Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Astragaloside IV Regulates Insulin Resistance and Inflammatory Response of Adipocytes via Modulating MIR-21/PTEN/PI3K/AKT Signaling

Author(s): Xuxi Guo, Taoqing Yin, Dongni Chen, Shuai Xu, Renqun Ye* and Yue Zhang*

Volume 23, Issue 12, 2023

Published on: 07 August, 2023

Page: [1538 - 1547] Pages: 10

DOI: 10.2174/1871530323666230627121700

Price: $65

Abstract

Background: The progression of Type 2 Diabetes Mellitus (T2DM) can lead to various complications. Compounds derived from natural products have been found to be effective in combatting T2DM. This study aimed to investigate the effects of Astragaloside IV (AS-IV) on insulin resistance and the inflammatory response of adipocytes. The study also aimed to determine the downstream signaling pathways involved.

Materials and Methods: The glucose consumption of adipocytes was assessed using a glucose assay kit. qRT-PCR, Western blot, and ELISA assays were used to measure mRNA and protein levels. The interaction between miR-21 and PTEN was assessed using a Dual-luciferase reporter assay.

Results: The results showed that AS-IV increased glucose consumption and the expression of GLUT-4 in adipocytes with insulin resistance in a concentration-dependent manner. However, ASIV decreased the protein levels of TNF-α and IL-6 in these cells. Additionally, AS-IV up-regulated miR-21 expression in adipocytes with insulin resistance in a concentration-dependent manner. Furthermore, miR-21 overexpression increased glucose consumption and GLUT-4 expression but decreased TNF-α and IL-6 protein levels in adipocytes. Conversely, miR-21 inhibition attenuated the AS-IV-induced increase in glucose consumption and GLUT-4 expression and the decrease in TNF- α and IL-6 protein levels in adipocytes. MiR-21 also inversely regulated PTEN in adipocytes, and PTEN overexpression had effects similar to miR-21 inhibition in AS-IV-treated adipocytes. Finally, AS-IV up-regulated p-PI3K and p-AKT protein expression in adipocytes, which was attenuated by miR-21 inhibition.

Conclusion: The study concluded that AS-IV attenuated insulin resistance and the inflammatory response in adipocytes. The mechanistic studies indicated that AS-IV modulated the miR- 21/PTEN/PI3K/AKT signaling in adipocytes to exert these effects.

Graphical Abstract

[1]
Fletcher, B.; Gulanick, M.; Lamendola, C. Risk factors for type 2 diabetes mellitus. J. Cardiovasc. Nurs., 2002, 16(2), 17-23.
[http://dx.doi.org/10.1097/00005082-200201000-00003] [PMID: 11800065]
[2]
Vijan, S. Type 2 Diabetes. Ann. Intern. Med., 2015, 162(5), ITC1-ITC16.
[http://dx.doi.org/10.7326/AITC201503030] [PMID: 25732301]
[3]
Henning, R.J. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol., 2018, 14(6), 491-509.
[http://dx.doi.org/10.2217/fca-2018-0045] [PMID: 30409037]
[4]
Laakso, M. Biomarkers for type 2 diabetes. Mol. Metab., 2019, 27(Suppl.), S139-S146.
[http://dx.doi.org/10.1016/j.molmet.2019.06.016] [PMID: 31500825]
[5]
Taylor, R. Type 2 Diabetes. Diabetes Care, 2013, 36(4), 1047-1055.
[http://dx.doi.org/10.2337/dc12-1805] [PMID: 23520370]
[6]
Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006, 444(7121), 840-846.
[http://dx.doi.org/10.1038/nature05482] [PMID: 17167471]
[7]
Jo, W.; Kim, M.; Oh, J.; Kim, C.S.; Park, C.; Yoon, S.; Lee, C.; Kim, S.; Nam, D.; Park, J. MicroRNA-29 ameliorates fibro-inflammation and insulin resistance in HIF1α-deficient obese adipose tissue by inhibiting endotrophin generation. Diabetes, 2022, 71(8), 1746-1762.
[http://dx.doi.org/10.2337/db21-0801]
[8]
Boushra, A.F.; Mahmoud, R.H.; Ayoub, S.E.; Mohammed, R.A.; Shamardl, H.A.; El Amin Ali, A.M. The potential therapeutic effect of orexin-treated versus orexin-untreated adipose tissue-derived mesenchymal stem cell therapy on insulin resistance in type 2 diabetic rats. J. Diabetes Res., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/9832212] [PMID: 35083338]
[9]
He, F.; Huang, Y.; Song, Z.; Zhou, H.J.; Zhang, H.; Perry, R.J.; Shulman, G.I.; Min, W. Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. J. Exp. Med., 2021, 218(3), e20201416.
[http://dx.doi.org/10.1084/jem.20201416] [PMID: 33315085]
[10]
Yu, Y.; Du, H.; Wei, S.; Feng, L.; Li, J.; Yao, F.; Zhang, M.; Hatch, G.M.; Chen, L. Adipocyte-derived exosomal MiR-27a induces insulin resistance in skeletal muscle through repression of PPARγ. Theranostics, 2018, 8(8), 2171-2188.
[http://dx.doi.org/10.7150/thno.22565] [PMID: 29721071]
[11]
Li, L.; Hou, X.; Xu, R.; Liu, C.; Tu, M. Research review on the pharmacological effects of astragaloside IV. Fundam. Clin. Pharmacol., 2017, 31(1), 17-36.
[http://dx.doi.org/10.1111/fcp.12232] [PMID: 27567103]
[12]
Zhou, L.; Zhang, R.; Yang, S.; Zhang, Y.; Shi, D. Astragaloside IV alleviates placental oxidative stress and inflammation in GDM mice. Endocr. Connect., 2020, 9(9), 939-945.
[http://dx.doi.org/10.1530/EC-20-0295] [PMID: 33006955]
[13]
Lin, Y.; Xu, Y.; Zheng, X.; Zhang, J.; Liu, J.; Wu, G.; Astragaloside, I.V. Astragaloside IV ameliorates streptozotocin induced pancreatic β-cell apoptosis and dysfunction through SIRT1/P53 and Akt/GSK3β/Nrf2 signaling pathways. Diabetes Metab. Syndr. Obes., 2022, 15, 131-140.
[http://dx.doi.org/10.2147/DMSO.S347650] [PMID: 35046684]
[14]
Fan, Y.; Fan, H.; Zhu, B.; Zhou, Y.; Liu, Q.; Li, P. Astragaloside IV protects against diabetic nephropathy via activating eNOS in streptozotocin diabetes-induced rats. BMC Complement. Altern. Med., 2019, 19(1), 355.
[http://dx.doi.org/10.1186/s12906-019-2728-9] [PMID: 31805910]
[15]
Wang, E.; Wang, L.; Ding, R.; Zhai, M.; Ge, R.; Zhou, P.; Wang, T.; Fang, H.; Wang, J.; Huang, J. Astragaloside IV acts through multi-scale mechanisms to effectively reduce diabetic nephropathy. Pharmacol. Res., 2020, 157, 104831.
[http://dx.doi.org/10.1016/j.phrs.2020.104831] [PMID: 32339782]
[16]
Zhang, Y.; Xu, G.; Huang, B.; Chen, D.; Ye, R.; Astragaloside, I.V. Astragaloside IV regulates insulin resistance and inflammatory response of adipocytes via modulating CTRP3 and PI3K/AKT signaling. Diabetes Ther., 2022, 13(11-12), 1823-1834.
[http://dx.doi.org/10.1007/s13300-022-01312-1] [PMID: 36103112]
[17]
Jiang, B.; Yang, Y.; Jin, H.; Shang, W.; Zhou, L.; Qian, L.; Chen, M. Astragaloside IV attenuates lipolysis and improves insulin resistance induced by TNF α in 3T3-L1 adipocytes. Phytother. Res., 2008, 22(11), 1434-1439.
[http://dx.doi.org/10.1002/ptr.2434] [PMID: 18972582]
[18]
DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Hu, F.B.; Kahn, C.R.; Raz, I.; Shulman, G.I.; Simonson, D.C.; Testa, M.A.; Weiss, R. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers, 2015, 1(1), 15019.
[http://dx.doi.org/10.1038/nrdp.2015.19] [PMID: 27189025]
[19]
Czech, M.P. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol. Metab., 2020, 34, 27-42.
[http://dx.doi.org/10.1016/j.molmet.2019.12.014] [PMID: 32180558]
[20]
Zhou, X.; Wang, L.L.; Tang, W.J.; Tang, B. Astragaloside IV inhibits protein tyrosine phosphatase 1B and improves insulin resistance in insulin-resistant HepG2 cells and triglyceride accumulation in oleic acid (OA)-treated HepG2 cells. J. Ethnopharmacol., 2021, 268, 113556.
[http://dx.doi.org/10.1016/j.jep.2020.113556] [PMID: 33157223]
[21]
Zhu, R.; Zheng, J.; Chen, L.; Gu, B.; Huang, S. Astragaloside IV facilitates glucose transport in C2C12 myotubes through the IRS1/AKT pathway and suppresses the palmitate-induced activation of the IKK/IκBα pathway. Int. J. Mol. Med., 2016, 37(6), 1697-1705.
[http://dx.doi.org/10.3892/ijmm.2016.2555] [PMID: 27082050]
[22]
Xu, M.; Xiao, S.; Sun, Y.; Ou-Yang, Y.; Zheng, X. Effects of astragaloside IV on pathogenesis of metabolic syndrome in vitro1. Acta Pharmacol. Sin., 2006, 27(2), 229-236.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00243.x] [PMID: 16412274]
[23]
Gui, D.; Huang, J.; Guo, Y.; Chen, J.; Chen, Y.; Xiao, W.; Liu, X.; Wang, N. Astragaloside IV ameliorates renal injury in streptozotocin-induced diabetic rats through inhibiting NF-κB-mediated inflammatory genes expression. Cytokine, 2013, 61(3), 970-977.
[http://dx.doi.org/10.1016/j.cyto.2013.01.008] [PMID: 23434274]
[24]
You, L.; Fang, Z.; Shen, G.; Wang, Q.; He, Y.; Ye, S.; Wang, L.; Hu, M.; Lin, Y.; Liu, M.; Jiang, A. Astragaloside IV prevents high glucose induced cell apoptosis and inflammatory reactions through inhibition of the JNK pathway in human umbilical vein endothelial cells. Mol. Med. Rep., 2019, 19(3), 1603-1612.
[http://dx.doi.org/10.3892/mmr.2019.9812] [PMID: 30628687]
[25]
Shi, H.; Zhou, P.; Gao, G.; Liu, P.; Wang, S.; Song, R.; Zou, Y.; Yin, G.; Wang, L. Astragaloside IV prevents acute myocardial infarction by inhibiting the TLR4/MyD88/NF‐κB signaling pathway. J. Food Biochem., 2021, 45(7), e13757.
[http://dx.doi.org/10.1111/jfbc.13757] [PMID: 34032295]
[26]
Feng, H.; Zhu, X.; Tang, Y.; Fu, S.; Kong, B.; Liu, X. Astragaloside IV ameliorates diabetic nephropathy in db/db mice by inhibiting NLRP3 inflammasome mediated inflammation. Int. J. Mol. Med., 2021, 48(2), 164.
[http://dx.doi.org/10.3892/ijmm.2021.4996] [PMID: 34278447]
[27]
Lee, M.S.; Kim, Y. Mulberry fruit extract ameliorates adipogenesis via increasing AMPK activity and downregulating microRNA-21/143 in 3T3-L1 Adipocytes. J. Med. Food, 2020, 23(3), 266-272.
[http://dx.doi.org/10.1089/jmf.2019.4654] [PMID: 32191574]
[28]
Kang, M.; Yan, L.M.; Zhang, W.Y.; Li, Y.M.; Tang, A.Z.; Ou, H.S. Role of microRNA-21 in regulating 3T3-L1 adipocyte differentiation and adiponectin expression. Mol. Biol. Rep., 2013, 40(8), 5027-5034.
[http://dx.doi.org/10.1007/s11033-013-2603-6] [PMID: 23793828]
[29]
Cao, L.; Yang, X.; Chen, Y.; Zhang, D.; Jiang, X.F.; Xue, P. Exosomal miR-21 regulates the TETs/PTENp1/PTEN pathway to promote hepatocellular carcinoma growth. Mol. Cancer, 2019, 18(1), 148.
[http://dx.doi.org/10.1186/s12943-019-1075-2] [PMID: 31656200]
[30]
Fu, X.; He, Y.; Wang, X.; Peng, D.; Chen, X.; Li, X.; Wang, Q. Overexpression of miR-21 in stem cells improves ovarian structure and function in rats with chemotherapy-induced ovarian damage by targeting PDCD4 and PTEN to inhibit granulosa cell apoptosis. Stem Cell Res. Ther., 2017, 8(1), 187.
[http://dx.doi.org/10.1186/s13287-017-0641-z] [PMID: 28807003]
[31]
Liu, H.Y.; Zhang, Y.Y.; Zhu, B.L.; Feng, F.Z.; Yan, H.; Zhang, H.Y.; Zhou, B. miR-21 regulates the proliferation and apoptosis of ovarian cancer cells through PTEN/PI3K/AKT. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(10), 4149-4155.
[PMID: 31173285]
[32]
Kirstein, A.S.; Kehr, S.; Nebe, M.; Hanschkow, M.; Barth, L.A.G.; Lorenz, J.; Penke, M.; Breitfeld, J.; Le Duc, D.; Landgraf, K.; Körner, A.; Kovacs, P.; Stadler, P.F.; Kiess, W.; Garten, A. PTEN regulates adipose progenitor cell growth, differentiation, and replicative aging. J. Biol. Chem., 2021, 297(2), 100968.
[http://dx.doi.org/10.1016/j.jbc.2021.100968] [PMID: 34273354]
[33]
Manna, P.; Jain, S.K. Hydrogen sulfide and L-cysteine increase phosphatidylinositol 3,4,5-trisphosphate (PIP3) and glucose utilization by inhibiting phosphatase and tensin homolog (PTEN) protein and activating phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (AKT)/protein kinase Cζ/λ (PKCζ/λ) in 3T3l1 adipocytes. J. Biol. Chem., 2011, 286(46), 39848-39859.
[http://dx.doi.org/10.1074/jbc.M111.270884] [PMID: 21953448]
[34]
Yang, L.; Dong, X.; Zhang, W. Astragaloside IV alleviates the brain damage induced by subarachnoid hemorrhage via PI3K/Akt signaling pathway. Neurosci. Lett., 2020, 735, 135227.
[http://dx.doi.org/10.1016/j.neulet.2020.135227] [PMID: 32619654]
[35]
Gong, P.; Xiao, X.; Wang, S.; Shi, F.; Liu, N.; Chen, X.; Yang, W.; Wang, L.; Chen, F. Hypoglycemic effect of astragaloside IV via modulating gut microbiota and regulating AMPK/SIRT1 and PI3K/AKT pathway. J. Ethnopharmacol., 2021, 281, 114558.
[http://dx.doi.org/10.1016/j.jep.2021.114558] [PMID: 34438030]
[36]
Chai, C.; Song, L.J.; Han, S.Y.; Li, X.Q.; Li, M. Retracted: Micro RNA ‐21 promotes glioma cell proliferation and inhibits senescence and apoptosis by targeting SPRY 1 via the PTEN/PI 3K/AKT signaling pathway. CNS Neurosci. Ther., 2018, 24(5), 369-380.
[http://dx.doi.org/10.1111/cns.12785] [PMID: 29316313]
[37]
Lin, F.; Yin, H.B.; Li, X.Y.; Zhu, G.M.; He, W.Y.; Gou, X. Bladder cancer cell secreted exosomal miR 21 activates the PI3K/AKT pathway in macrophages to promote cancer progression. Int. J. Oncol., 2020, 56(1), 151-164.
[PMID: 31814034]
[38]
Kahn, D.; Macias, E.; Zarini, S.; Garfield, A.; Zemski Berry, K.; MacLean, P.; Gerszten, R.E.; Libby, A.; Solt, C.; Schoen, J.; Bergman, B.C. Exploring visceral and subcutaneous adipose tissue secretomes in human obesity: Implications for metabolic disease. Endocrinology, 2022, 163(11), bqac140.
[http://dx.doi.org/10.1210/endocr/bqac140] [PMID: 36036084]
[39]
Morrison, S.; McGee, S.L. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages. Adipocyte, 2015, 4(4), 295-302.
[http://dx.doi.org/10.1080/21623945.2015.1040612] [PMID: 26451286]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy