Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Role of Alpha-7-Nicotinic Acetylcholine Receptor in Alzheimer's Disease

Author(s): Sushma Singh, Neetu Agrawal and Ahsas Goyal*

Volume 23, Issue 3, 2024

Published on: 20 July, 2023

Page: [384 - 394] Pages: 11

DOI: 10.2174/1871527322666230627123426

Price: $65

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions worldwide. One of the leading hypotheses for the underlying cause of AD is a reduction in nicotinic receptor levels in the brain. Among the nicotinic receptors, the alpha-7-nicotinic acetylcholine receptor (α7nAChR) has received particular attention due to its involvement in cognitive function.α7nAChR is a ligand-gated ion channel that is primarily found in the hippocampus and prefrontal cortex, areas of the brain responsible for learning, memory, and attention. Studies have shown that α7nAChR dysfunction is a key contributor to the pathogenesis of AD. The receptor is involved in regulating amyloidbeta (Aβ) production, a hallmark of AD pathology. Many drugs have been investigated as α7nAChR agonists or allosteric modulators to improve cognitive deficits in AD. Clinical studies have shown promising results with α7nAChR agonists, including improved memory and cognitive function. Although several studies have shown the significance of the α7 nAChR in AD, little is known about its function in AD pathogenesis. As a result, in this review, we have outlined the basic information of the α7 nAChR's structure, functions, cellular responses to its activation, and its role in AD's pathogenesis.

Graphical Abstract

[1]
Sharma K, Pradhan S, Duffy LK, Yeasmin S, Bhattarai N, Schulte MK. Role of receptors in relation to plaques and tangles in alzheimer’s disease pathology. Int J Mol Sci 2021; 22(23): 12987.
[http://dx.doi.org/10.3390/ijms222312987] [PMID: 34884789]
[2]
Gąsiorowski K, Brokos JB, Sochocka M, et al. Current and near-future treatment of alzheimer’s disease. Curr Neuropharmacol 2022; 20(6): 1144-57.
[http://dx.doi.org/10.2174/1570159X19666211202124239] [PMID: 34856906]
[3]
Atanasova M, Dimitrov I, Ivanov S, et al. Virtual screening and hit selection of natural compounds as acetylcholinesterase inhibitors. Molecules 2022; 27(10): 3139.
[http://dx.doi.org/10.3390/molecules27103139] [PMID: 35630613]
[4]
Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30(4): 572-80.
[http://dx.doi.org/10.1002/ana.410300410] [PMID: 1789684]
[5]
DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: Correlation with cognitive severity. Ann Neurol 1990; 27(5): 457-64.
[http://dx.doi.org/10.1002/ana.410270502] [PMID: 2360787]
[6]
Coyle JT, Price DL, DeLong MR. Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science 1983; 219(4589): 1184-90.
[7]
Geula C, Mesulam MM. Cortical cholinergic fibers in aging and Alzheimer’s disease: A morphometric study. Neuroscience 1989; 33(3): 469-81.
[http://dx.doi.org/10.1016/0306-4522(89)90399-0] [PMID: 2636703]
[8]
Ahmed T, Zahid S, Mahboob A, Farhat SM. Cholinergic system and post-translational modifications: An insight on the role in alzheimer’s disease. Curr Neuropharmacol 2017; 15(4): 480-94.
[http://dx.doi.org/10.2174/1570159X14666160325121145] [PMID: 27012953]
[9]
Hampel H, Toschi N, Babiloni C, et al. Revolution of alzheimer precision neurology. Passageway of systems biology and neurophysiology. J Alzheimers Dis 2018; 64(s1): S47-S105.
[http://dx.doi.org/10.3233/JAD-179932] [PMID: 29562524]
[10]
Schneider LS, Mangialasche F, Andreasen N, et al. Clinical trials and late-stage drug development for Alzheimer’s disease: An appraisal from 1984 to 2014. J Intern Med 2014; 275(3): 251-83.
[http://dx.doi.org/10.1111/joim.12191] [PMID: 24605808]
[11]
Musiek ES, Holtzman DM. Three dimensions of the amyloid hypothesis: Time, space and ‘wingmen’. Nat Neurosci 2015; 18(6): 800-6.
[http://dx.doi.org/10.1038/nn.4018] [PMID: 26007213]
[12]
Nordberg A. Nicotinic receptor abnormalities of Alzheimer’s disease: Therapeutic implications. Biol Psychiatry 2001; 49(3): 200-10.
[http://dx.doi.org/10.1016/S0006-3223(00)01125-2] [PMID: 11230871]
[13]
Birkett DP. Alzheimer’s disease and senile purpura. J Am Geriatr Soc 1991; 39(3): 319-9.
[http://dx.doi.org/10.1111/j.1532-5415.1991.tb01666.x] [PMID: 2005355]
[14]
Ghoneim MM, Mewaldt SP. Studies on human memory: The interactions of diazepam, scopolamine, and physostigmine. Psychopharmacology 1977; 52(1): 1-6.
[http://dx.doi.org/10.1007/BF00426592]
[15]
Petersen RC. Scopolamine induced learning failures in man. Psychopharmacology 1977; 52(3): 283-9.
[http://dx.doi.org/10.1007/BF00426713] [PMID: 406632]
[16]
Lombardo S, Maskos U. Role of the nicotinic acetylcholine receptor in Alzheimer’s disease pathology and treatment. Neuropharmacology 2015; 96(Pt B): 255-62.
[http://dx.doi.org/ 10.1016/j.neuropharm.2014.11.018] [PMID: 25514383]
[17]
Shimohama S, Taniguchi T, Fujiwara M, Kameyama M. Changes in nicotinic and muscarinic cholinergic receptors in Alzheimer-type dementia. J Neurochem 1986; 46(1): 288-93.
[http://dx.doi.org/10.1111/j.1471-4159.1986.tb12960.x] [PMID: 3940287]
[18]
Takata K, Kimura H, Yanagisawa D, et al. Nicotinic acetylcholine receptors and microglia as therapeutic and imaging targets in alzheimer’s Disease. Molecules 2022; 27(9): 2780.
[http://dx.doi.org/10.3390/molecules27092780] [PMID: 35566132]
[19]
Langley JN. On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J Physiol 1905; 33(4-5): 374-413.
[http://dx.doi.org/10.1113/jphysiol.1905.sp001128] [PMID: 16992819]
[20]
Sine SM, Engel AG. Recent advances in Cys-loop receptor structure and function. Nature 2006; 440(7083): 448-55.
[http://dx.doi.org/10.1038/nature04708] [PMID: 16554804]
[21]
Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol Rev 2009; 89(1): 73-120.
[http://dx.doi.org/10.1152/physrev.00015.2008] [PMID: 19126755]
[22]
Brunzell DH, McIntosh JM, Papke RL. Diverse strategies targeting α7 homomeric and α6β2* heteromeric nicotinic acetylcholine receptors for smoking cessation. Ann N Y Acad Sci 2014; 1327(1): n/a.
[http://dx.doi.org/10.1111/nyas.12421] [PMID: 24730978]
[23]
Liu W, Li MD. Insights into nicotinic receptor signaling in nicotine addiction: Implications for prevention and treatment. Curr Neuropharmacol 2018; 16(4): 350-70.
[http://dx.doi.org/10.2174/1570159X15666170801103009] [PMID: 28762314]
[24]
Dani JA. Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. Int Rev Neurobiol 2015; 124: 3-19.
[http://dx.doi.org/10.1016/bs.irn.2015.07.001] [PMID: 26472524]
[25]
Wilens TE, Decker MW. Neuronal nicotinic receptor agonists for the treatment of attention-deficit/hyperactivity disorder: Focus on cognition. Biochem Pharmacol 2007; 74(8): 1212-23.
[http://dx.doi.org/10.1016/j.bcp.2007.07.002] [PMID: 17689498]
[26]
Wang XL, Deng YX, Gao YM, et al. Activation of α7 nAChR by PNU-282987 improves synaptic and cognitive functions through restoring the expression of synaptic-associated proteins and the CaM-CaMKII-CREB signaling pathway. Aging 2020; 12(1): 543-70.
[http://dx.doi.org/10.18632/aging.102640] [PMID: 31905173]
[27]
Papke RL, Horenstein NA. Therapeutic Targeting of α 7 Nicotinic Acetylcholine Receptors. Pharmacol Rev 2021; 73(3): 1118-49.
[http://dx.doi.org/10.1124/pharmrev.120.000097] [PMID: 34301823]
[28]
Uteshev VV. α7 nicotinic ACh receptors as a ligand-gated source of Ca2+ ions: The search for a Ca2+ optimum. Adv Exp Med Biol 2012; 740: 603-38.
[http://dx.doi.org/10.1007/978-94-007-2888-2_27] [PMID: 22453962]
[29]
Xu ZQ, Zhang WJ, Su DF, Zhang GQ, Miao CY. Cellular responses and functions of α7 nicotinic acetylcholine receptor activation in the brain: A narrative review. Ann Transl Med 2021; 9(6): 509-9.
[http://dx.doi.org/10.21037/atm-21-273] [PMID: 33850906]
[30]
Gu S, Matta JA, Lord B, et al. Brain α7 nicotinic acetylcholine receptor assembly requires NACHO. Neuron 2016; 89(5): 948-55.
[http://dx.doi.org/10.1016/j.neuron.2016.01.018] [PMID: 26875622]
[31]
Ma KG, Qian YH. Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer’s disease. Neuropeptides 2019; 73: 96-106.
[http://dx.doi.org/10.1016/j.npep.2018.12.003] [PMID: 30579679]
[32]
Orr-Urtreger A, Broide RS, Kasten MR, et al. Mice homozygous for the L250T mutation in the alpha7 nicotinic acetylcholine receptor show increased neuronal apoptosis and die within 1 day of birth. J Neurochem 2000; 74(5): 2154-66.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0742154.x] [PMID: 10800961]
[33]
Sharma G, Vijayaraghavan S. Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 2003; 38(6): 929-39.
[http://dx.doi.org/10.1016/S0896-6273(03)00322-2] [PMID: 12818178]
[34]
Fagen ZM, Mansvelder HD, Keath JR. McGEHEE DS. Short- and long-term modulation of synaptic inputs to brain reward areas by nicotine. Ann N Y Acad Sci 2003; 1003(1): 185-95.
[http://dx.doi.org/10.1196/annals.1300.011] [PMID: 14684446]
[35]
Cheng Q, Yakel JL. Activation of α7 nicotinic acetylcholine receptors increases intracellular cAMP levels via activation of AC1 in hippocampal neurons. Neuropharmacology 2015; 95: 405-14.
[http://dx.doi.org/10.1016/j.neuropharm.2015.04.016] [PMID: 25937212]
[36]
Söderman A, Mikkelsen JD, West MJ, Christensen DZ, Jensen MS. Activation of nicotinic α7 acetylcholine receptor enhances long term potentation in wild type mice but not in APPswe/] PS1ΔE9 mice. Neurosci Lett 2011; 487(3): 325-9.
[http://dx.doi.org/10.1016/j.neulet.2010.10.049] [PMID: 20974225]
[37]
Fehér Á, Juhász A, Rimanóczy Á, Csibri É, Kálmán J, Janka Z. Association between a genetic variant of the alpha-7 nicotinic acetylcholine receptor subunit and four types of dementia. Dement Geriatr Cogn Disord 2009; 28(1): 56-62.
[http://dx.doi.org/10.1159/000230036] [PMID: 19641318]
[38]
Chu LW, Ma ESK, Lam KKY, Chan MF, Lee DHS. Increased alpha 7 nicotinic acetylcholine receptor protein levels in Alzheimer’s disease patients. Dement Geriatr Cogn Disord 2005; 19(2-3): 106-12.
[http://dx.doi.org/10.1159/000082661] [PMID: 15591800]
[39]
Pohanka M. Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int J Mol Sci 2012; 13(2): 2219-38.
[http://dx.doi.org/10.3390/ijms13022219] [PMID: 22408449]
[40]
Shen H, Kihara T, Hongo H, et al. Neuroprotection by donepezil against glutamate excitotoxicity involves stimulation of α7 nicotinic receptors and internalization of NMDA receptors. Br J Pharmacol 2010; 161(1): 127-39.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00894.x] [PMID: 20718745]
[41]
Ng HJ, Whittemore ER, Tran MB, et al. Nootropic α7 nicotinic receptor allosteric modulator derived from GABA A receptor modulators. Proc Natl Acad Sci USA 2007; 104(19): 8059-64.
[http://dx.doi.org/10.1073/pnas.0701321104] [PMID: 17470817]
[42]
Foucault-Fruchard L, Antier D. Therapeutic potential of α7 nicotinic receptor agonists to regulate neuroinflammation in neurodegenerative diseases. Neural Regen Res 2017; 12(9): 1418-21.
[http://dx.doi.org/10.4103/1673-5374.215244] [PMID: 29089979]
[43]
Callahan PM, Hutchings EJ, Kille NJ, Chapman JM, Terry AV Jr. Positive allosteric modulator of α 7 nicotinic-acetylcholine receptors, PNU-120596 augments the effects of donepezil on learning and memory in aged rodents and non-human primates. Neuropharmacology 2013; 67: 201-12.
[http://dx.doi.org/10.1016/j.neuropharm.2012.10.019] [PMID: 23168113]
[44]
Lykhmus O, Kalashnyk O, Uspenska K, Skok M. Positive allosteric modulation of alpha7 nicotinic acetylcholine receptors transiently improves memory but aggravates inflammation in LPS-treated mice. Front Aging Neurosci 2020; 11: 359.
[http://dx.doi.org/10.3389/fnagi.2019.00359] [PMID: 31998114]
[45]
Li H, Gao J, Chang Y, et al. JWX-A0108, a positive allosteric modulator of α7 nAChR, attenuates cognitive deficits in APP/PS1 mice by suppressing NF-κB-mediated inflammation. Int Immunopharmacol 2021; 96: 107726.
[http://dx.doi.org/10.1016/j.intimp.2021.107726] [PMID: 33975230]
[46]
Potasiewicz A, Krawczyk M, Gzielo K, Popik P, Nikiforuk A. Positive allosteric modulators of alpha 7 nicotinic acetylcholine receptors enhance procognitive effects of conventional anti-Alzheimer drugs in scopolamine-treated rats. Behav Brain Res 2020; 385: 112547.
[http://dx.doi.org/10.1016/j.bbr.2020.112547] [PMID: 32087183]
[47]
Singh NK, Garabadu D. Alpha7 nicotinic acetylcholine receptor down regulation impairs mitochondrial function in streptozotocin-induced sporadic alzheimer’s disease model in rats. Indian Journal of Pharmaceutical Education and Research 2021; 55(1): 153-63.
[http://dx.doi.org/10.5530/ijper.55.1.17]
[48]
Akaike A, Tamura Y, Yokota T, Shimohama S, Kimura J. Nicotine-induced protection of cultured cortical neurons againstN-methyl-D-aspartate receptor-mediated glutamate cytotoxicity. Brain Res 1994; 644(2): 181-7.
[http://dx.doi.org/10.1016/0006-8993(94)91678-0] [PMID: 7519524]
[49]
Barnes CA, Meltzer J, Houston F, Orr G, McGann K, Wenk GL. Chronic treatment of old rats with donepezil or galantamine: Effects on memory, hippocampal plasticity and nicotinic receptors. Neuroscience 2000; 99(1): 17-23.
[http://dx.doi.org/10.1016/S0306-4522(00)00180-9] [PMID: 10924948]
[50]
Medeiros R, Castello NA, Cheng D, et al. α7 Nicotinic receptor agonist enhances cognition in aged 3xTg-AD mice with robust plaques and tangles. Am J Pathol 2014; 184(2): 520-9.
[http://dx.doi.org/10.1016/j.ajpath.2013.10.010] [PMID: 24269557]
[51]
Boess FG, De Vry J, Erb C, et al. The novel alpha7 nicotinic acetylcholine receptor agonist N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-7-[2-(methoxy)phenyl]-1-benzofuran-2-carboxamide improves working and recognition memory in rodents. J Pharmacol Exp Ther 2007; 321(2): 716-25.
[http://dx.doi.org/10.1124/jpet.106.118976] [PMID: 17308038]
[52]
van Kampen M, Selbach K, Schneider R, Schiegel E, Boess F, Schreiber RAR-R. 17779 improves social recognition in rats by activation of nicotinic α7 receptors. Psychopharmacology 2004; 172(4): 375-83.
[http://dx.doi.org/10.1007/s00213-003-1668-7] [PMID: 14727003]
[53]
Sadigh-Eteghad S, Talebi M, Mahmoudi J, Babri S, Shanehbandi D. Selective activation of α7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ25-35-mediated cognitive deficits in mice. Neuroscience 2015; 298: 81-93.
[http://dx.doi.org/10.1016/j.neuroscience.2015.04.017] [PMID: 25881725]
[54]
Mohammadi S, Mahmoudi J, Farajdokht F, et al. Polymorphisms of nicotinic acetylcholine receptors in Alzheimer’s disease: A systematic review and data analysis. Egypt J Med Hum Genet 2022; 23(1): 144.
[http://dx.doi.org/10.1186/s43042-022-00357-y]
[55]
Williams DK, Wang J, Papke RL. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: Advantages and limitations. Biochem Pharmacol 2011; 82(8): 915-30.
[http://dx.doi.org/10.1016/j.bcp.2011.05.001] [PMID: 21575610]
[56]
Nikiforuk A, Kos T, Potasiewicz A, Popik P. Positive allosteric modulation of alpha 7 nicotinic acetylcholine receptors enhances recognition memory and cognitive flexibility in rats. Eur Neuropsychopharmacol 2015; 25(8): 1300-13.
[http://dx.doi.org/10.1016/j.euroneuro.2015.04.018] [PMID: 26003081]
[57]
Hurst RS, Hajós M, Raggenbass M, et al. A novel positive allosteric modulator of the alpha7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization. J Neurosci 2005; 25(17): 4396-405.
[http://dx.doi.org/10.1523/JNEUROSCI.5269-04.2005] [PMID: 15858066]
[58]
Amar M, Thomas P, Johnson C, Lunt GG, Wonnacott S. Agonist pharmacology of the neuronal α7 nicotinic receptor expressed in Xenopus oocytes. FEBS Lett 1993; 327(3): 284-8.
[http://dx.doi.org/10.1016/0014-5793(93)81005-K] [PMID: 8348955]
[59]
Stevens KE, Kem WR, Mahnir VM, Freedman R. Selective α 7 -nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacology 1998; 136(4): 320-7.
[http://dx.doi.org/10.1007/s002130050573] [PMID: 9600576]
[60]
Yang Y, Paspalas CD, Jin LE, Picciotto MR, Arnsten AFT, Wang M. Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Natl Acad Sci USA 2013; 110(29): 12078-83.
[http://dx.doi.org/10.1073/pnas.1307849110] [PMID: 23818597]
[61]
Dajas-Bailador FA, Lima PA, Wonnacott S. The α7 nicotinic acetylcholine receptor subtype mediates nicotine protection against NMDA excitotoxicity in primary hippocampal cultures through a Ca2+ dependent mechanism. Neuropharmacology 2000; 39(13): 2799-807.
[http://dx.doi.org/10.1016/S0028-3908(00)00127-1] [PMID: 11044750]
[62]
Nikiforuk A, Potasiewicz A, Kos T, Popik P. The combination of memantine and galantamine improves cognition in rats: The synergistic role of the α7 nicotinic acetylcholine and NMDA receptors. Behav Brain Res 2016; 313: 214-8.
[http://dx.doi.org/10.1016/j.bbr.2016.07.023] [PMID: 27435422]
[63]
McLean SL, Idris NF, Grayson B, et al. PNU-120596, a positive allosteric modulator of α7 nicotinic acetylcholine receptors, reverses a sub-chronic phencyclidine-induced cognitive deficit in the attentional set-shifting task in female rats. J Psychopharmacol 2012; 26(9): 1265-70.
[http://dx.doi.org/10.1177/0269881111431747] [PMID: 22182741]
[64]
Cao K, Dong YT, Xiang J, et al. The neuroprotective effects of SIRT1 in mice carrying the APP/PS1 double-transgenic mutation and in SH-SY5Y cells over-expressing human APP670/671 may involve elevated levels of α7 nicotinic acetylcholine receptors. Aging (Albany NY) 2020; 12(2): 1792-807.
[http://dx.doi.org/10.18632/aging.102713] [PMID: 32003755]
[65]
Inestrosa NC, Godoy JA, Vargas JY, et al. Nicotine prevents synaptic impairment induced by amyloid-β oligomers through α7-nicotinic acetylcholine receptor activation. Neuromolecular Med 2013; 15(3): 549-69.
[http://dx.doi.org/10.1007/s12017-013-8242-1] [PMID: 23842742]
[66]
Shaw S, Bencherif M, Marrero MB. Janus kinase 2, an early target of alpha 7 nicotinic acetylcholine receptor-mediated neuroprotection against Abeta-(1-42) amyloid. J Biol Chem 2002; 277(47): 44920-4.
[http://dx.doi.org/10.1074/jbc.M204610200] [PMID: 12244045]
[67]
Prickaerts J, Van Goethem NP, Chesworth R, et al. Neuropharmacology EVP-6124, a novel and selective a 7 nicotinic acetylcholine receptor partial agonist, improves memory performance by potentiating the acetylcholine response of a 7 nicotinic acetylcholine receptors. Neuropharmacology 2012; 62: 1099-110.
[http://dx.doi.org/10.1016/j.neuropharm.2011.10.024] [PMID: 22085888]
[68]
Rezvani AH, Kholdebarin E, Brucato FH, Callahan PM, Lowe DA, Levin ED. Effect of R3487/MEM3454, a novel nicotinic α7 receptor partial agonist and 5-HT3 antagonist on sustained attention in rats. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(2): 269-75.
[http://dx.doi.org/10.1016/j.pnpbp.2008.11.018] [PMID: 19110025]
[69]
Bitner RS, Bunnelle WH, Decker MW, et al. In vivo pharmacological characterization of a novel selective alpha7 neuronal nicotinic acetylcholine receptor agonist ABT-107: Preclinical considerations in Alzheimer’s disease. J Pharmacol Exp Ther 2010; 334(3): 875-86.
[http://dx.doi.org/10.1124/jpet.110.167213] [PMID: 20504913]
[70]
Lieberman JA, Dunbar G, Segreti AC, et al. A randomized exploratory trial of an α-7 nicotinic receptor agonist (TC-5619) for cognitive enhancement in schizophrenia. Neuropsychopharmacology 2013; 38(6): 968-75.
[http://dx.doi.org/10.1038/npp.2012.259] [PMID: 23303043]
[71]
Buchanan RW, Conley RR, Dickinson D, et al. Galantamine for the treatment of cognitive impairments in people with schizophrenia. Am J Psychiatry 2008; 165(1): 82-9.
[http://dx.doi.org/10.1176/appi.ajp.2007.07050724] [PMID: 17986678]
[72]
Preskorn SH, Gawryl M, Dgetluck N, Palfreyman M, Bauer LO, Hilt DC. Normalizing effects of EVP-6124, an α-7 nicotinic partial agonist, on event-related potentials and cognition: A proof of concept, randomized trial in patients with schizophrenia. J Psychiatr Pract 2014; 20(1): 12-24.
[http://dx.doi.org/10.1097/01.pra.0000442935.15833.c5] [PMID: 24419307]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy