID: 12506194]
[204]
Rolls, E.T. The cingulate cortex and limbic systems for emotion, action, and memory. In: Brain Structure and Function; Springer, 2019; 224, p. 3001-18.
[http://dx.doi.org/10.1016/B978-0-444-64196-0.00002-9]
[205]
Yeh, P.H.; Zhu, H.; Nicoletti, M.A.; Hatch, J.P.; Brambilla, P.; Soares, J.C. Structural equation modeling and principal component analysis of gray matter volumes in major depressive and bipolar disorders: Differences in latent volumetric structure. Psychiatry Res. Neuroimaging, 2010, 184(3), 177-185.
[http://dx.doi.org/10.1016/j.pscychresns.2010.07.007] [PMID: 21051206]
[206]
Serra-Blasco, M.; Lam, R.W. Clinical and functional characteristics of cognitive dysfunction in major depressive disorder. In: Cognitive Dimensions of Major Depressive Disorder; Harmer, C.J.; Baune, B.T., Eds.; Oxford University Press: Oxford, 2019; pp. 45-58.
[http://dx.doi.org/10.1093/med/9780198810940.003.0005]
[207]
López-Solà, C.; Subirà, M.; Serra-Blasco, M.; Vicent-Gil, M.; Navarra-Ventura, G.; Aguilar, E.; Acebillo, S.; Palao, D.J.; Cardoner, N. Is cognitive dysfunction involved in difficult-to-treat depression? Characterizing resistance from a cognitive perspective. Eur. Psychiatry, 2020, 63(1), e74.
[http://dx.doi.org/10.1192/j.eurpsy.2020.65] [PMID: 32571441]
[208]
Serra-Blasco, M.; de Vita, S.; Rodríguez, M.R.; de Diego-Adeliño, J.; Puigdemont, D.; Martín-Blanco, A.; Pérez-Egea, R.; Molet, J.; Álvarez, E.; Pérez, V.; Portella, M.J. Cognitive functioning after deep brain stimulation in subcallosal cingulate gyrus for treatment-resistant depression: An exploratory study. Psychiatry Res., 2015, 225(3), 341-346.
[http://dx.doi.org/10.1016/j.psychres.2014.11.076] [PMID: 25592978]
[209]
Cui, L.; Wang, F.; Yin, Z.; Chang, M.; Song, Y.; Wei, Y.; Lv, J.; Zhang, Y.; Tang, Y.; Gong, X.; Xu, K. Effects of the LHPP gene polymorphism on the functional and structural changes of gray matter in major depressive disorder. Quant. Imaging Med. Surg., 2020, 10(1), 257-268.
[http://dx.doi.org/10.21037/qims.2019.12.01] [PMID: 31956547]
[210]
Gogolla, N. The insular cortex. In: Current Biology; Cell Press, 2017; 27, p. R580-6.
[http://dx.doi.org/10.1016/j.cub.2017.05.010]
[211]
Zhao, Y.; Chen, L.; Zhang, W.; Xiao, Y.; Shah, C.; Zhu, H.; Yuan, M.; Sun, H.; Yue, Q.; Jia, Z.; Zhang, W.; Kuang, W.; Gong, Q.; Lui, S. Gray matter abnormalities in non-comorbid medication-naive patients with major depressive disorder or social anxiety disorder. EBioMedicine, 2017, 21, 228-235.
[http://dx.doi.org/10.1016/j.ebiom.2017.06.013] [PMID: 28633986]
[212]
Zhang, Y.; Yang, Y.; Zhu, L.; Zhu, Q.; Jia, Y.; Zhang, L. Volumetric deficit within the fronto-limbic-striatal circuit in first-episode drug naïve patients with major depression disorder. Front. Psychiatry, 2021, 11, 1623.
[213]
Ge, R.; Hassel, S.; Arnott, S.R.; Davis, A.D.; Harris, J.K.; Zamyadi, M.; Milev, R.; Frey, B.N.; Strother, S.C.; Müller, D.J.; Rotzinger, S.; MacQueen, G.M.; Kennedy, S.H.; Lam, R.W.; Vila-Rodriguez, F. Structural covariance pattern abnormalities of insula in major depressive disorder: A CAN-BIND study report. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 111, 110194.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110194] [PMID: 33296696]
[214]
Yang, J.; Yin, Y.; Svob, C.; Long, J.; He, X.; Zhang, Y.; Xu, Z.; Li, L.; Liu, J.; Dong, J.; Zhang, Z.; Wang, Z.; Yuan, Y. Amygdala atrophy and its functional disconnection with the cortico-striatal-pallidal-thalamic circuit in major depressive disorder in females. PLoS One, 2017, 12(1), e0168239.
[http://dx.doi.org/10.1371/journal.pone.0168239] [PMID: 28107446]
[215]
Wise, T.; Radua, J.; Nortje, G.; Cleare, A.J.; Young, A.H.; Arnone, D. Voxel-based meta-Analytical evidence of structural disconnectivity in major depression and bipolar disorder. Biol. Psychiatry, 2016, 79(4), 293-302.
[http://dx.doi.org/10.1016/j.biopsych.2015.03.004] [PMID: 25891219]
[216]
Peng, J.; Liu, J.; Nie, B.; Li, Y.; Shan, B.; Wang, G.; Li, K. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: A voxel-based morphometry study. Eur. J. Radiol., 2011, 80(2), 395-399.
[http://dx.doi.org/10.1016/j.ejrad.2010.04.006] [PMID: 20466498]
[217]
Lee, H.Y.; Tae, W.S.; Yoon, H.K.; Lee, B.T.; Paik, J.W.; Son, K.R.; Oh, Y.W.; Lee, M.S.; Ham, B.J. Demonstration of decreased gray matter concentration in the midbrain encompassing the dorsal raphe nucleus and the limbic subcortical regions in major depressive disorder: An optimized voxel-based morphometry study. J. Affect. Disord., 2011, 133(1-2), 128-136.
[http://dx.doi.org/10.1016/j.jad.2011.04.006] [PMID: 21546094]
[218]
Han, S.; Zheng, R.; Li, S.; Liu, L.; Wang, C.; Jiang, Y.; Wen, M.; Zhou, B.; Wei, Y.; Pang, J.; Li, H.; Zhang, Y.; Chen, Y.; Cheng, J. Progressive brain structural abnormality in depression assessed with MR imaging by using causal network analysis. Psychol. Med., 2023, 53(5), 2146-2155.
[http://dx.doi.org/10.1017/S0033291721003986] [PMID: 34583785]
[219]
Depping, M.S.; Schmitgen, M.M.; Kubera, K.M.; Wolf, R.C. Cerebellar Contributions to Major Depression; Frontiers in Psychiatry. Frontiers Media S.A., 2018, 9, 634.
[220]
Friedman, M.J.; Resick, P.A.; Bryant, R.A.; Strain, J.; Horowitz, M.; Spiegel, D. Classification of trauma and stressor-related disorders in DSM-5. Depress. Anxiety, 2011, 28(9), 737-749.
[http://dx.doi.org/10.1002/da.20845] [PMID: 21681870]
[221]
Bandelow, B.; Baldwin, D.; Abelli, M.; Altamura, C.; Dell’Osso, B.; Domschke, K.; Fineberg, N.A.; Grünblatt, E.; Jarema, M.; Maron, E.; Nutt, D.; Pini, S.; Vaghi, M.M.; Wichniak, A.; Zai, G.; Riederer, P. Biological markers for anxiety disorders, OCD and PTSD-a consensus statement. Part I: Neuroimaging and genetics. World J. Biol. Psychiatry, 2016, 17(5), 321-365.
[http://dx.doi.org/10.1080/15622975.2016.1181783] [PMID: 27403679]
[222]
Norton, P.J.; Paulus, D.J. Transdiagnostic models of anxiety disorder: Theoretical and empirical underpinnings. Clin. Psychol. Rev., 2017, 56, 122-137.
[http://dx.doi.org/10.1016/j.cpr.2017.03.004] [PMID: 28450042]
[223]
Hur, J.; Smith, J.F.; DeYoung, K.A.; Anderson, A.S.; Kuang, J.; Kim, H.C.; Tillman, R.M.; Kuhn, M.; Fox, A.S.; Shackman, A.J. Anxiety and the neurobiology of temporally uncertain threat anticipation. J. Neurosci., 2020, 40(41), 7949-7964.
[http://dx.doi.org/10.1523/JNEUROSCI.0704-20.2020] [PMID: 32958570]
[224]
Chen, Y.H.; Wu, J.L.; Hu, N.Y.; Zhuang, J.P.; Li, W.P.; Zhang, S.R.; Li, X.W.; Yang, J.M.; Gao, T.M. Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear. J. Clin. Invest., 2021, 131(14), e145692.
[http://dx.doi.org/10.1172/JCI145692] [PMID: 34263737]
[225]
Huggins, A.A.; Weis, C.N.; Parisi, E.A.; Bennett, K.P.; Miskovic, V.; Larson, C.L. Neural substrates of human fear generalization: A 7T-fMRI investigation. Neuroimage, 2021, 239, 118308.
[http://dx.doi.org/10.1016/j.neuroimage.2021.118308] [PMID: 34175426]
[226]
Sangha, S.; Diehl, M.M.; Bergstrom, H.C.; Drew, M.R. Know safety, no fear. Neurosci. Biobehav. Rev., 2020, 108, 218-230.
[http://dx.doi.org/10.1016/j.neubiorev.2019.11.006] [PMID: 31738952]
[227]
Bian, X.L.; Qin, C.; Cai, C.Y.; Zhou, Y.; Tao, Y.; Lin, Y.H.; Wu, H.Y.; Chang, L.; Luo, C.X.; Zhu, D.Y. Anterior cingulate cortex to ventral hippocampus circuit mediates contextual fear generalization. J. Neurosci., 2019, 39(29), 5728-5739.
[http://dx.doi.org/10.1523/JNEUROSCI.2739-18.2019] [PMID: 31097621]
[228]
Mah, L.; Szabuniewicz, C.; Fiocco, A.J. Can anxiety damage the brain? Curr. Opin. Psychiatry, 2016, 29(1), 56-63.
[http://dx.doi.org/10.1097/YCO.0000000000000223] [PMID: 26651008]
[229]
Kolesar, T.A.; Bilevicius, E.; Wilson, A.D.; Kornelsen, J. Systematic review and meta-analyses of neural structural and functional differences in generalized anxiety disorder and healthy controls using magnetic resonance imaging. Neuroimage Clin., 2019, 24, 102016.
[http://dx.doi.org/10.1016/j.nicl.2019.102016] [PMID: 31835287]
[230]
Moon, C.M.; Jeong, G.W. Abnormalities in gray and white matter volumes associated with explicit memory dysfunction in patients with generalized anxiety disorder. Acta Radiol., 2017, 58(3), 353-361.
[http://dx.doi.org/10.1177/0284185116649796] [PMID: 27273376]
[231]
Chen, Y.; Cui, Q.; Fan, Y.S.; Guo, X.; Tang, Q.; Sheng, W.; Lei, T.; Li, D.; Lu, F.; He, Z.; Yang, Y.; Hu, S.; Deng, J.; Chen, H. Progressive brain structural alterations assessed via causal analysis in patients with generalized anxiety disorder. Neuropsychopharmacology, 2020, 45(10), 1689-1697.
[http://dx.doi.org/10.1038/s41386-020-0704-1] [PMID: 32396920]
[232]
Takaishi, M.; Asami, T.; Yoshida, H.; Nakamura, R.; Yoshimi, A.; Hirayasu, Y. Smaller volume of right hippocampal CA2/3 in patients with panic disorder. Brain Imaging Behav., 2021, 15(1), 320-326.
[http://dx.doi.org/10.1007/s11682-020-00259-w] [PMID: 32125615]
[233]
Sheng, L.Q.; Ma, H.R.; Yao, L.Z.; Dai, Z.Y. Consistent brain grey matter volume alterations in adult patients with panic disorder and social anxiety disorder revisited. J. Affect. Disord., 2020, 2021(286), 120-122.
[234]
Wang, X.; Cheng, B.; Wang, S.; Lu, F.; Luo, Y.; Long, X.; Kong, D. Distinct grey matter volume alterations in adult patients with panic disorder and social anxiety disorder: A systematic review and voxel-based morphometry meta-analysis. J. Affect. Disord., 2021, 281(8), 805-823.
[http://dx.doi.org/10.1016/j.jad.2020.11.057] [PMID: 33243552]
[235]
Rauch, S.L.; Shin, L.M.; Wright, C. Neuroimaging studies of amygdala function in anxiety disorders. Ann. N. Y. Acad. Sci., 2003, 985(1), 389-410.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb07096.x] [PMID: 12724173]
[236]
Etkin, A.; Wager, T.D. Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry, 2007, 164(10), 1476-1488.
[http://dx.doi.org/10.1176/appi.ajp.2007.07030504] [PMID: 17898336]
[237]
Davis, M. The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci., 1992, 15(1), 353-375.
[http://dx.doi.org/10.1146/annurev.ne.15.030192.002033] [PMID: 1575447]
[238]
Britton, J.C.; Rauch, S.L. Neuroanatomy and Neuroimaging of Anxiety Disorders; Oxford Handbook of Anxiety and Related Disorders, 2018.
[239]
Massana, G.; Serra-Grabulosa, J.M.; Salgado-Pineda, P.; Gastó, C.; Junqué, C.; Massana, J.; Mercader, J.M.; Gómez, B.; Tobeña, A.; Salamero, M. Amygdalar atrophy in panic disorder patients detected by volumetric magnetic resonance imaging. Neuroimage, 2003, 19(1), 80-90.
[http://dx.doi.org/10.1016/S1053-8119(03)00036-3] [PMID: 12781728]
[240]
Asami, T.; Yamasue, H.; Hayano, F.; Nakamura, M.; Uehara, K.; Otsuka, T.; Roppongi, T.; Nihashi, N.; Inoue, T.; Hirayasu, Y. Sexually dimorphic gray matter volume reduction in patients with panic disorder. Psychiatry Res. Neuroimaging, 2009, 173(2), 128-134.
[http://dx.doi.org/10.1016/j.pscychresns.2008.10.004] [PMID: 19560907]
[241]
Asami, T.; Nakamura, R.; Takaishi, M.; Yoshida, H.; Yoshimi, A.; Whitford, T.J. Smaller volumes in the lateral and basal nuclei of the amygdala in patients with panic disorder. PLoS One, 2018, 13(11), e0207163.
[http://dx.doi.org/10.1371/journal.pone.0207163]
[242]
Hayano, F.; Nakamura, M.; Asami, T.; Uehara, K.; Yoshida, T.; Roppongi, T.; Otsuka, T.; Inoue, T.; Hirayasu, Y. Smaller amygdala is associated with anxiety in patients with panic disorder. Psychiatry Clin. Neurosci., 2009, 63(3), 266-276.
[http://dx.doi.org/10.1111/j.1440-1819.2009.01960.x] [PMID: 19566756]
[243]
Kunas, S.L.; Hilbert, K.; Yang, Y.; Richter, J.; Hamm, A.; Wittmann, A.; Ströhle, A.; Pfleiderer, B.; Herrmann, M.J.; Lang, T.; Lotze, M.; Deckert, J.; Arolt, V.; Wittchen, H.U.; Straube, B.; Kircher, T.; Gerlach, A.L.; Lueken, U. The modulating impact of cigarette smoking on brain structure in panic disorder: A voxel-based morphometry study. Soc. Cogn. Affect. Neurosci., 2020, 15(8), 849-859.
[http://dx.doi.org/10.1093/scan/nsaa103] [PMID: 32734299]
[244]
Hilbert, K.; Lueken, U.; Beesdo-Baum, K. Neural structures, functioning and connectivity in Generalized Anxiety Disorder and interaction with neuroendocrine systems: A systematic review. J. Affect. Disord., 2014, 158, 114-126.
[http://dx.doi.org/10.1016/j.jad.2014.01.022] [PMID: 24655775]
[245]
Makovac, E.; Meeten, F.; Watson, D.R.; Garfinkel, S.N.; Critchley, H.D.; Ottaviani, C. Neurostructural abnormalities associated with axes of emotion dysregulation in generalized anxiety. Neuroimage Clin., 2016, 10, 172-181.
[http://dx.doi.org/10.1016/j.nicl.2015.11.022] [PMID: 26759791]
[246]
Ma, Z.; Wang, C.; Hines, C.S.; Lu, X.; Wu, Y.; Xu, H.; Li, J.; Wang, Q.; Pang, M.; Zhong, Y.; Zhang, N. Frontoparietal network abnormalities of gray matter volume and functional connectivity in patients with generalized anxiety disorder. Psychiatry Res. Neuroimaging, 2019, 286, 24-30.
[http://dx.doi.org/10.1016/j.pscychresns.2019.03.001] [PMID: 30877889]
[247]
Bas-Hoogendam, J.M.; van Steenbergen, H.; Tissier, R.L.M.; Houwing-Duistermaat, J.J.; Westenberg, P.M.; van der Wee, N.J.A. Subcortical brain volumes, cortical thickness and cortical surface area in families genetically enriched for social anxiety disorder - A multiplex multigenerational neuroimaging study. EBioMedicine, 2018, 36, 410-428.
[http://dx.doi.org/10.1016/j.ebiom.2018.08.048] [PMID: 30266294]
[248]
Fisler, M.S.; Federspiel, A.; Horn, H.; Dierks, T.; Schmitt, W.; Wiest, R.; de Quervain, D.J.F.; Soravia, L.M. Spider phobia is associated with decreased left amygdala volume: A cross-sectional study. BMC Psychiatry, 2013, 13(1), 70.
[http://dx.doi.org/10.1186/1471-244X-13-70] [PMID: 23442196]
[249]
Hilbert, K.; Evens, R.; Isabel, M.N.; Wittchen, H.U.; Lueken, U. Neurostructural correlates of two subtypes of specific phobia: A voxel-based morphometry study. Psychiatry Res. Neuroimaging, 2015, 231(2), 168-175.
[http://dx.doi.org/10.1016/j.pscychresns.2014.12.003] [PMID: 25561374]
[250]
Linares, I.M.P.; Jackowski, A.P.; Trzesniak, C.M.F.; Arrais, K.C.; Chagas, M.H.N.; Sato, J.R.; Santos, A.C.; Hallak, J.E.C.; Zuardi, A.W.; Nardi, A.E.; Coimbra, N.C.; Crippa, J.A.S. Cortical thinning of the right anterior cingulate cortex in spider phobia: A magnetic resonance imaging and spectroscopy study. Brain Res., 2014, 1576, 35-42.
[http://dx.doi.org/10.1016/j.brainres.2014.05.040] [PMID: 24892191]
[251]
Rauch, S.L.; Wright, C.I.; Martis, B.; Busa, E.; McMullin, K.G.; Shin, L.M.; Dale, A.M.; Fischl, B. A magnetic resonance imaging study of cortical thickness in animal phobia. Biol. Psychiatry, 2004, 55(9), 946-952.
[http://dx.doi.org/10.1016/j.biopsych.2003.12.022] [PMID: 15110739]
[252]
Fareri, D.S.; Tottenham, N. Effects of early life stress on amygdala and striatal development. Dev. Cogn. Neurosci., 2016, 19, 233-247.
[http://dx.doi.org/10.1016/j.dcn.2016.04.005] [PMID: 27174149]
[253]
Brandl, F.; Weise, B.; Mulej Bratec, S.; Jassim, N.; Hoffmann, A.D.; Bertram, T.; Ploner, M.; Sorg, C. Common and specific large-scale brain changes in major depressive disorder, anxiety disorders, and chronic pain: A transdiagnostic multimodal meta-analysis of structural and functional MRI studies. Neuropsychopharmacology, 2022, 47(5), 1071-1080.
[http://dx.doi.org/10.1038/s41386-022-01271-y] [PMID: 35058584]
[254]
Adhikari, A.; Lerner, T.N.; Finkelstein, J.; Pak, S.; Jennings, J.H.; Davidson, T.J.; Ferenczi, E.; Gunaydin, L.A.; Mirzabekov, J.J.; Ye, L.; Kim, S.Y.; Lei, A.; Deisseroth, K. Basomedial amygdala mediates top-down control of anxiety and fear. Nature, 2015, 527(7577), 179-185.
[http://dx.doi.org/10.1038/nature15698] [PMID: 26536109]
[255]
Shiba, Y.; Santangelo, A.M.; Roberts, A.C.; Adhikari, A.; Bissonette, G.B. Rudebeck, pH beyond the medial regions of prefrontal cortex in the regulation of fear and anxiety. Front. Syst. Neurosci., 2016, 10, 12.
[http://dx.doi.org/10.3389/fnsys.2016.00012]
[256]
Duval, E.R.; Javanbakht, A.; Liberzon, I. Neural circuits in anxiety and stress disorders: A focused review. Ther. Clin. Risk Manag., 2015, 11, 115-126.
[PMID: 25670901]
[257]
Cho, J.H.; Deisseroth, K.; Bolshakov, V.Y. Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron, 2013, 80(6), 1491-1507.
[http://dx.doi.org/10.1016/j.neuron.2013.09.025] [PMID: 24290204]
[258]
Schiller, D.; Delgado, M.R. Overlapping neural systems mediating extinction, reversal and regulation of fear. Trends Cogn. Sci., 2010, 14(6), 268-276.
[http://dx.doi.org/10.1016/j.tics.2010.04.002] [PMID: 20493762]
[259]
Wang, H.Y.; Zhang, X.X.; Si, C.P.; Xu, Y.; Liu, Q.; Bian, H.T.; Zhang, B.W.; Li, X.L.; Yan, Z.R. Prefrontoparietal dysfunction during emotion regulation in anxiety disorder: A meta-analysis of functional magnetic resonance imaging studies. Neuropsychiatr. Dis. Treat., 2018, 14, 1183-1198.
[http://dx.doi.org/10.2147/NDT.S165677] [PMID: 29785110]
[260]
Killgore, W.D.S.; Britton, J.C.; Schwab, Z.J.; Price, L.M.; Weiner, M.R.; Gold, A.L.; Rosso, I.M.; Simon, N.M.; Pollack, M.H.; Rauch, S.L. Cortico-limbic responses to masked affective faces across ptsd, panic disorder, and specific phobia. Depress. Anxiety, 2014, 31(2), 150-159.
[http://dx.doi.org/10.1002/da.22156] [PMID: 23861215]
[261]
Liu, W.Z.; Zhang, W.H.; Zheng, Z.H.; Zou, J.X.; Liu, X.X.; Huang, S.H.; You, W.J.; He, Y.; Zhang, J.Y.; Wang, X.D.; Pan, B.X. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat. Commun., 2020, 11(1), 2221.
[http://dx.doi.org/10.1038/s41467-020-15920-7] [PMID: 32376858]
[262]
Shang, J.; Fu, Y.; Ren, Z.; Zhang, T.; Du, M.; Gong, Q.; Lui, S.; Zhang, W. The common traits of the ACC and PFC in anxiety disorders in the DSM-5: Meta-analysis of voxel-based morphometry studies. PLoS One, 2014, 9(3), e93432.
[http://dx.doi.org/10.1371/journal.pone.0093432] [PMID: 24676455]
[263]
Li, H.; Zhang, B.; Hu, Q.; Zhang, L.; Jin, Y.; Wang, J.; Cui, H.; Pang, J.; Li, C. Altered heartbeat perception sensitivity associated with brain structural alterations in generalised anxiety disorder. Gen. Psychiatr., 2020, 33(1), e100057.
[http://dx.doi.org/10.1136/gpsych-2019-100057] [PMID: 32175522]
[264]
Andreescu, C.; Tudorascu, D.; Sheu, L.K.; Rangarajan, A.; Butters, M.A.; Walker, S.; Berta, R.; Desmidt, T.; Aizenstein, H. Brain structural changes in late-life generalized anxiety disorder. Psychiatry Res. Neuroimaging, 2017, 268(23), 15-21.
[http://dx.doi.org/10.1016/j.pscychresns.2017.08.004] [PMID: 28837828]
[265]
Harrewijn, A.; Cardinale, E.M.; Groenewold, N.A.; Bas-Hoogendam, J.M.; Aghajani, M.; Hilbert, K.; Cardoner, N.; Porta-Casteràs, D.; Gosnell, S.; Salas, R.; Jackowski, A.P.; Pan, P.M.; Salum, G.A.; Blair, K.S.; Blair, J.R.; Hammoud, M.Z.; Milad, M.R.; Burkhouse, K.L.; Phan, K.L.; Schroeder, H.K.; Strawn, J.R.; Beesdo-Baum, K.; Jahanshad, N.; Thomopoulos, S.I.; Buckner, R.; Nielsen, J.A.; Smoller, J.W.; Soares, J.C.; Mwangi, B.; Wu, M.J.; Zunta-Soares, G.B.; Assaf, M.; Diefenbach, G.J.; Brambilla, P.; Maggioni, E.; Hofmann, D.; Straube, T.; Andreescu, C.; Berta, R.; Tamburo, E.; Price, R.B.; Manfro, G.G.; Agosta, F.; Canu, E.; Cividini, C.; Filippi, M. Kostić M.; Munjiza Jovanovic, A.; Alberton, B.A.V.; Benson, B.; Freitag, G.F.; Filippi, C.A.; Gold, A.L.; Leibenluft, E.; Ringlein, G.V.; Werwath, K.E.; Zwiebel, H.; Zugman, A.; Grabe, H.J.; Van der Auwera, S.; Wittfeld, K.; Völzke, H.; Bülow, R.; Balderston, N.L.; Ernst, M.; Grillon, C.; Mujica-Parodi, L.R.; van Nieuwenhuizen, H.; Critchley, H.D.; Makovac, E.; Mancini, M.; Meeten, F.; Ottaviani, C.; Ball, T.M.; Fonzo, G.A.; Paulus, M.P.; Stein, M.B.; Gur, R.E.; Gur, R.C.; Kaczkurkin, A.N.; Larsen, B.; Satterthwaite, T.D.; Harper, J.; Myers, M.; Perino, M.T.; Sylvester, C.M.; Yu, Q.; Lueken, U.; Veltman, D.J.; Thompson, P.M.; Stein, D.J.; Van der Wee, N.J.A.; Winkler, A.M.; Pine, D.S. Cortical and subcortical brain structure in generalized anxiety disorder: findings from 28 research sites in the ENIGMA-Anxiety Working Group. Transl. Psychiatry, 2021, 11(1), 502.
[http://dx.doi.org/10.1038/s41398-021-01622-1] [PMID: 34599145]
[266]
Na, K.S.; Ham, B.J.; Lee, M.S.; Kim, L.; Kim, Y.K.; Lee, H.J.; Yoon, H.K. Decreased gray matter volume of the medial orbitofrontal cortex in panic disorder with agoraphobia: A preliminary study. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 45, 195-200.
[http://dx.doi.org/10.1016/j.pnpbp.2013.04.014] [PMID: 23628432]
[267]
Uchida, R.R.; Del-Ben, C.M.; Busatto, G.F.; Duran, F.L.S.; Guimarães, F.S.; Crippa, J.A.S.; Araújo, D.; Santos, A.C.; Graeff, F.G. Regional gray matter abnormalities in panic disorder: A voxel-based morphometry study. Psychiatry Res. Neuroimaging, 2008, 163(1), 21-29.
[http://dx.doi.org/10.1016/j.pscychresns.2007.04.015] [PMID: 18417322]
[268]
Ni, M.F.; Wang, X.M.; Wang, H.Y.; Chang, Y.; Huang, X.F.; Zhang, B.W. Regional cortical thinning and cerebral hypoperfusion in patients with panic disorder. J. Affect. Disord., 2020, 277, 138-145.
[http://dx.doi.org/10.1016/j.jad.2020.07.139] [PMID: 32828000]
[269]
Liao, W.; Xu, Q.; Mantini, D.; Ding, J.; Machado-de-Sousa, J.P.; Hallak, J.E.C.; Trzesniak, C.; Qiu, C.; Zeng, L.; Zhang, W.; Crippa, J.A.S.; Gong, Q.; Chen, H. Altered gray matter morphometry and resting-state functional and structural connectivity in social anxiety disorder. Brain Res., 2011, 1388, 167-177.
[http://dx.doi.org/10.1016/j.brainres.2011.03.018] [PMID: 21402057]
[270]
Zhang, X.; Luo, Q.; Wang, S.; Qiu, L.; Pan, N.; Kuang, W.; Lui, S.; Huang, X.; Yang, X.; Kemp, G.J.; Gong, Q. Dissociations in cortical thickness and surface area in non-comorbid never-treated patients with social anxiety disorder. EBioMedicine, 2020, 58, 102910.
[http://dx.doi.org/10.1016/j.ebiom.2020.102910] [PMID: 32739867]
[271]
Bas-Hoogendam, J.M.; van Steenbergen, H.; Nienke Pannekoek, J.; Fouche, J.P.; Lochner, C.; Hattingh, C.J.; Cremers, H.R.; Furmark, T.; Månsson, K.N.T.; Frick, A.; Engman, J.; Boraxbekk, C.J.; Carlbring, P.; Andersson, G.; Fredrikson, M.; Straube, T.; Peterburs, J.; Klumpp, H.; Phan, K.L.; Roelofs, K.; Veltman, D.J.; van Tol, M.J.; Stein, D.J.; van der Wee, N.J.A. Voxel-based morphometry multi-center mega-analysis of brain structure in social anxiety disorder. Neuroimage Clin., 2017, 16, 678-688.
[http://dx.doi.org/10.1016/j.nicl.2017.08.001] [PMID: 30140607]
[272]
Lai, C.H.; Wu, Y.T. The gray matter alterations in major depressive disorder and panic disorder: Putative differences in the pathogenesis. J. Affect. Disord., 2015, 186, 1-6.
[http://dx.doi.org/10.1016/j.jad.2015.07.022] [PMID: 26208214]
[273]
Atmaca, M.; Koc, M.; Mermi, O.; Korkmaz, S.; Aslan, S.; Yildirim, H. Insula volumes are altered in patients with social anxiety disorder. Behav. Brain Res., 2021, 400, 113012.
[http://dx.doi.org/10.1016/j.bbr.2020.113012] [PMID: 33181184]
[274]
Kawaguchi, A.; Nemoto, K.; Nakaaki, S.; Kawaguchi, T.; Kan, H.; Arai, N.; Shiraishi, N.; Hashimoto, N.; Akechi, T. Insular volume reduction in patients with social anxiety disorder. Front. Psychiatry, 2016, 7, 3.
[http://dx.doi.org/10.3389/fpsyt.2016.00003] [PMID: 26834652]
[275]
Syal, S.; Hattingh, C.J.; Fouché, J.P.; Spottiswoode, B.; Carey, P.D.; Lochner, C.; Stein, D.J. Grey matter abnormalities in social anxiety disorder: A pilot study. Metab. Brain Dis., 2012, 27(3), 299-309.
[http://dx.doi.org/10.1007/s11011-012-9299-5] [PMID: 22527992]
[276]
Marchand, W.R. Cortico-basal ganglia circuitry: A review of key research and implications for functional connectivity studies of mood and anxiety disorders. Brain Struct. Funct., 2010, 215(2), 73-96.
[http://dx.doi.org/10.1007/s00429-010-0280-y] [PMID: 20938681]
[277]
Zhang, X.; Suo, X.; Yang, X.; Lai, H.; Pan, N.; He, M.; Li, Q.; Kuang, W.; Wang, S.; Gong, Q. Structural and functional deficits and couplings in the cortico-striato-thalamo-cerebellar circuitry in social anxiety disorder. Transl. Psychiatry, 2022, 12(1), 26.
[http://dx.doi.org/10.1038/s41398-022-01791-7] [PMID: 35064097]
[278]
Yoo, H.K.; Kim, M.J.; Kim, S.J.; Sung, Y.H.; Sim, M.E.; Lee, Y.S.; Song, S.Y.; Kee, B.S.; Lyoo, I.K. Putaminal gray matter volume decrease in panic disorder: An optimized voxel-based morphometry study. Eur. J. Neurosci., 2005, 22(8), 2089-2094.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04394.x] [PMID: 16262646]
[279]
Yoshida, H.; Asami, T.; Takaishi, M.; Nakamura, R.; Yoshimi, A.; Whitford, T.J.; Hirayasu, Y. Structural abnormalities in nucleus accumbens in patients with panic disorder. J. Affect. Disord., 2020, 271, 201-206.
[http://dx.doi.org/10.1016/j.jad.2020.03.172] [PMID: 32479317]
[280]
Wang, X.; Cheng, B.; Luo, Q.; Qiu, L.; Wang, S. Gray matter structural alterations in social anxiety disorder: A voxel-based meta-analysis. Front. Psychiatry, 2018, 9, 449.
[http://dx.doi.org/10.3389/fpsyt.2018.00449] [PMID: 30298028]
[281]
Asami, T.; Yoshida, H.; Takaishi, M.; Nakamura, R.; Yoshimi, A.; Whitford, T.J.; Hirayasu, Y. Thalamic shape and volume abnormalities in female patients with panic disorder. PLoS One, 2018, 13(12), 1-12.
[http://dx.doi.org/10.1371/journal.pone.0208152]
[282]
Talati, A.; Pantazatos, S.P.; Schneier, F.R.; Weissman, M.M.; Hirsch, J. Gray matter abnormalities in social anxiety disorder: Primary, replication, and specificity studies. Biol. Psychiatry, 2013, 73(1), 75-84.
[http://dx.doi.org/10.1016/j.biopsych.2012.05.022] [PMID: 22748614]
[283]
Tükel, R. Aydın, K.; Yüksel, Ç.; Ertekin, E.; Koyuncu, A.; Taş C. Gray matter abnormalities in patients with social anxiety disorder: A voxel-based morphometry study. Psychiatry Res. Neuroimaging, 2015, 234(1), 106-112.
[http://dx.doi.org/10.1016/j.pscychresns.2015.09.003] [PMID: 26371455]
[284]
Pujol, J.; Harrison, B.J.; Ortiz, H.; Deus, J.; Soriano-Mas, C.; López-Solà, M.; Yücel, M.; Perich, X.; Cardoner, N. Influence of the fusiform gyrus on amygdala response to emotional faces in the non-clinical range of social anxiety. Psychol. Med., 2009, 39(7), 1177-1187.
[http://dx.doi.org/10.1017/S003329170800500X] [PMID: 19154647]
[285]
Cuthbert, B.N.; Insel, T.R. Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Med., 2013, 11(1), 126.
[http://dx.doi.org/10.1186/1741-7015-11-126] [PMID: 23672542]
[286]
Howard, D.M.; Adams, M.J.; Clarke, T.K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.I.; Hagenaars, S.P.; Ward, J.; Wigmore, E.M.; Alloza, C.; Shen, X.; Barbu, M.C.; Xu, E.Y.; Whalley, H.C.; Marioni, R.E.; Porteous, D.J.; Davies, G.; Deary, I.J.; Hemani, G.; Berger, K.; Teismann, H.; Rawal, R.; Arolt, V.; Baune, B.T.; Dannlowski, U.; Domschke, K.; Tian, C.; Hinds, D.A.; Trzaskowski, M.; Byrne, E.M.; Ripke, S.; Smith, D.J.; Sullivan, P.F.; Wray, N.R.; Breen, G.; Lewis, C.M.; McIntosh, A.M. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci., 2019, 22(3), 343-352.
[http://dx.doi.org/10.1038/s41593-018-0326-7] [PMID: 30718901]
[287]
Schiele, M.A.; Gottschalk, M.G.; Domschke, K. The applied implications of epigenetics in anxiety, affective and stress-related disorders - A review and synthesis on psychosocial stress, psychotherapy and prevention. Clin. Psychol. Rev., 2020, 77, 101830.
[http://dx.doi.org/10.1016/j.cpr.2020.101830] [PMID: 32163803]
[288]
Pfeiffer, J.R.; Mutesa, L.; Uddin, M. Traumatic stress epigenetics. Curr. Behav. Neurosci. Rep., 2018, 5(1), 81-93.
[http://dx.doi.org/10.1007/s40473-018-0143-z]
[289]
Jawaid, A.; Roszkowski, M.; Mansuy, I.M. Transgenerational epigenetics of traumatic stress. Prog. Mol. Biol. Transl. Sci., 2018, 158, 273-298.
[http://dx.doi.org/10.1016/bs.pmbts.2018.03.003]
[290]
Dupont, C.; Armant, D.; Brenner, C. Epigenetics: Definition, mechanisms and clinical perspective. Semin. Reprod. Med., 2009, 27(5), 351-357.
[http://dx.doi.org/10.1055/s-0029-1237423] [PMID: 19711245]
[291]
Zugman, A.; Harrewijn, A.; Cardinale, E.M.; Zwiebel, H.; Freitag, G.F.; Werwath, K.E. Mega-analysis methods in enigma: The experience of the generalized anxiety disorder working group. Hum. Brain Mapp., 2020, 1-23.
[PMID: 32596977]
[292]
Lijffijt, M.; Green, C.E.; Balderston, N.; Iqbal, T.; Atkinson, M. Vo-Le, Brittany, B.; Vo-Le, Bylinda, B.; O’Brien, B.; Grillon, C.; Swann, A.C.; Mathew, S.J. A proof-of-mechanism study to test effects of the NMDA receptor antagonist lanicemine on behavioral sensitization in individuals with symptoms of PTSD. Front. Psychiatry, 2019, 10, 846.
[http://dx.doi.org/10.3389/fpsyt.2019.00846] [PMID: 31920733]
[293]
Newport, D.J.; Carpenter, L.L.; McDonald, W.M.; Potash, J.B.; Tohen, M.; Nemeroff, C.B. Ketamine and other NMDA antagonists: Early clinical trials and possible mechanisms in depression. Am. J. Psychiatry, 2015, 172(10), 950-966.
[http://dx.doi.org/10.1176/appi.ajp.2015.15040465] [PMID: 26423481]
[294]
Ates-Alagoz, Z.; Adejare, A. NMDA receptor antagonists for treatment of depression. Pharmaceuticals, 2013, 6(4), 480-499.
[http://dx.doi.org/10.3390/ph6040480] [PMID: 24276119]
[295]
Lorigooini, Z.; Nasiri, B.S.; Balali-Dehkordi, S.; Ebrahimi, L.; Bijad, E.; Rahimi-Madiseh, M.; Amini-Khoei, H. Possible involvement of NMDA receptor in the anxiolytic-like effect of caffeic acid in mice model of maternal separation stress. Heliyon, 2020, 6(9), e04833.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04833] [PMID: 32944669]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy