Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Mini-Review Article

An Updated Review on the Chemistry, Biological Characteristics and Analytical Techniques of Dapagliflozin

Author(s): Ujwal Chaudhari, Jagdish K. Sahu* and Payal R. Dande

Volume 10, Issue 4, 2023

Published on: 09 August, 2023

Page: [283 - 296] Pages: 14

DOI: 10.2174/2213337210666230627153351

Price: $65

Abstract

Background: Globally, type 2 diabetes mellitus (T2DM) prevalence is increasing. A patient must have lifetime therapy for diabetes to manage it and prevent any complications. There are many different medications that can be used to treat Type 2 diabetes. Still, almost all of them concentrate on the declining insulin sensitivity and secretion that are associated with the onset of the illness.

Methods: There is growing interest in the development of innovative anti-diabetic medications that are not insulin-reliant because treatments with such insulin-dependent mechanisms of action usually lose their effectiveness over time. One such technique is the inhibition of renal glucose reuptake.

Results: Dapagliflozin, the first line of selective sodium-glucose cotransporter 2 inhibitors that reduce renal glucose reabsorption, is currently being developed as a therapy for Type 2 diabetes. Numerous analytical techniques have been developed for its detection, measurement, and regular quality control procedures.

Conclusion: This review deliberates a thorough discussion on the chemistry of Dapagliflozin, all of its pharmacological actions with analytical and bioanalytical analyses, and more information on the clinical trials.

Graphical Abstract

[1]
Kasichayanula S, Liu X, LaCreta F, Griffen SC, Boulton DW. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet 2014; 53(1): 17-27.
[http://dx.doi.org/10.1007/s40262-013-0104-3] [PMID: 24105299]
[2]
Ganorkar SB, Sharma SS, Patil MR, Bobade PS, Dhote AM, Shirkhedkar AA. Pharmaceutical analytical profile for novel SGL-2 inhibitor. Dapagliflozin Crit Rev Anal Chem 2020; 51(8): 1-13.
[http://dx.doi.org/10.1080/10408347.2020.1777524] [PMID: 32544345]
[3]
Marsenic O. Glucose control by the kidney: An emerging target in diabetes. Am J Kidney Dis 2009; 53(5): 875-83.
[http://dx.doi.org/10.1053/j.ajkd.2008.12.031] [PMID: 19324482]
[4]
Nakamura Y, Nagai Y, Terashima Y, et al. Better response to the SGLT2 inhibitor dapagliflozin in young adults with type 2 diabetes. Expert Opin Pharmacother 2015; 16(17): 2553-9.
[http://dx.doi.org/10.1517/14656566.2015.1101450] [PMID: 26479189]
[5]
Tsai AG, Bessesen DH. Annals of internal medicine. Ann Intern Med 2019; 170(5): ITC33-48.
[http://dx.doi.org/10.7326/AITC201903050] [PMID: 30831593]
[6]
Sujanani SM, Elfishawi MM, Zarghamravanbaksh P, Castillo FJC, Reich DM. Dapagliflozin-induced acute pancreatitis: A case report and review of literature. Case Rep Endocrinol 2020; 2020: 1-4.
[http://dx.doi.org/10.1155/2020/6724504] [PMID: 32123591]
[7]
Marine n–3 fatty acids and vitamin D supplementation and primary prevention. N Engl J Med 2019; 380(19): 1878-80.
[http://dx.doi.org/10.1056/NEJMc1902636]
[8]
Hasan A, Menon SN, Zerin F, Hasan R. Dapagliflozin induces vasodilation in resistance-size mesenteric arteries by stimulating smooth muscle cell KV7 ion channels. Heliyon 2022; 8(5): e09503.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09503] [PMID: 35647331]
[9]
Haider K, Pathak A, Rohilla A, Haider MR, Ahmad K, Yar MS. Synthetic strategy and SAR studies of C-glucoside heteroaryls as SGLT2 inhibitor: A review. Eur J Med Chem 2019; 184: 111773.
[http://dx.doi.org/10.1016/j.ejmech.2019.111773] [PMID: 31630053]
[10]
Abu-Zaid A. A systematic review and dose-response meta-analysis on the efficacy of dapagliflozin in patients with type 1 diabetes mellitus. Pharmacol Res 2021; 165: 105456.
[http://dx.doi.org/10.1016/j.phrs.2021.105456]
[11]
McDermott J, Tennyson C, Bell-McClure E. Sodium–glucose cotransporter-2 inhibitors for heart failure: The new kid on the block. J Nurse Pract 2021; 17(6): 652-6.
[http://dx.doi.org/10.1016/j.nurpra.2021.02.008]
[12]
Pathak S, Mishra P. A review on analytical methods of dapagliflozin: An update. Int J Pharm Qual Assur 2020; 11(3): 355-60.
[http://dx.doi.org/10.25258/ijpqa.11.3.9]
[13]
Komoroski B, Vachharajani N, Boulton D, et al. Dapagliflozin, a novel SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin Pharmacol Ther 2009; 85(5): 520-6.
[http://dx.doi.org/10.1038/clpt.2008.251] [PMID: 19129748]
[14]
Boulton DW, Kasichayanula S, Keung CFA, et al. Simultaneous oral therapeutic and intravenous 14 C-microdoses to determine the absolute oral bioavailability of saxagliptin and dapagliflozin. Br J Clin Pharmacol 2013; 75(3): 763-8.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04391.x] [PMID: 22823746]
[15]
Balkanski S. Dapagliflozin – structure, synthesis, and new indications. Pharmacia 2021; 68(3): 591-6.
[http://dx.doi.org/10.3897/pharmacia.68.e70626]
[16]
Li Z, Xu X, Deng L, et al. Design, synthesis and biological evaluation of nitric oxide releasing derivatives of dapagliflozin as potential anti-diabetic and anti-thrombotic agents. Bioorg Med Chem 2018; 26(14): 3947-52.
[http://dx.doi.org/10.1016/j.bmc.2018.06.017] [PMID: 29954682]
[17]
Mukkamala R, Kumar R, Banerjee SK, Aidhen IS. Synthesis of Benzyl C -analogues of dapagliflozin as potential SGLT2 inhibitors. Eur J Org Chem 2020; 2020(12): 1828-39.
[http://dx.doi.org/10.1002/ejoc.202000025]
[18]
Yu J, Cao Y, Yu H, Wang J. A concise and efficient synthesis of Dapagliflozin. Org Process Res Dev 2019; 23(7): 1458-61.
[http://dx.doi.org/10.1021/acs.oprd.9b00141]
[19]
Hu L, Zou P, Wei W, Yuan XM, Qiu XL, Gou SH. Facile and green synthesis of Dapagliflozin. Synth Commun 2019; 49(23): 3373-9.
[http://dx.doi.org/10.1080/00397911.2019.1666283]
[20]
Komoroski B, Vachharajani N, Feng Y, Li L, Kornhauser D, Pfister M. Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus. Clin Pharmacol Ther 2009; 85(5): 513-9.
[http://dx.doi.org/10.1038/clpt.2008.250] [PMID: 19129749]
[21]
Filippatos TD, Liberopoulos EN, Elisaf MS. Dapagliflozin in patients with type 2 diabetes mellitus. Ther Adv Endocrinol Metab 2015; 6(1): 29-41.
[http://dx.doi.org/10.1177/2042018814558243] [PMID: 25678954]
[22]
Kasichayanula S, Chang M, Hasegawa M, et al. Pharmacokinetics and pharmacodynamics of dapagliflozin, a novel selective inhibitor of sodium-glucose co-transporter type 2, in Japanese subjects without and with type 2 diabetes mellitus. Diabetes Obes Metab 2011; 13(4): 357-65.
[http://dx.doi.org/10.1111/j.1463-1326.2011.01359.x] [PMID: 21226818]
[23]
Kurosaki E, Ogasawara H. Ipragliflozin and other sodium–glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: Preclinical and clinical data. Pharmacol Ther 2013; 139(1): 51-9.
[http://dx.doi.org/10.1016/j.pharmthera.2013.04.003] [PMID: 23563279]
[24]
Narendran P, Saeed M. Dapagliflozin for the treatment of type 2 diabetes: A review of the literature. Drug Des Devel Ther 2014; 8: 2493-505.
[http://dx.doi.org/10.2147/DDDT.S50963] [PMID: 25525338]
[25]
Kaur P, Behera BS, Singh S, Munshi A. The pharmacological profile of SGLT2 inhibitors: Focus on mechanistic aspects and pharmacogenomics. Eur J Pharmacol 2021; 904(January): 174169.
[http://dx.doi.org/10.1016/j.ejphar.2021.174169] [PMID: 33984301]
[26]
Hinnen D. Glucuretic effects and renal safety of dapagliflozin in patients with type 2 diabetes. Ther Adv Endocrinol Metab 2015; 6(3): 92-102.
[http://dx.doi.org/10.1177/2042018815575273] [PMID: 26137213]
[27]
Kasichayanula S, Liu X, Zhang W, et al. Effect of a high-fat meal on the pharmacokinetics of dapagliflozin, a selective SGLT2 inhibitor, in healthy subjects. Diabetes Obes Metab 2011; 13(8): 770-3.
[http://dx.doi.org/10.1111/j.1463-1326.2011.01397.x] [PMID: 21435141]
[28]
Gerich JE, Bastien A. Development of the sodium-glucose co-transporter 2 inhibitor dapagliflozin for the treatment of patients with Type 2 diabetes mellitus. Expert Rev Clin Pharmacol 2011; 4(6): 669-83.
[http://dx.doi.org/10.1586/ecp.11.54] [PMID: 22111852]
[29]
Obermeier M, Yao M, Khanna A, et al. In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans. Drug Metab Dispos 2010; 38(3): 405-14.
[http://dx.doi.org/10.1124/dmd.109.029165] [PMID: 19996149]
[30]
Lautre C, Sharma S, Sahu JK. Chemistry, biological properties and analytical methods of Levonadifloxacin: A review. Crit Rev Anal Chem 2022; 52(5): 1069-77.
[http://dx.doi.org/10.1080/10408347.2020.1855412] [PMID: 33307757]
[31]
Uslu B, Lingeman H, Ozkan SA, Palit M, Dogan-Topal B. Analytical method development and validation of pharmaceutical analysis using chromatographic techniques. Chromatogr Res Int 2012; 2012: 1-1.
[http://dx.doi.org/10.1155/2012/948129]
[32]
Sharma S, Goyal S, Chauhan K. A review on analytical method development and validation. Int J Appl Pharma 2018; 10(6): 8-15.
[http://dx.doi.org/10.22159/ijap.2018v10i6.28279]
[33]
Jatto E, Okhamafe AO. An overview of pharmaceutical validation and process controls in drug development. Trop J Pharm Res 2002; 1(2): 115.
[http://dx.doi.org/10.4314/tjpr.v1i2.14592]
[34]
Mante GV, Gupta KR, Hemke AT. Estimation of Dapagliflozin from its tablet formulation by UV-spectrophotometry. Pharm Methods 2017; 8(2): 102-7.
[http://dx.doi.org/10.5530/phm.2017.8.16]
[35]
Debatae J, Kumar S. A new RP-HPLC method development and validation of Dapagliflozin in bulk and tablet dosage form. Int J Drug Develop Res 2017; 9(2): 48-51.
[36]
Anne-Françoise A, Gu H, Magnier R. Validated LC–MS/MS methods for the determination of dapagliflozin, a sodium-glucose co-transporter 2 inhibitor in normal and ZDF rat plasma. Bioanalysis 2010; 2(12): 2001-9.
[37]
Ameeduzzafar , El-Bagory I, Alruwaili NK, et al. Quality by design (QbD) based development and validation of bioanalytical RP-HPLC method for dapagliflozin: Forced degradation and preclinical pharmacokinetic study. J Liq Chromatogr Relat Technol 2020; 43(1-2): 53-65.
[http://dx.doi.org/10.1080/10826076.2019.1667820]
[38]
Suma BV. R, D.; Shenoy, P. A new high performance thin layer chromatographic method development and validation of Dapagliflozin in bulk and tablet dosage form. Int J Pharm Pharm Sci 2019; 11(8): 58-63.
[http://dx.doi.org/10.22159/ijpps.2019v11i8.34339]
[39]
Sravanthi S, Zarin N, Shruthi B, Ramya Krishna D, Manjeera A. A new analytical method development and validation for the estimation of Dapagliflozin by Using reverse phase-high performance liquid chromatography 2021. Available From: www.ijarmps.org
[40]
Manasa S. Development and validation of stability-indicating RP-HPLC method for determination of Dapagliflozin. J Adv Pharm Educ Res 2014; 4(3): 350-3.
[41]
Nassif ME, Kosiborod M. Effects of sodium glucose cotransporter type 2 inhibitors on heart failure. Diabetes Obes Metab 2019; 21(S2) (Suppl. 2): 19-23.
[http://dx.doi.org/10.1111/dom.13678] [PMID: 31081589]
[42]
Nassif ME, Windsor SL, Borlaug BA, et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: A multicenter randomized trial. Nat Med 2021; 27(11): 1954-60.
[http://dx.doi.org/10.1038/s41591-021-01536-x] [PMID: 34711976]
[43]
Gasparyan SB, Buenconsejo J, Kowalewski EK, et al. Design and analysis of studies based on hierarchical composite endpoints: Insights from the DARE-19 Trial. Ther Innov Regul Sci 2022; 56(5): 785-94.
[http://dx.doi.org/10.1007/s43441-022-00420-1] [PMID: 35699910]
[44]
Kamp YJMO, de Ligt M, Dautzenberg B, et al. Effects of the SGLT2 inhibitor dapagliflozin on energy metabolism in patients with Type 2 Diabetes: A randomized, double-blind crossover trial. Diabetes Care 2022; 45(5): 1297.
[http://dx.doi.org/10.2337/dc22-er05a] [PMID: 35239964]
[45]
Fioretto P, Del Prato S, Buse JB, et al. Efficacy and safety of dapagliflozin in patients with type 2 diabetes and moderate renal impairment (chronic kidney disease stage 3A): The DERIVE Study. Diabetes Obes Metab 2018; 20(11): 2532-40.
[http://dx.doi.org/10.1111/dom.13413] [PMID: 29888547]
[46]
Ang L, Kidwell KM, Dillon B, et al. Dapagliflozin and measures of cardiovascular autonomic function in patients with type 2 diabetes (T2D). J Diabetes Complications 2021; 35(8): 107949.
[http://dx.doi.org/10.1016/j.jdiacomp.2021.107949] [PMID: 34024686]
[47]
Latva-Rasku A, Honka MJ, Kullberg J, et al. The SGLT2 inhibitor dapagliflozin reduces liver fat but does not affect tissue insulin sensitivity: A randomized, double-blind, placebo-controlled study with 8-week treatment in type 2 diabetes patients. Diabetes Care 2019; 42(5): 931-7.
[http://dx.doi.org/10.2337/dc18-1569] [PMID: 30885955]
[48]
NCBI. WWW Error Blocked Diagnostic. 2022. Available From: https://clinicaltrials.gov/ct2/results?term=dapagliflozin

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy