Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Shikonin Causes Non-apoptotic Cell Death in B16F10 Melanoma

Author(s): Haleema Ahmad, Megan S. Crotts, Jena C. Jacobs, Robert W. Baer and James L. Cox*

Volume 23, Issue 16, 2023

Published on: 31 July, 2023

Page: [1880 - 1887] Pages: 8

DOI: 10.2174/1871520623666230701000338

Price: $65

Abstract

Background: Melanoma treatment is highly resistant to current chemotherapeutic agents. Due to its resistance towards apoptotic cell death, non-apoptotic cell death pathways are sought after.

Objective: We investigated a Chinese herbal medicine, shikonin, and its effect on B16F10 melanoma cells in vitro.

Methods: Cell growth of B16F10 melanoma cells treated with shikonin was analyzed using an MTT assay. Shikonin was combined with necrostatin, an inhibitor of necroptosis; caspase inhibitor; 3-methyladenine, an inhibitor of autophagy; or N-acetyl cysteine, an inhibitor of reactive oxygen species. Flow cytometry was used to assess types of cell death resulting from treatment with shikonin. Cell proliferation was also analyzed utilizing a BrdU labeling assay. Monodansylcadaverine staining was performed on live cells to gauge levels of autophagy. Western blot analysis was conducted to identify specific protein markers of necroptosis including CHOP, RIP1, and pRIP1. MitoTracker staining was utilized to identify differences in mitochondrial density in cells treated with shikonin.

Results: Analysis of MTT assays revealed a large decrease in cellular growth with increasing shikonin concentrations. The MTT assays with necrostatin, 3-methyladenine, and N-acetyl cysteine involvement, suggested that necroptosis, autophagy, and reactive oxygen species are a part of shikonin’s mechanism of action. Cellular proliferation with shikonin treatment was also decreased. Western blotting confirmed that shikonin-treated melanoma cells increase levels of stress-related proteins, e.g., CHOP, RIP, pRIP.

Conclusion: Our findings suggest that mainly necroptosis is induced by the shikonin treatment of B16F10 melanoma cells. Induction of ROS production and autophagy are also involved.

« Previous
Graphical Abstract

[1]
Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; de Vries, E.; Whiteman, D.C.; Bray, F. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol., 2022, 158(5), 495-503.
[http://dx.doi.org/10.1001/jamadermatol.2022.0160] [PMID: 35353115]
[2]
Song, X.; Zhao, Z.; Barber, B.; Farr, A.M.; Ivanov, B.; Novich, M. Overall survival in patients with metastatic melanoma. Curr. Med. Res. Opin., 2015, 31(5), 987-991.
[http://dx.doi.org/10.1185/03007995.2015.1021904] [PMID: 25708472]
[3]
Yang, A.S.; Chapman, P.B. The history and future of chemotherapy for melanoma. Hematol. Oncol. Clin. North Am., 2009, 23(3), 583-597.
[http://dx.doi.org/10.1016/j.hoc.2009.03.006] [PMID: 19464604]
[4]
Alarifi, S.; Ali, D.; Alkahtani, S.; Almeer, R.S. ROS-mediated apoptosis and genotoxicity induced by palladium nanoparticles in human skin malignant melanoma cells. Oxid. Med. Cell. Longev., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/8439098] [PMID: 28791053]
[5]
Zeng, L.; Gowda, B.H.J.; Ahmed, M.G.; Abourehab, M.A.S.; Chen, Z.S.; Zhang, C.; Li, J.; Kesharwani, P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol. Cancer, 2023, 22(1), 10.
[http://dx.doi.org/10.1186/s12943-022-01708-4] [PMID: 36635761]
[6]
Palliyage, G.H.; Hussein, N.; Mimlitz, M.; Weeder, C.; Alnasser, M.H.A.; Singh, S.; Ekpenyong, A.; Tiwari, A.K.; Chauhan, H. Novel curcumin-resveratrol solid nanoparticles synergistically inhibit proliferation of melanoma cells. Pharm. Res., 2021, 38(5), 851-871.
[http://dx.doi.org/10.1007/s11095-021-03043-7] [PMID: 33982225]
[7]
Sudha, T.; Salaheldin, T.A.; Darwish, N.H.E.; Mousa, S.A. Antitumor/anti-angiogenesis efficacy of epigallocatechin gallate nanoformulated with antioxidant in melanoma. Nanomedicine, 2022, 17(15), 1039-1053.
[http://dx.doi.org/10.2217/nnm-2021-0362] [PMID: 36102916]
[8]
Arya, J.S.; Joseph, M.M.; Sherin, D.R.; Nair, J.B.; Manojkumar, T.K.; Maiti, K.K. Exploring mitochondria-mediated intrinsic apoptosis by new phytochemical entities: an explicit observation of cytochrome c dynamics on lung and melanoma cancer cells. J. Med. Chem., 2019, 62(17), 8311-8329.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01098] [PMID: 31393121]
[9]
Hammerová, J.; Uldrijan, S.; Táborská, E.; Vaculová, A.H.; Slaninová, I. Necroptosis modulated by autophagy is a predominant form of melanoma cell death induced by sanguilutine. Biol. Chem., 2012, 393(7), 647-658.
[http://dx.doi.org/10.1515/hsz-2011-0279] [PMID: 22944669]
[10]
Mbaveng, A.T.; Chi, G.F.; Bonsou, I.N.; Abdelfatah, S.; Tamfu, A.N.; Yeboah, E.M.O.; Kuete, V.; Efferth, T. N-acetylglycoside of oleanolic acid (aridanin) displays promising cytotoxicity towards human and animal cancer cells, inducing apoptotic, ferroptotic and necroptotic cell death. Phytomedicine, 2020, 76, 153261.
[http://dx.doi.org/10.1016/j.phymed.2020.153261] [PMID: 32559584]
[11]
Makin, G.; Hickman, J.A. Apoptosis and cancer chemotherapy. Cell Tissue Res., 2000, 301(1), 143-152.
[http://dx.doi.org/10.1007/s004419900160] [PMID: 10928287]
[12]
Soengas, M.S.; Lowe, S.W. Apoptosis and melanoma chemoresistance. Oncogene, 2003, 22(20), 3138-3151.
[http://dx.doi.org/10.1038/sj.onc.1206454] [PMID: 12789290]
[13]
Shahsavari, Z.; Karami-Tehrani, F.; Salami, S. Shikonin induced necroptosis via reactive oxygen species in the t-47d breast cancer cell line. Asian Pac. J. Cancer Prev., 2015, 16(16), 7261-7266.
[http://dx.doi.org/10.7314/APJCP.2015.16.16.7261] [PMID: 26514521]
[14]
Shahsavari, Z.; Karami-Tehrani, F.; Salami, S.; Ghasemzadeh, M. RIP1K and RIP3K provoked by shikonin induce cell cycle arrest in the triple negative breast cancer cell line, MDA-MB-468: necroptosis as a desperate programmed suicide pathway. Tumour Biol., 2016, 37(4), 4479-4491.
[http://dx.doi.org/10.1007/s13277-015-4258-5] [PMID: 26496737]
[15]
Zhang, Z.; Zhang, Z.; Li, Q.; Jiao, H.; Chong, D.; Sun, X.; Zhang, P.; Huo, Q.; Liu, H. Shikonin induces necroptosis by reactive oxygen species activation in nasopharyngeal carcinoma cell line CNE-2Z. J. Bioenerg. Biomembr., 2017, 49(3), 265-272.
[http://dx.doi.org/10.1007/s10863-017-9714-z] [PMID: 28547157]
[16]
Chen, X.; Yang, L.; Zhang, N.; Turpin, J.A.; Buckheit, R.W.; Osterling, C.; Oppenheim, J.J.; Howard, O.M.Z. Shikonin, a component of chinese herbal medicine, inhibits chemokine receptor function and suppresses human immunodeficiency virus type 1. Antimicrob. Agents Chemother., 2003, 47(9), 2810-2816.
[http://dx.doi.org/10.1128/AAC.47.9.2810-2816.2003] [PMID: 12936978]
[17]
Andújar, I.; Martí-Rodrigo, A.; Giner, R.; Ríos, J.; Recio, M. Shikonin prevents early phase inflammation associated with azoxymethane/dextran sulfate sodium-induced colon cancer and induces apoptosis in human colon cancer cells. Planta Med., 2018, 84(09/10), 674-683.
[http://dx.doi.org/10.1055/a-0599-1145] [PMID: 29642242]
[18]
Hotchkiss, R.S.; Strasser, A.; McDunn, J.E.; Swanson, P.E. Cell Death. N. Engl. J. Med., 2009, 361(16), 1570-1583.
[http://dx.doi.org/10.1056/NEJMra0901217] [PMID: 19828534]
[19]
Kroemer, G.; Galluzzi, L.; Vandenabeele, P.; Abrams, J.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; El-Deiry, W.S.; Golstein, P.; Green, D.R.; Hengartner, M.; Knight, R.A.; Kumar, S.; Lipton, S.A.; Malorni, W.; Nuñez, G.; Peter, M.E.; Tschopp, J.; Yuan, J.; Piacentini, M.; Zhivotovsky, B.; Melino, G. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ., 2009, 16(1), 3-11.
[http://dx.doi.org/10.1038/cdd.2008.150] [PMID: 18846107]
[20]
Chude, C.; Amaravadi, R. Targeting autophagy in cancer: update on clinical trials and novel inhibitors. Int. J. Mol. Sci., 2017, 18(6), 1279.
[http://dx.doi.org/10.3390/ijms18061279] [PMID: 28621712]
[21]
Han, W.; Xie, J.; Fang, Y.; Wang, Z.; Pan, H. Nec-1 enhances shikonin-induced apoptosis in leukemia cells by inhibition of RIP-1 and ERK1/2. Int. J. Mol. Sci., 2012, 13(6), 7212-7225.
[http://dx.doi.org/10.3390/ijms13067212] [PMID: 22837689]
[22]
Hu, H.; Tian, M.; Ding, C.; Yu, S. The C/EBP Homologous Protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front. Immunol., 2019, 9, 3083.
[http://dx.doi.org/10.3389/fimmu.2018.03083] [PMID: 30662442]
[23]
Festjens, N.; Vanden, B. T.; Cornelis, S.; Vandenabeele, P. RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death Differ., 2007, 14(3), 400-410.
[http://dx.doi.org/10.1038/sj.cdd.4402085] [PMID: 17301840]
[24]
R: a language and environment for statistical computing. 2022. Available from: https://www.R-project.org/
[25]
Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; Kuhn, M.; Pedersen, T.; Miller, E.; Bache, S.; Müller, K.; Ooms, J.; Robinson, D.; Seidel, D.; Spinu, V.; Takahashi, K.; Vaughan, D.; Wilke, C.; Woo, K.; Yutani, H. Welcome to the Tidyverse. J. Open Source Softw., 2019, 4(43), 1686.
[http://dx.doi.org/10.21105/joss.01686]
[26]
Hammill, D. CytoExploR: Interactive Analysis of Cytometry Data. 2021. Available from: https://dillonhammill.github.io/CytoExploreR/
[27]
Van, P.; Jiang, W.; Gottardo, R.; Finak, G. ggCyto: next generation open-source visualization software for cytometry. Bioinformatics, 2018, 34(22), 3951-3953.
[http://dx.doi.org/10.1093/bioinformatics/bty441] [PMID: 29868771]
[28]
Huang, C.; Luo, Y.; Zhao, J.; Yang, F.; Zhao, H.; Fan, W. Shikonin kills glioma cells through necroptosis mediated by RIP-1. PLoS ONE, 2013, 8(6), e66326.
[29]
Han, W.; Li, L.; Qiu, S.; Lu, Q.; Pan, Q.; Gu, Y.; Luo, J.; Hu, X. Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol. Cancer Ther., 2007, 6(5), 1641-1649.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0511] [PMID: 17513612]
[30]
Wang, H.; Liu, Z.; Li, X.; Zhao, R.; Pu, Y.; Wu, H. Shikonin causes apoptosis by disrupting intracellular calcium homeostasis and mitochondrial function in human hepatoma cells. Exp. Ther. Med., 2017, 15(2), 1484-1492.
[http://dx.doi.org/10.3892/etm.2017.5591]
[31]
Glinsky, G.V.; Glinsky, V.V. Apoptosis and metastasis: a superior resistance of metastatic cancer cells to programmed cell death. Cancer Lett., 1996, 101(1), 43-51.
[http://dx.doi.org/10.1016/0304-3835(96)04112-2] [PMID: 8625281]
[32]
Geserick, P.; Wang, J.; Schilling, R.; Horn, S.; Harris, P.A.; Bertin, J.; Gough, P.J.; Feoktistova, M.; Leverkus, M. Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death Dis., 2015, 6(9), e1884-e1884.
[http://dx.doi.org/10.1038/cddis.2015.240] [PMID: 26355347]
[33]
Nishitoh, H. CHOP is a multifunctional transcription factor in the ER stress response. J. Biochem., 2012, 151(3), 217-219.
[http://dx.doi.org/10.1093/jb/mvr143] [PMID: 22210905]
[34]
Oberst, A. Death in the fast lane: what’s next for necroptosis? FEBS J., 2016, 283(14), 2616-2625.
[http://dx.doi.org/10.1111/febs.13520] [PMID: 26395133]
[35]
Shahsavari, Z.; Karami-Tehrani, F.; Salami, S. Targeting cell necroptosis and apoptosis induced by shikonin via receptor interacting protein kinases in estrogen receptor positive breast cancer cell line, MCF-7. Anticancer. Agents Med. Chem., 2018, 18(2), 245-254.
[http://dx.doi.org/10.2174/1871520617666170919164055] [PMID: 28933271]
[36]
Xu, Q.; Mariman, E.C.M.; Blaak, E.E.; Jocken, J.W.E. Pharmacological agents targeting autophagy and their effects on lipolysis in human adipocytes. Mol. Cell. Endocrinol., 2022, 544, 111555.
[http://dx.doi.org/10.1016/j.mce.2022.111555] [PMID: 35031432]
[37]
Kosic, M.; Paunovic, V.; Ristic, B.; Mircic, A.; Bosnjak, M.; Stevanovic, D.; Kravic-Stevovic, T.; Trajkovic, V.; Harhaji-Trajkovic, L. 3-Methyladenine prevents energy stress-induced necrotic death of melanoma cells through autophagy-independent mechanisms. J. Pharmacol. Sci., 2021, 147(1), 156-167.
[http://dx.doi.org/10.1016/j.jphs.2021.06.003] [PMID: 34294367]
[38]
Liu, Y.; Kang, X.; Niu, G.; He, S.; Zhang, T.; Bai, Y.; Li, Y.; Hao, H.; Chen, C.; Shou, Z.; Li, B. Shikonin induces apoptosis and prosurvival autophagy in human melanoma A375 cells via ROS-mediated ER stress and p38 pathways. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 626-635.
[http://dx.doi.org/10.1080/21691401.2019.1575229] [PMID: 30873870]
[39]
Wang, A.; Liu, J.; Yang, Y.; Chen, Z.; Gao, C.; Wang, Z.; Fu, C.; Zou, L.; Wang, S. Shikonin promotes ubiquitination and degradation of cIAP1/2-mediated apoptosis and necrosis in triple negative breast cancer cells. Chin. Med., 2021, 16(1), 16.
[http://dx.doi.org/10.1186/s13020-021-00426-1] [PMID: 33526051]
[40]
García-Hevia, L.; Valiente, R.; Martín-Rodríguez, R.; Renero-Lecuna, C.; González, J.; Rodríguez-Fernández, L.; Aguado, F.; Villegas, J.C.; Fanarraga, M.L. Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis. Nanoscale, 2016, 8(21), 10963-10973.
[http://dx.doi.org/10.1039/C6NR00391E] [PMID: 27228212]
[41]
Guo, C.; He, J.; Song, X.; Tan, L.; Wang, M.; Jiang, P.; Li, Y.; Cao, Z.; Peng, C. Pharmacological properties and derivatives of shikonin—A review in recent years. Pharmacol. Res., 2019, 149, 104463.
[http://dx.doi.org/10.1016/j.phrs.2019.104463] [PMID: 31553936]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy