Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

The Effect of PEGylation on Drugs’ Pharmacokinetic Parameters; from Absorption to Excretion

Author(s): Ali Khajeei, Salar Masoomzadeh, Tooba Gholikhani and Yousef Javadzadeh*

Volume 21, Issue 7, 2024

Published on: 12 July, 2023

Page: [978 - 992] Pages: 15

DOI: 10.2174/1567201820666230621124953

Price: $65

Abstract

Until the drugs enter humans life, they may face problems in transportation, drug delivery, and metabolism. These problems can cause reducing drug’s therapeutic effect and even increase its side effects. Together, these cases can reduce the patient's compliance with the treatment and complicate the treatment process. Much work has been done to solve or at least reduce these problems. For example, using different forms of a single drug molecule (like Citalopram and Escitalopram); slight changes in the drug’s molecule like Meperidine and α-Prodine, and using carriers (like Tigerase®). PEGylation is a recently presented method that can use for many targets. Poly Ethylene Glycol or PEG is a polymer that can attach to drugs by using different methods and resulting sustained release, controlled metabolism, targeted delivery, and other cases. Although they will not necessarily lead to an increase in the effect of the drug, they will lead to the improvement of the treatment process in certain ways. In this article, the team of authors has tried to collect and carefully review the best cases based on the PEGylation of drugs that can help the readers of this article.

« Previous
Graphical Abstract

[1]
D’souza, A.A.; Shegokar, R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv., 2016, 13(9), 1257-1275.
[http://dx.doi.org/10.1080/17425247.2016.1182485] [PMID: 27116988]
[2]
Abuchowski, A.; van Es, T.; Palczuk, N.C.; Davis, F.F. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem., 1977, 252(11), 3578-3581.
[http://dx.doi.org/10.1016/S0021-9258(17)40291-2] [PMID: 405385]
[3]
Yamaoka, T.; Tabata, Y.; Ikada, Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J. Pharm. Sci., 1994, 83(4), 601-606.
[http://dx.doi.org/10.1002/jps.2600830432] [PMID: 8046623]
[4]
Monfardini, C.; Schiavon, O.; Caliceti, P.; Morpurgo, M.; Harris, J.M.; Veronese, F.M. A branched monomethoxypoly(ethylene glycol) for protein modification. Bioconjug. Chem., 1995, 6(1), 62-69.
[http://dx.doi.org/10.1021/bc00031a006] [PMID: 7711105]
[5]
Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov., 2003, 2(3), 214-221.
[http://dx.doi.org/10.1038/nrd1033] [PMID: 12612647]
[6]
Israelachvili, J. The different faces of poly(ethylene glycol). Proc. Natl. Acad. Sci. USA, 1997, 94(16), 8378-8379.
[http://dx.doi.org/10.1073/pnas.94.16.8378] [PMID: 11607748]
[7]
Awad, N.S.; Paul, V.; Mahmoud, M.S.; Al Sawaftah, N.M.; Kawak, P.S.; Al Sayah, M.H.; Husseini, G.A. Effect of pegylation and targeting moieties on the ultrasound-mediated drug release from liposomes. ACS Biomater. Sci. Eng., 2020, 6(1), 48-57.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01301] [PMID: 33463192]
[8]
Haghiralsadat, F.; Amoabediny, G.; Helder, M.N.; Naderinezhad, S.; Sheikhha, M.H.; Forouzanfar, T.; Zandieh-doulabi, B. A comprehensive mathematical model of drug release kinetics from nano-liposomes, derived from optimization studies of cationic PEGylated liposomal doxorubicin formulations for drug-gene delivery. Artif. Cells Nanomed. Biotechnol., 2018, 46(1), 169-177.
[http://dx.doi.org/10.1080/21691401.2017.1304403] [PMID: 28376641]
[9]
Mishra, P.; Nayak, B.; Dey, R.K. PEGylation in anti-cancer therapy: An overview. Asian J. Pharm. Sci., 2016, 11(3), 337-348.
[http://dx.doi.org/10.1016/j.ajps.2015.08.011]
[10]
Ettinger, A.R. Pegaspargase (Oncaspar). J. Pediatr. Oncol. Nurs., 1995, 12(1), 46-48.
[http://dx.doi.org/10.1177/104345429501200110] [PMID: 7893462]
[11]
Abuchowski, A.; Kazo, G.M.; Verhoest, C.R., Jr; Van Es, T.; Kafkewitz, D.; Nucci, M.L.; Viau, A.T.; Davis, F.F. Cancer therapy with chemically modified enzymes. I. Antitumor properties of polyethylene glycol-asparaginase conjugates. Cancer Biochem. Biophys., 1984, 7(2), 175-186.
[PMID: 6467175]
[12]
Hershfield, M.S.; Buckley, R.H.; Greenberg, M.L.; Melton, A.L.; Schiff, R.; Hatem, C.; Kurtzberg, J.; Markert, M.L.; Kobayashi, R.H.; Kobayashi, A.L.; Abuchowski, A. Treatment of adenosine deaminase deficiency with polyethylene glycol-modified adenosine deaminase. N. Engl. J. Med., 1987, 316(10), 589-596.
[http://dx.doi.org/10.1056/NEJM198703053161005] [PMID: 3807953]
[13]
Li, W.; Zhan, P.; De Clercq, E.; Lou, H.; Liu, X. Current drug research on PEGylation with small molecular agents. Prog. Polym. Sci., 2013, 38(3-4), 421-444.
[http://dx.doi.org/10.1016/j.progpolymsci.2012.07.006]
[14]
Park, E.J.; Choi, J.; Lee, K.C.; Na, D.H. Emerging PEGylated non-biologic drugs. Expert Opin. Emerg. Drugs, 2019, 24(2), 107-119.
[http://dx.doi.org/10.1080/14728214.2019.1604684] [PMID: 30957581]
[15]
Asano, S.; Gavrilyuk, J.; Burton, D.R.; Barbas, C.F. III Preparation and activities of macromolecule conjugates of the CCR5 antagonist Maraviroc. ACS Med. Chem. Lett., 2014, 5(2), 133-137.
[http://dx.doi.org/10.1021/ml400370w] [PMID: 24563723]
[16]
Xiao, Q.; Bécar, N.A.; Brown, N.P.; Smith, M.S.; Stern, K.L.; Draper, S.R.E.; Thompson, K.P.; Price, J.L. Stapling of two PEGylated side chains increases the conformational stability of the WW domain via an entropic effect. Org. Biomol. Chem., 2018, 16(46), 8933-8939.
[http://dx.doi.org/10.1039/C8OB02535E] [PMID: 30444518]
[17]
Verma, P.; Dayal, S.; Jain, V.K.; Amrani, A. Alopecia universalis as a side effect of pegylated interferon α-ribavirin combination therapy for hepatitis C: A rare case report. J. Chemother., 2017, 29(6), 380-382.
[http://dx.doi.org/10.1080/1120009X.2016.1245235] [PMID: 27741937]
[18]
Knauf, M.J.; Bell, D.P.; Hirtzer, P.; Luo, Z.P.; Young, J.D.; Katre, N.V. Relationship of effective molecular size to systemic clearance in rats of recombinant interleukin-2 chemically modified with water-soluble polymers. J. Biol. Chem., 1988, 263(29), 15064-15070.
[http://dx.doi.org/10.1016/S0021-9258(18)68146-3] [PMID: 3049599]
[19]
Caliceti, P.; Veronese, F.M. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)–protein conjugates. Adv. Drug Deliv. Rev., 2003, 55(10), 1261-1277.
[http://dx.doi.org/10.1016/S0169-409X(03)00108-X] [PMID: 14499706]
[20]
Fu, M.; Zhuang, X.; Zhang, T.; Guan, Y.; Meng, Q.; Zhang, Y. PEGylated leuprolide with improved pharmacokinetic properties. Bioorg. Med. Chem., 2020, 28(4), 115306.
[http://dx.doi.org/10.1016/j.bmc.2020.115306] [PMID: 31926774]
[21]
Katre, N.V. The conjugation of proteins with polyethylene glycol and other polymers. Adv. Drug Deliv. Rev., 1993, 10(1), 91-114.
[http://dx.doi.org/10.1016/0169-409X(93)90005-O]
[22]
Zhou, J.Q.; He, T.; Wang, J.W. PEGylation of cytochrome c at the level of lysine residues mediated by a microbial transglutaminase. Biotechnol. Lett., 2016, 38(7), 1121-1129.
[http://dx.doi.org/10.1007/s10529-016-2083-6] [PMID: 27023356]
[23]
da Silva Freitas, D.; Mero, A.; Pasut, G. Chemical and enzymatic site specific PEGylation of hGH. Bioconjug. Chem., 2013, 24(3), 456-463.
[http://dx.doi.org/10.1021/bc300594y] [PMID: 23432141]
[24]
Gonzلlez-Valdez, J.; Cueto, L.F.; Benavides, J.; Rito-Palomares, M. Potential application of aqueous two-phase systems for the fractionation of RNase A and α-Lactalbumin from their PEGylated conjugates. J. Chem. Technol. Biotechnol., 2011, 86(1), 26-33.
[http://dx.doi.org/10.1002/jctb.2507]
[25]
Pasut, G.; Veronese, F.M. State of the art in PEGylation: The great versatility achieved after forty years of research. J. Control. Release, 2012, 161(2), 461-472.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.037] [PMID: 22094104]
[26]
Rajender Reddy, K.; Modi, M.W.; Pedder, S. Use of peginterferon alfa-2a (40 KD) (Pegasys®) for the treatment of hepatitis C. Adv. Drug Deliv. Rev., 2002, 54(4), 571-586.
[http://dx.doi.org/10.1016/S0169-409X(02)00028-5] [PMID: 12052715]
[27]
Foser, S.; Schacher, A.; Weyer, K.A.; Brugger, D.; Dietel, E.; Marti, S.; Schreitmüller, T. Isolation, structural characterization, and antiviral activity of positional isomers of monopegylated interferon α-2a (PEGASYS). Protein Expr. Purif., 2003, 30(1), 78-87.
[http://dx.doi.org/10.1016/S1046-5928(03)00055-X] [PMID: 12821324]
[28]
Grigoletto, A.; Mero, A.; Zanusso, I.; Schiavon, O.; Pasut, G. Chemical and Enzymatic Site Specific PEGylation of hGH: The Stability and in vivo Activity of PEG- N -Terminal-hGH and PEG-Gln141-hGH Conjugates. Macromol. Biosci., 2016, 16(1), 50-56.
[http://dx.doi.org/10.1002/mabi.201500282] [PMID: 26350165]
[29]
Luo, S.; Lu, X.; Liu, C.; Zhong, J.; Zhou, L.; Chen, T. Site specific PEGylation of β-lactoglobulin at glutamine residues and its influence on conformation and antigenicity. Food Res. Int., 2019, 123, 623-630.
[http://dx.doi.org/10.1016/j.foodres.2019.05.038] [PMID: 31285011]
[30]
Molineux, G. The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr. Pharm. Des., 2004, 10(11), 1235-1244.
[http://dx.doi.org/10.2174/1381612043452613] [PMID: 15078138]
[31]
Singh, M.; Salnikova, M. Novel approaches and strategies for biologics, vaccines and cancer therapies; Academic Press: Massachusetts, 2015.
[32]
Wang, Y.; Langley, R.J.; Tamshen, K.; Harms, J.; Middleditch, M.J.; Maynard, H.D.; Jamieson, S.M.F.; Perry, J.K. Enhanced bioactivity of a human GHR antagonist generated by solid-phase site-specific PEGylation. Biomacromolecules, 2021, 22(2), 299-308.
[http://dx.doi.org/10.1021/acs.biomac.0c01105] [PMID: 33295758]
[33]
Roberts, M.J.; Bentley, M.D.; Harris, J.M. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev., 2002, 54(4), 459-476.
[http://dx.doi.org/10.1016/S0169-409X(02)00022-4] [PMID: 12052709]
[34]
Veronese, F.M.; Caliceti, P.; Schiavon, O. Branched and linear Poly(Ethylene Glycol): Influence of the Polymer structure on enzymological, pharmacokinetic, and immunological properties of protein conjugates. J. Bioact. Compat. Polym., 1997, 12(3), 196-207.
[http://dx.doi.org/10.1177/088391159701200303]
[35]
Gokarn, Y.R.; McLean, M.; Laue, T.M. Effect of PEGylation on protein hydrodynamics. Mol. Pharm., 2012, 9(4), 762-773.
[http://dx.doi.org/10.1021/mp200470c] [PMID: 22353017]
[36]
Pfister, D.; Morbidelli, M. Process for protein PEGylation. J. Control. Release, 2014, 180, 134-149.
[http://dx.doi.org/10.1016/j.jconrel.2014.02.002] [PMID: 24531008]
[37]
Constantinou, A.; Chen, C.; Deonarain, M.P. Modulating the pharmacokinetics of therapeutic antibodies. Biotechnol. Lett., 2010, 32(5), 609-622.
[http://dx.doi.org/10.1007/s10529-010-0214-z] [PMID: 20131077]
[38]
Kim, J.; Kong, Y.P.; Niedzielski, S.M.; Singh, R.K.; Putnam, A.J.; Shikanov, A. Characterization of the crosslinking kinetics of multi-arm poly(ethylene glycol) hydrogels formed via Michael-type addition. Soft Matter, 2016, 12(7), 2076-2085.
[http://dx.doi.org/10.1039/C5SM02668G] [PMID: 26750719]
[39]
Adkins, C.E.; Nounou, M.I.; Hye, T.; Mohammad, A.S.; Terrell-Hall, T.; Mohan, N.K.; Eldon, M.A.; Hoch, U.; Lockman, P.R. NKTR-102 Efficacy versus irinotecan in a mouse model of brain metastases of breast cancer. BMC Cancer, 2015, 15(1), 685.
[http://dx.doi.org/10.1186/s12885-015-1672-4] [PMID: 26463521]
[40]
Garrett, C.R.; Bekaii-Saab, T.S.; Ryan, T.; Fisher, G.A.; Clive, S.; Kavan, P.; Shacham-Shmueli, E.; Buchbinder, A.; Goldberg, R.M. Randomized phase 2 study of pegylated SN-38 (EZN-2208) or irinotecan plus cetuximab in patients with advanced colorectal cancer. Cancer, 2013, 119(24), 4223-4230.
[http://dx.doi.org/10.1002/cncr.28358] [PMID: 24105075]
[41]
Charych, D.H.; Hoch, U.; Langowski, J.L.; Lee, S.R.; Addepalli, M.K.; Kirk, P.B.; Sheng, D.; Liu, X.; Sims, P.W.; VanderVeen, L.A.; Ali, C.F.; Chang, T.K.; Konakova, M.; Pena, R.L.; Kanhere, R.S.; Kirksey, Y.M.; Ji, C.; Wang, Y.; Huang, J.; Sweeney, T.D.; Kantak, S.S.; Doberstein, S.K. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin. Cancer Res., 2016, 22(3), 680-690.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1631] [PMID: 26832745]
[42]
Zalipsky, S. Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates. Bioconjug. Chem., 1995, 6(2), 150-165.
[http://dx.doi.org/10.1021/bc00032a002] [PMID: 7599259]
[43]
Zalipsky, S. Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv. Drug Deliv. Rev., 1995, 16(2-3), 157-182.
[http://dx.doi.org/10.1016/0169-409X(95)00023-Z]
[44]
Harris, J.M. Laboratory synthesis of polyethylene glycol derivatives. J. Macromol. Sci., 1985, 25(3), 325-373.
[45]
Dust, J.M.; Fang, Z.H.; Harris, J.M. Proton NMR characterization of poly(ethylene glycols) and derivatives. Macromolecules, 1990, 23(16), 3742-3746.
[http://dx.doi.org/10.1021/ma00218a005]
[46]
A branched methoxy 40 KDA polyethylene glycol (PEG) moiety optimizes the pharmacokinetics (PK) of peginterferon a-2A (PEGIFN) and may explain its enhanced efficacy in chronic hepatitis C (CHC). 1999. Available From: https://www.natap.org/2000/7thcroi/37rpt22300.html
[47]
Bailon, P.; Palleroni, A.; Schaffer, C.A.; Spence, C.L.; Fung, W.J.; Porter, J.E.; Ehrlich, G.K.; Pan, W.; Xu, Z.X.; Modi, M.W.; Farid, A.; Berthold, W.; Graves, M. Rational design of a potent, long-lasting form of interferon: A 40 kDa branched polyethylene glycol-conjugated interferon α-2a for the treatment of hepatitis C. Bioconjug. Chem., 2001, 12(2), 195-202.
[http://dx.doi.org/10.1021/bc000082g] [PMID: 11312680]
[48]
Swierczewska, M.; Lee, K.C.; Lee, S. What is the future of PEGylated therapies? Expert Opin. Emerg. Drugs, 2015, 20(4), 531-536.
[http://dx.doi.org/10.1517/14728214.2015.1113254] [PMID: 26583759]
[49]
Metelsky, S.T. Dependence of the apparent thickness of the unstirred layer at the intestinal mucosa on nutrient concentration. Biophysics, 2007, 52(4), 423-425.
[http://dx.doi.org/10.1134/S0006350907040124]
[50]
Madonov, P.G.; Svyatchenko, V.A.; Legostaev, S.S.; Kikhtenko, N.A.; Kotlyarova, A.A.; Oleinik, L.A.; Baikalov, G.I. Evaluation of the anti-viral activity of human recombinant interferon Lambda-1 against SARS-CoV-2. Bull. Exp. Biol. Med., 2021, 172(1), 53-56.
[http://dx.doi.org/10.1007/s10517-021-05330-0] [PMID: 34791556]
[51]
Sherstoboev, E.Y.; Oleinik, L.A.; Zhdanov, V.V.; Kikhtenko, N.A.; Madonov, P.G. Pharmacokinetic parameters of oral Pegylated IFN-λ1. Bull. Exp. Biol. Med., 2022, 173(2), 215-218.
[http://dx.doi.org/10.1007/s10517-022-05521-3] [PMID: 35737159]
[52]
Chan, K.; Mong, M.; Yin, M. Antioxidative and anti-inflammatory neuroprotective effects of astaxanthin and canthaxanthin in nerve growth factor differentiated PC12 cells. J. Food Sci., 2009, 74(7), H225-H231.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01274.x] [PMID: 19895474]
[53]
Park, J.H.; Yeo, I.J.; Han, J.H.; Suh, J.W.; Lee, H.P.; Hong, J.T. Anti-inflammatory effect of astaxanthin in phthalic anhydride-induced atopic dermatitis animal model. Exp. Dermatol., 2018, 27(4), 378-385.
[http://dx.doi.org/10.1111/exd.13437] [PMID: 28887839]
[54]
Maoka, T.; Tokuda, H.; Suzuki, N.; Kato, H.; Etoh, H. Anti-oxidative, anti-tumor-promoting, and anti-carcinogensis activities of nitroastaxanthin and nitrolutein, the reaction products of astaxanthin and lutein with peroxynitrite. Mar. Drugs, 2012, 10(12), 1391-1399.
[http://dx.doi.org/10.3390/md10061391] [PMID: 22822380]
[55]
Zhang, L.; Wang, H. Multiple mechanisms of anti-cancer effects exerted by Astaxanthin. Mar. Drugs, 2015, 13(7), 4310-4330.
[http://dx.doi.org/10.3390/md13074310] [PMID: 26184238]
[56]
Takemoto, M.; Yamaga, M.; Furuichi, Y.; Yokote, K. Astaxanthin improves nonalcoholic fatty liver disease in werner syndrome with diabetes mellitus. J. Am. Geriatr. Soc., 2015, 63(6), 1271-1273.
[http://dx.doi.org/10.1111/jgs.13505] [PMID: 26096415]
[57]
Sifi, N.; Martin-Eauclaire, M.F.; Laraba-Djebari, F.K. + channel blocker-induced neuroinflammatory response and neurological disorders: Immunomodulatory effects of astaxanthin. Inflamm. Res., 2016, 65(8), 623-634.
[http://dx.doi.org/10.1007/s00011-016-0945-y] [PMID: 27052008]
[58]
Li, Y.; Kang, T.; Wu, Y.; Chen, Y.; Zhu, J.; Gou, M. Carbonate esters turn camptothecin-unsaturated fatty acid prodrugs into nanomedicines for cancer therapy. Chem. Commun., 2018, 54(16), 1996-1999.
[http://dx.doi.org/10.1039/C8CC00639C] [PMID: 29411840]
[59]
Liu, Y.; Yang, L.; Guo, Y.; Zhang, T.; Qiao, X.; Wang, J.; Xu, J.; Xue, C. Hydrophilic Astaxanthin: PEGylated Astaxanthin fights diabetes by enhancing the solubility and oral absorbability. J. Agric. Food Chem., 2020, 68(11), 3649-3655.
[http://dx.doi.org/10.1021/acs.jafc.0c00784] [PMID: 32118432]
[60]
Kouchakzadeh, H.; Shojaosadati, S.A.; Maghsoudi, A.; Vasheghani Farahani, E. Optimization of PEGylation conditions for BSA nanoparticles using response surface methodology. AAPS PharmSciTech, 2010, 11(3), 1206-1211.
[http://dx.doi.org/10.1208/s12249-010-9487-8] [PMID: 20680708]
[61]
Zhang, X.; Pan, S.R.; Hu, H.M.; Wu, G.F.; Feng, M.; Zhang, W.; Luo, X. Poly(ethylene glycol)-block-polyethylenimine copolymers as carriers for gene delivery: Effects of PEG molecular weight and PEGylation degree. J. Biomed. Mater. Res. A, 2008, 84A(3), 795-804.
[http://dx.doi.org/10.1002/jbm.a.31343] [PMID: 17635020]
[62]
Tahmasbi Rad, A.; Chen, C.W.; Aresh, W.; Xia, Y.; Lai, P.S.; Nieh, M.P. Combinational effects of active targeting, shape, and enhanced permeability and retention for cancer theranostic nanocarriers. ACS Appl. Mater. Interfaces, 2019, 11(11), 10505-10519.
[http://dx.doi.org/10.1021/acsami.8b21609] [PMID: 30793580]
[63]
Yoshikawa, T.; Mori, Y.; Feng, H.; Phan, K.Q.; Kishimura, A.; Kang, J.H.; Mori, T.; Katayama, Y. Rapid and continuous accumulation of nitric oxide-releasing liposomes in tumors to augment the enhanced permeability and retention (EPR) effect. Int. J. Pharm., 2019, 565, 481-487.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.043] [PMID: 31102802]
[64]
Ming, L.J.; Epperson, J.D. Metal binding and structure–activity relationship of the metalloantibiotic peptide bacitracin. J. Inorg. Biochem., 2002, 91(1), 46-58.
[http://dx.doi.org/10.1016/S0162-0134(02)00464-6] [PMID: 12121761]
[65]
Smith, J.L.; Weinberg, E.D. Mechanisms of antibacterial action of bacitracin. J. Gen. Microbiol., 1962, 28(3), 559-569.
[http://dx.doi.org/10.1099/00221287-28-3-559] [PMID: 13914300]
[66]
Hancock, R.; Fitz-James, P.C. Some differences in the action of penicillin, bacitracin, and vancomycin on Bacillus megaterium. J. Bacteriol., 1964, 87(5), 1044-1050.
[http://dx.doi.org/10.1128/jb.87.5.1044-1050.1964] [PMID: 4959792]
[67]
Hong, W.; Gao, X.; Qiu, P.; Yang, J.; Qiao, M.; Shi, H.; Zhang, D.; Tian, C.; Niu, S.; Liu, M. Synthesis, construction, and evaluation of self-assembled nano-bacitracin A as an efficient antibacterial agent in vitro and in vivo. Int. J. Nanomedicine, 2017, 12, 4691-4708.
[http://dx.doi.org/10.2147/IJN.S136998] [PMID: 28721045]
[68]
Hong, W.; Zhao, Y.; Guo, Y.; Huang, C.; Qiu, P.; Zhu, J.; Chu, C.; Shi, H.; Liu, M. PEGylated self-assembled nano-bacitracin A: Probing the antibacterial mechanism and real-time tracing of target delivery in vivo. ACS Appl. Mater. Interfaces, 2018, 10(13), 10688-10705.
[http://dx.doi.org/10.1021/acsami.8b00135] [PMID: 29516722]
[69]
Soe, Z.C.; Ou, W.; Gautam, M.; Poudel, K.; Kim, B.K.; Pham, L.M.; Phung, C.D.; Jeong, J.H.; Jin, S.G.; Choi, H.G.; Ku, S.K.; Yong, C.S.; Kim, J.O. Development of folate-functionalized pegylated zein nanoparticles for ligand-directed delivery of paclitaxel. Pharmaceutics, 2019, 11(11), 562.
[http://dx.doi.org/10.3390/pharmaceutics11110562] [PMID: 31671569]
[70]
Zeng, N.; Hu, Q.; Liu, Z.; Gao, X.; Hu, R.; Song, Q.; Gu, G.; Xia, H.; Yao, L.; Pang, Z.; Jiang, X.; Chen, J.; Fang, L. Preparation and characterization of paclitaxel-loaded DSPE-PEG-liquid crystalline nanoparticles (LCNPs) for improved bioavailability. Int. J. Pharm., 2012, 424(1-2), 58-66.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.058] [PMID: 22240390]
[71]
Phung, C.D.; Tran, T.H.; Kim, J.O. Engineered nanoparticles to enhance natural killer cell activity towards onco-immunotherapy: A review. Arch. Pharm. Res., 2020, 43(1), 32-45.
[http://dx.doi.org/10.1007/s12272-020-01218-1] [PMID: 31993969]
[72]
Cho, H.J. Recent progresses in the development of hyaluronic acid-based nanosystems for tumor-targeted drug delivery and cancer imaging. J. Pharm. Investig., 2020, 50(2), 115-129.
[http://dx.doi.org/10.1007/s40005-019-00448-w]
[73]
Tran, B.N.; Nguyen, H.T.; Kim, J.O.; Yong, C.S.; Nguyen, C.N. Developing combination of artesunate with paclitaxel loaded into poly- D,L -lactic-co-glycolic acid nanoparticle for systemic delivery to exhibit synergic chemotherapeutic response. Drug Dev. Ind. Pharm., 2017, 43(12), 1952-1962.
[http://dx.doi.org/10.1080/03639045.2017.1357729] [PMID: 28724314]
[74]
Aung, W.; Sogawa, C.; Furukawa, T.; Saga, T. Anticancer effect of dihydroartemisinin (DHA) in a pancreatic tumor model evaluated by conventional methods and optical imaging. Anticancer Res., 2011, 31(5), 1549-1558.
[PMID: 21617209]
[75]
Chen, Y.; Chin, B.W.; Bieber, M.M.; Tan, X.; Teng, N.N. Abstract 470: Artemisinin derivatives synergize with paclitaxel by targeting FOXM1 through Raf/MEK/MAPK signaling pathway in ovarian cancer. Cancer Res., 2014, 7419-Suppl., 470-470.
[http://dx.doi.org/10.1158/1538-7445.AM2014-470]
[76]
Wang, L.; Wang, Y.; Wang, X.; Sun, L.; Zhou, Z.; Lu, J.; Zheng, Y. Encapsulation of low lipophilic and slightly water-soluble dihydroartemisinin in PLGA nanoparticles with phospholipid to enhance encapsulation efficiency and in vitro bioactivity. J. Microencapsul., 2016, 33(1), 43-52.
[http://dx.doi.org/10.3109/02652048.2015.1114042] [PMID: 26626402]
[77]
Phung, C.D.; Le, T.G.; Nguyen, V.H.; Vu, T.T.; Nguyen, H.Q.; Kim, J.O.; Yong, C.S.; Nguyen, C.N. PEGylated-Paclitaxel and dihydroartemisinin nanoparticles for simultaneously delivering paclitaxel and dihydroartemisinin to colorectal cancer. Pharm. Res., 2020, 37(7), 129.
[http://dx.doi.org/10.1007/s11095-020-02819-7] [PMID: 32548664]
[78]
Wilson, R.C.; Doudna, J.A. Molecular mechanisms of RNA interference. Annu. Rev. Biophys., 2013, 42(1), 217-239.
[http://dx.doi.org/10.1146/annurev-biophys-083012-130404] [PMID: 23654304]
[79]
Chen, X.; Mangala, L.S.; Rodriguez-Aguayo, C.; Kong, X.; Lopez-Berestein, G.; Sood, A.K. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev., 2018, 37(1), 107-124.
[http://dx.doi.org/10.1007/s10555-017-9717-6] [PMID: 29243000]
[80]
Xia, Y.; Tian, J.; Chen, X. Effect of surface properties on liposomal siRNA delivery. Biomaterials, 2016, 79, 56-68.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.056] [PMID: 26695117]
[81]
Hatakeyama, H.; Akita, H.; Harashima, H. The polyethyleneglycol dilemma: Advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol. Pharm. Bull., 2013, 36(6), 892-899.
[http://dx.doi.org/10.1248/bpb.b13-00059] [PMID: 23727912]
[82]
Hattori, Y.; Tamaki, K.; Sakasai, S.; Ozaki, K.I.; Onishi, H. Effects of PEG anchors in PEGylated siRNA lipoplexes on in vitro gene silencing effects and siRNA biodistribution in mice. Mol. Med. Rep., 2020, 22(5), 4183-4196.
[http://dx.doi.org/10.3892/mmr.2020.11525] [PMID: 33000194]
[83]
Zhang, X.; Wang, H.; Ma, Z.; Wu, B. Effects of pharmaceutical PEGylation on drug metabolism and its clinical concerns. Expert Opin. Drug Metab. Toxicol., 2014, 10(12), 1691-1702.
[http://dx.doi.org/10.1517/17425255.2014.967679] [PMID: 25270687]
[84]
Hoguet, V.; Lasalle, M.; Maingot, M.; Dequirez, G.; Boulahjar, R.; Leroux, F.; Piveteau, C.; Herledan, A.; Biela, A.; Dumont, J.; Chلvez-Talavera, O.; Belloy, L.; Duplan, I.; Hennuyer, N.; Butruille, L.; Lestavel, S.; Sevin, E.; Culot, M.; Gosselet, F.; Staels, B.; Deprez, B.; Tailleux, A.; Charton, J. Beyond the rule of 5: Impact of PEGylation with various polymer sizes on pharmacokinetic properties, structure–properties relationships of mPEGylated small agonists of TGR5 receptor. J. Med. Chem., 2021, 64(3), 1593-1610.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01774] [PMID: 33470812]
[85]
Manjili, H.K.; Malvandi, H.; Mousavi, M.S.; Attari, E.; Danafar, H. In vitro and in vivo delivery of artemisinin loaded PCL–PEG–PCL micelles and its pharmacokinetic study. Artif. Cells Nanomed. Biotechnol., 2018, 46(5), 926-936.
[http://dx.doi.org/10.1080/21691401.2017.1347880] [PMID: 28683649]
[86]
Lu, X.; Lu, D.; Scully, M.; Kakkar, V. The role of integrins in cancer and the development of anti-integrin therapeutic agents for cancer therapy. In: Perspect. Medicin. Chem; , 2008; 2, pp. 57-73.
[http://dx.doi.org/10.1177/1177391X0800200003]
[87]
Vogetseder, A.; Thies, S.; Ingold, B.; Roth, P.; Weller, M.; Schraml, P.; Goodman, S.L.; Moch, H. αv-Integrin isoform expression in primary human tumors and brain metastases. Int. J. Cancer, 2013, 133(10), 2362-2371.
[http://dx.doi.org/10.1002/ijc.28267] [PMID: 23661241]
[88]
Bandyopadhyay, A.; Raghavan, S. Defining the role of integrin alphavbeta6 in cancer. Curr. Drug Targets, 2009, 10(7), 645-652.
[http://dx.doi.org/10.2174/138945009788680374] [PMID: 19601768]
[89]
Kimura, R.H.; Teed, R.; Hackel, B.J.; Pysz, M.A.; Chuang, C.Z.; Sathirachinda, A.; Willmann, J.K.; Gambhir, S.S. Pharmacokinetically stabilized cystine knot peptides that bind alpha-v-beta-6 integrin with single-digit nanomolar affinities for detection of pancreatic cancer. Clin. Cancer Res., 2012, 18(3), 839-849.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1116] [PMID: 22173551]
[90]
Hausner, S.H.; Abbey, C.K.; Bold, R.J.; Gagnon, M.K.; Marik, J.; Marshall, J.F.; Stanecki, C.E.; Sutcliffe, J.L. Targeted in vivo imaging of integrin alphavbeta6 with an improved radiotracer and its relevance in a pancreatic tumor model. Cancer Res., 2009, 69(14), 5843-5850.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4410] [PMID: 19549907]
[91]
Hausner, S.H.; Bauer, N.; Hu, L.Y.; Knight, L.M.; Sutcliffe, J.L. The effect of Bi-Terminal PEGylation of an integrin α v β 6 –Targeted 18 F peptide on pharmacokinetics and tumor uptake. J. Nucl. Med., 2015, 56(5), 784-790.
[http://dx.doi.org/10.2967/jnumed.114.150680] [PMID: 25814519]
[92]
Xu, J.; Sun, T.; Zhong, R.; You, C.; Tian, M. PEGylation of deferoxamine for improving the stability, cytotoxicity, and iron-overload in an experimental stroke model in rats. Front. Bioeng. Biotechnol., 2020, 8, 592294.
[http://dx.doi.org/10.3389/fbioe.2020.592294] [PMID: 33102469]
[93]
Sun, J.; Wu, J.; Jin, H.; Ying, T.; Jin, W.; Fan, M.; Zhou, J.; Chen, H.; Jin, L.; Zhou, J. Structure-guided PEGylated fibroblast growth factor 2 variants accelerate wound healing with improved stability. Authorea, 2020, 1-18.
[http://dx.doi.org/10.22541/au.158870115.54235041]
[94]
Ladwig, G.P.; Robson, M.C.; Liu, R.; Kuhn, M.A.; Muir, D.F.; Schultz, G.S. Ratios of activated matrix metalloproteinase-9 to tissue inhibitor of matrix metalloproteinase-1 in wound fluids are inversely correlated with healing of pressure ulcers. Wound Repair Regen., 2002, 10(1), 26-37.
[http://dx.doi.org/10.1046/j.1524-475X.2002.10903.x] [PMID: 11983004]
[95]
Xu, H.L.; Chen, P.P.; Wang, L.F.; Tong, M.Q.; Ou, Z.; Zhao, Y.Z.; Xiao, J.; Fu, T.L. Wei-Xue, Skin-permeable liposome improved stability and permeability of bFGF against skin of mice with deep second degree scald to promote hair follicle neogenesis through inhibition of scar formation. Colloids Surf. B Biointerfaces, 2018, 172, 573-585.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.006] [PMID: 30218983]
[96]
Peng, G.; Pan, X.; Hu, H.; Xu, Y.; Wu, C. N-terminal site-specific PEGylation enhances the circulation half-life of Thymosin alpha 1. J. Drug Deliv. Sci. Technol., 2019, 49, 405-412.
[http://dx.doi.org/10.1016/j.jddst.2018.09.009]
[97]
Seo, H.; Bae, H.D.; Pyun, H.; Kim, B.G.; Lee, S.I.; Song, J.S.; Lee, K. PEGylation improves the therapeutic potential of dimerized translationally controlled tumor protein blocking peptide in ovalbumin-induced mouse model of airway inflammation. Drug Deliv., 2022, 29(1), 2320-2329.
[http://dx.doi.org/10.1080/10717544.2022.2100511] [PMID: 35850571]
[98]
Zbyszynski, P.; Tomasini-Johansson, B.R.; Peters, D.M.; Kwon, G.S. Characterization of the PEGylated Functional Upstream Domain Peptide (PEG-FUD): A potent fibronectin assembly inhibitor with potential as an anti-fibrotic therapeutic. Pharm. Res., 2018, 35(7), 126.
[http://dx.doi.org/10.1007/s11095-018-2412-7] [PMID: 29691664]
[99]
Hui, Y.F.; Reitz, J. Gemcitabine: A cytidine analogue active against solid tumors. Am. J. Health Syst. Pharm., 1997, 54(2), 162-170.
[http://dx.doi.org/10.1093/ajhp/54.2.162] [PMID: 9117804]
[100]
Abdalla, M.Y.; Ahmad, I.M.; Rachagani, S.; Banerjee, K.; Thompson, C.M.; Maurer, H.C.; Olive, K.P.; Bailey, K.L.; Britigan, B.E.; Kumar, S. Enhancing responsiveness of pancreatic cancer cells to gemcitabine treatment under hypoxia by heme oxygenase-1 inhibition. Transl. Res., 2019, 207, 56-69.
[http://dx.doi.org/10.1016/j.trsl.2018.12.008] [PMID: 30653942]
[101]
Barton-Burke, M. Gemcitabine: A pharmacologic and clinical overview. Cancer Nurs., 1999, 22(2), 176-183.
[http://dx.doi.org/10.1097/00002820-199904000-00011] [PMID: 10217035]
[102]
Chiappori, A.A.; Rocha-Lima, C.M. New agents in the treatment of small-cell lung cancer: Focus on gemcitabine. Clin. Lung Cancer, 2003, 4(Suppl. 2), S56-S63.
[http://dx.doi.org/10.3816/CLC.2003.s.005] [PMID: 14720338]
[103]
van Nuland, M.; Hillebrand, M.J.X.; Rosing, H.; Burgers, J.A.; Schellens, J.H.M.; Beijnen, J.H. Ultra-sensitive LC–MS/MS method for the quantification of gemcitabine and its metabolite 2′2′-difluorodeoxyuridine in human plasma for a microdose clinical trial. J. Pharm. Biomed. Anal., 2018, 151, 25-31.
[http://dx.doi.org/10.1016/j.jpba.2017.12.048] [PMID: 29294409]
[104]
Xu, Y.; Keith, B.; Grem, J.L. Measurement of the anticancer agent gemcitabine and its deaminated metabolite at low concentrations in human plasma by liquid chromatography-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 802(2), 263-270.
[http://dx.doi.org/10.1016/j.jchromb.2003.11.038] [PMID: 15018786]
[105]
Storniolo, A.M.; Allerheiligen, S.R.; Pearce, H.L. Preclinical, pharmacologic, and phase I studies of gemcitabine. Semin Oncol., 1997, 24(2 Suppl 7), S7-2-S7-7.
[106]
Robinson, K.; Lambiase, L.; Li, J.; Monteiro, C.; Schiff, M. Fatal cholestatic liver failure associated with gemcitabine therapy. Dig. Dis. Sci., 2003, 48(9), 1804-1808.
[http://dx.doi.org/10.1023/A:1025415616592] [PMID: 14561005]
[107]
Yin, L.; Ren, T.; Zhao, S.; Shi, M.; Gu, J. Comparative pharmacokinetic study of PEGylated gemcitabine and gemcitabine in rats by LC-MS/MS coupled with pre-column derivatization and MSALL technique. Talanta, 2020, 206, 120184.
[http://dx.doi.org/10.1016/j.talanta.2019.120184] [PMID: 31514844]
[108]
Liu, J.; Zhang, Y.; Qu, J.; Xu, L.; Hou, K.; Zhang, J.; Qu, X.; Liu, Y. β-Elemene-induced autophagy protects human gastric cancer cells from undergoing apoptosis. BMC Cancer, 2011, 11(1), 183.
[http://dx.doi.org/10.1186/1471-2407-11-183] [PMID: 21595977]
[109]
Wu, X.S.; Xie, T.; Lin, J.; Fan, H.Z.; Huang-Fu, H.J.; Ni, L.F.; Yan, H.F. An investigation of the ability of elemene to pass through the blood-brain barrier and its effect on brain carcinomas. J. Pharm. Pharmacol., 2010, 61(12), 1653-1656.
[http://dx.doi.org/10.1211/jpp.61.12.0010] [PMID: 19958588]
[110]
Chen, M.; Wang, S.; Tan, M.; Wang, Y. Applications of nanoparticles in herbal medicine: Zedoary turmeric oil and its active compound β-elemene. Am. J. Chin. Med., 2011, 39(6), 1093-1102.
[http://dx.doi.org/10.1142/S0192415X11009421] [PMID: 22083983]
[111]
Zhai, B.; Wu, Q.; Wang, W.; Zhang, M.; Han, X.; Li, Q.; Chen, P.; Chen, X.; Huang, X.; Li, G.; Zhang, Q.; Zhang, R.; Xiang, Y.; Liu, S.; Duan, T.; Lou, J.; Xie, T.; Sui, X. Preparation, characterization, pharmacokinetics and anticancer effects of PEGylated β-elemene liposomes. Cancer Biol. Med., 2020, 17(1), 60-75.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2019.0156] [PMID: 32296587]
[112]
Srivastava, A.; Brewer, A.K.; Mauser-Bunschoten, E.P.; Key, N.S.; Kitchen, S.; Llinas, A.; Ludlam, C.A.; Mahlangu, J.N.; Mulder, K.; Poon, M.C.; Street, A. Guidelines for the management of hemophilia. Haemophilia, 2013, 19(1), e1-e47.
[http://dx.doi.org/10.1111/j.1365-2516.2012.02909.x] [PMID: 22776238]
[113]
Gringeri, A.; Lundin, B.; Von MacKensen, S.; Mantovani, L.; Mannucci, P.M. A randomized clinical trial of prophylaxis in children with hemophilia A (the ESPRIT Study). J. Thromb. Haemost., 2011, 9(4), 700-710.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04214.x] [PMID: 21255253]
[114]
Manco-Johnson, M.J.; Abshire, T.C.; Shapiro, A.D.; Riske, B.; Hacker, M.R.; Kilcoyne, R.; Ingram, J.D.; Manco-Johnson, M.L.; Funk, S.; Jacobson, L.; Valentino, L.A.; Hoots, W.K.; Buchanan, G.R.; DiMichele, D.; Recht, M.; Brown, D.; Leissinger, C.; Bleak, S.; Cohen, A.; Mathew, P.; Matsunaga, A.; Medeiros, D.; Nugent, D.; Thomas, G.A.; Thompson, A.A.; McRedmond, K.; Soucie, J.M.; Austin, H.; Evatt, B.L. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N. Engl. J. Med., 2007, 357(6), 535-544.
[http://dx.doi.org/10.1056/NEJMoa067659] [PMID: 17687129]
[115]
Collins, P.W.; Blanchette, V.S.; Fischer, K.; Bjِrkman, S.; Oh, M.; Fritsch, S.; Schroth, P.; Spotts, G.; Astermark, J.; Ewenstein, B. Break‐through bleeding in relation to predicted factor VIII levels in patients receiving prophylactic treatment for severe hemophilia A. J. Thromb. Haemost., 2009, 7(3), 413-420.
[http://dx.doi.org/10.1111/j.1538-7836.2008.03270.x] [PMID: 19143924]
[116]
Mei, B.; Pan, C.; Jiang, H.; Tjandra, H.; Strauss, J.; Chen, Y.; Liu, T.; Zhang, X.; Severs, J.; Newgren, J.; Chen, J.; Gu, J.M.; Subramanyam, B.; Fournel, M.A.; Pierce, G.F.; Murphy, J.E. Rational design of a fully active, long-acting PEGylated factor VIII for hemophilia A treatment. Blood, 2010, 116(2), 270-279.
[http://dx.doi.org/10.1182/blood-2009-11-254755] [PMID: 20194895]
[117]
Röstin, J.; Smeds, A.L.; Åkerblom, E. B-Domain deleted recombinant coagulation factor VIII modified with monomethoxy polyethylene glycol. Bioconjug. Chem., 2000, 11(3), 387-396.
[http://dx.doi.org/10.1021/bc990137i] [PMID: 10821655]
[118]
Shah, A.; Solms, A.; Wiegmann, S.; Ahsman, M.; Berntorp, E.; Tiede, A.; Iorio, A.; Mancuso, M.E.; Zhivkov, T.; Lissitchkov, T. Direct comparison of two extended-half-life recombinant FVIII products: A randomized, crossover pharmacokinetic study in patients with severe hemophilia A. Ann. Hematol., 2019, 98(9), 2035-2044.
[http://dx.doi.org/10.1007/s00277-019-03747-2] [PMID: 31236667]
[119]
Yu, J.; Wang, Y.; Zhou, S.; Li, J.; Wang, J.; Chi, D.; Wang, X.; Lin, G.; He, Z.; Wang, Y. Remote loading paclitaxel–doxorubicin prodrug into liposomes for cancer combination therapy. Acta Pharm. Sin. B, 2020, 10(9), 1730-1740.
[http://dx.doi.org/10.1016/j.apsb.2020.04.011] [PMID: 33088692]
[120]
Zhao, J.; Du, J.; Wang, J.; An, N.; Zhou, K.; Hu, X.; Dong, Z.; Liu, Y. Folic Acid and Poly(ethylene glycol) decorated paclitaxel nanocrystals exhibit enhanced stability and breast cancer-targeting capability. ACS Appl. Mater. Interfaces, 2021, 13(12), 14577-14586.
[http://dx.doi.org/10.1021/acsami.1c00184] [PMID: 33728919]
[121]
Coelho, S.C.; Rocha, S.; Pereira, M.C.; Juzenas, P.; Coelho, M.A.N. Enhancing proteasome-lnhibitor effect by functionalized gold nanoparticles. J. Biomed. Nanotechnol., 2014, 10(4), 717-723.
[http://dx.doi.org/10.1166/jbn.2014.1743] [PMID: 24734524]
[122]
Fischer, D.; Li, Y.; Ahlemeyer, B.; Krieglstein, J.; Kissel, T. In vitro cytotoxicity testing of polycations: Influence of polymer structure on cell viability and hemolysis. Biomaterials, 2003, 24(7), 1121-1131.
[http://dx.doi.org/10.1016/S0142-9612(02)00445-3] [PMID: 12527253]
[123]
Hong, S.; Leroueil, P.R.; Janus, E.K.; Peters, J.L.; Kober, M.M.; Islam, M.T.; Orr, B.G.; Baker, J.R., Jr; Banaszak Holl, M.M. Interaction of polycationic polymers with supported lipid bilayers and cells: Nanoscale hole formation and enhanced membrane permeability. Bioconjug. Chem., 2006, 17(3), 728-734.
[http://dx.doi.org/10.1021/bc060077y] [PMID: 16704211]
[124]
Sahoo, R.K.; Gothwal, A.; Rani, S.; Nakhate, K.T.; Ajazuddin; Gupta, U. PEGylated dendrimer mediated delivery of bortezomib: Drug conjugation versus encapsulation. Int. J. Pharm., 2020, 584, 119389.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119389] [PMID: 32380027]
[125]
Mukherjee, S.; Kotcherlakota, R.; Haque, S.; Bhattacharya, D.; Kumar, J.M.; Chakravarty, S.; Patra, C.R. Improved delivery of doxorubicin using rationally designed PEGylated platinum nanoparticles for the treatment of melanoma. Mater. Sci. Eng. C, 2020, 108, 110375.
[http://dx.doi.org/10.1016/j.msec.2019.110375] [PMID: 31924026]
[126]
Mukherjee, S.; Kotcherlakota, R.; Haque, S.; Das, S.; Nuthi, S.; Bhattacharya, D.; Madhusudana, K.; Chakravarty, S.; Sistla, R.; Patra, C.R. Silver prussian blue analogue nanoparticles: Rationally designed advanced nanomedicine for multifunctional biomedical applications. ACS Biomater. Sci. Eng., 2020, 6(1), 690-704.
[http://dx.doi.org/10.1021/acsbiomaterials.9b01693] [PMID: 33463227]
[127]
Mukherjee, S.; Bollu, V.S.; Roy, A.; Nethi, S.K.; Madhusudana, K.; Kumar, J.M.; Sistla, R.; Patra, C.R. Acute toxicity, biodistribution, and pharmacokinetics studies of Pegylated Platinum Nanoparticles in mouse model. Adv. NanoBiomed Res., 2021, 1(7), 2000082.
[http://dx.doi.org/10.1002/anbr.202000082]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy