Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Targeting Cysteine Proteases and their Inhibitors to Combat Trypanosomiasis

Author(s): Aloke Saha, Pushpa, Susmita Moitra, Deblina Basak, Sayandeep Brahma, Dipu Mondal, Sabir Hossen Molla*, Asmita Samadder* and Sisir Nandi*

Volume 31, Issue 16, 2024

Published on: 18 September, 2023

Page: [2135 - 2169] Pages: 35

DOI: 10.2174/0929867330666230619160509

Price: $65

Abstract

Background: Trypanosomiasis, caused by protozoan parasites of the Trypanosoma genus, remains a significant health burden in several regions of the world. Cysteine proteases play a crucial role in the pathogenesis of Trypanosoma parasites and have emerged as potential therapeutic targets for the development of novel antiparasitic drugs.

Introduction: This review article aims to provide a comprehensive overview of the role of cysteine proteases in trypanosomiasis and their potential as therapeutic targets. We discuss the biological significance of cysteine proteases in Trypanosoma parasites and their involvement in essential processes, such as host immune evasion, cell invasion, and nutrient acquisition.

Methods: A comprehensive literature search was conducted to identify relevant studies and research articles on the role of cysteine proteases and their inhibitors in trypanosomiasis. The selected studies were critically analyzed to extract key findings and provide a comprehensive overview of the topic.

Results: Cysteine proteases, such as cruzipain, TbCatB and TbCatL, have been identified as promising therapeutic targets due to their essential roles in Trypanosoma pathogenesis. Several small molecule inhibitors and peptidomimetics have been developed to target these proteases and have shown promising activity in preclinical studies.

Conclusion: Targeting cysteine proteases and their inhibitors holds great potential for the development of novel antiparasitic drugs against trypanosomiasis. The identification of potent and selective cysteine protease inhibitors could significantly contribute to the combat against trypanosomiasis and improve the prospects for the treatment of this neglected tropical disease.

[1]
Weng, H.B.; Chen, H.X.; Wang, M.W. Innovation in neglected tropical disease drug discovery and development. Infect. Dis. Poverty, 2018, 7(1), 67.
[http://dx.doi.org/10.1186/s40249-018-0444-1] [PMID: 29950174]
[2]
Kirchhoff, L.V.; Gam, A.A.; Gilliam, F.C. American trypanosomiasis (Chagas’ disease) in central American immigrants. Am. J. Med., 1987, 82(5), 915-920.
[http://dx.doi.org/10.1016/0002-9343(87)90152-5] [PMID: 3107385]
[3]
Geerts, M.; Van Reet, N.; Leyten, S.; Berghmans, R.; Rock, K.S.; Coetzer, T.H.T.; Eyssen, L.E.A.; Büscher, P. Trypanosoma brucei gambiense-iELISA: A promising new test for the post-elimination monitoring of human African trypanosomiasis. Clin. Infect. Dis., 2021, 73(9), e2477-e2483.
[http://dx.doi.org/10.1093/cid/ciaa1264] [PMID: 32856049]
[4]
Franco, J.R.; Simarro, P.P.; Diarra, A.; Jannin, J.G. Epidemiology of human African trypanosomiasis. Clin. Epidemiol., 2014, 6, 257-275.
[PMID: 25125985]
[5]
Steverding, D. The history of African trypanosomiasis. Parasit. Vectors, 2008, 1(1), 3.
[http://dx.doi.org/10.1186/1756-3305-1-3] [PMID: 18275594]
[6]
Maxfield, L.; Bermudez, R. Trypanosomiasis. StatPearls; StatPearls Publishing: Treasure Island, FL, 2022.
[7]
Gao, J.M.; Qian, Z.Y.; Hide, G.; Lai, D.H.; Lun, Z.R.; Wu, Z.D. Human African trypanosomiasis: The current situation in endemic regions and the risks for non-endemic regions from imported cases. Parasitology, 2020, 147(9), 922-931.
[http://dx.doi.org/10.1017/S0031182020000645] [PMID: 32338232]
[8]
Aksoy, S.; Buscher, P.; Lehane, M.; Solano, P.; Van Den Abbeele, J. Human African trypanosomiasis control: Achievements and challenges. PLoS Negl. Trop. Dis., 2017, 11(4), e0005454.
[http://dx.doi.org/10.1371/journal.pntd.0005454] [PMID: 28426685]
[9]
Franco, J.R.; Cecchi, G.; Paone, M.; Diarra, A.; Grout, L.; Kadima Ebeja, A.; Simarro, P.P.; Zhao, W.; Argaw, D. The elimination of human African trypanosomiasis: Achievements in relation to WHO road map targets for 2020. PLoS Negl. Trop. Dis., 2022, 16(1), e0010047.
[http://dx.doi.org/10.1371/journal.pntd.0010047] [PMID: 35041668]
[11]
Bern, C.; Kjos, S.; Yabsley, M.J.; Montgomery, S.P. Trypanosoma cruzi and Chagas’ disease in the United States. Clin. Microbiol. Rev., 2011, 24(4), 655-681.
[http://dx.doi.org/10.1128/CMR.00005-11] [PMID: 21976603]
[12]
Dario, M.A.; Rodrigues, M.S.; Barros, J.H.S.; Xavier, S.C.C.; D’Andrea, P.S.; Roque, A.L.R.; Jansen, A.M. Ecological scenario and Trypanosoma cruzi DTU characterization of a fatal acute Chagas disease case transmitted orally (Espírito Santo state, Brazil). Parasit. Vectors, 2016, 9(1), 477.
[http://dx.doi.org/10.1186/s13071-016-1754-4] [PMID: 27580853]
[13]
Lidani, K.C.F.; Andrade, F.A.; Bavia, L.; Damasceno, F.S.; Beltrame, M.H.; Messias-Reason, I.J.; Sandri, T.L. Chagas disease: From discovery to a worldwide health problem. Front. Public Health, 2019, 7, 166.
[http://dx.doi.org/10.3389/fpubh.2019.00166] [PMID: 31312626]
[14]
Bern, C.; Messenger, L.A.; Whitman, J.D.; Maguire, J.H. Chagas disease in the United States: A public health approach. Clin. Microbiol. Rev., 2019, 33(1), e00023-e19.
[http://dx.doi.org/10.1128/CMR.00023-19] [PMID: 31776135]
[15]
Schmunis, G.A.; Yadon, Z.E. Chagas disease: A Latin American health problem becoming a world health problem. Acta Trop., 2010, 115(1-2), 14-21.
[http://dx.doi.org/10.1016/j.actatropica.2009.11.003] [PMID: 19932071]
[16]
Solomon Ngutor, K.; Idris, L.A.; Oluseyi Oluyinka, O. Silent human Trypanosoma brucei gambiense infections around the old gboko sleeping sickness focus in Nigeria. J. Parasitol. Res., 2016, 2016, 1-5.
[http://dx.doi.org/10.1155/2016/2656121] [PMID: 26941995]
[17]
Kasozi, K.I.; Zirintunda, G.; Ssempijja, F.; Buyinza, B.; Alzahrani, K.J.; Matama, K.; Nakimbugwe, H.N.; Alkazmi, L.; Onanyang, D.; Bogere, P.; Ochieng, J.J.; Islam, S.; Matovu, W.; Nalumenya, D.P.; Batiha, G.E.S.; Osuwat, L.O.; Abdelhamid, M.; Shen, T.; Omadang, L.; Welburn, S.C. Epidemiology of trypanosomiasis in wildlife-implications for humans at the wildlife interface in Africa. Front. Vet. Sci., 2021, 8, 621699.
[http://dx.doi.org/10.3389/fvets.2021.621699] [PMID: 34222391]
[18]
Meisner, J.; Kato, A.; Lemerani, M.M.; Mwamba Miaka, E.; Ismail Taban, A.; Wakefield, J.; Rowhani-Rahbar, A.; Pigott, D.M.; Mayer, J.D.; Rabinowitz, P.M. The effect of livestock density on Trypanosoma brucei gambiense and T. b. rhodesiense: A causal inference-based approach. PLoS Negl. Trop. Dis., 2022, 16(8), e0010155.
[http://dx.doi.org/10.1371/journal.pntd.0010155] [PMID: 36037205]
[19]
Greenwood, B.M.; Whittle, H.C. The pathogenesis of sleeping sickness. Trans. R. Soc. Trop. Med. Hyg., 1980, 74(6), 716-725.
[http://dx.doi.org/10.1016/0035-9203(80)90184-4] [PMID: 7010694]
[20]
Schuster, S.; Lisack, J.; Subota, I.; Zimmermann, H.; Reuter, C.; Mueller, T.; Morriswood, B.; Engstler, M. Unexpected plasticity in the life cycle of Trypanosoma brucei. eLife, 2021, 10, e66028.
[http://dx.doi.org/10.7554/eLife.66028] [PMID: 34355698]
[21]
Lindner, A.K.; Priotto, G. The unknown risk of vertical transmission in sleeping sickness-a literature review. PLoS Negl. Trop. Dis., 2010, 4(12), e783.
[http://dx.doi.org/10.1371/journal.pntd.0000783] [PMID: 21200416]
[22]
Laperchia, C.; Palomba, M.; Seke Etet, P.F.; Rodgers, J.; Bradley, B.; Montague, P.; Grassi-Zucconi, G.; Kennedy, P.G.E.; Bentivoglio, M. Trypanosoma brucei invasion and T-cell infiltration of the brain parenchyma in experimental sleeping sickness: Timing and correlation with functional changes. PLoS Negl. Trop. Dis., 2016, 10(12), e0005242.
[http://dx.doi.org/10.1371/journal.pntd.0005242] [PMID: 28002454]
[23]
Rijo-Ferreira, F.; Takahashi, J.S. Sleeping sickness: A tale of two clocks. Front. Cell. Infect. Microbiol., 2020, 10, 525097.
[http://dx.doi.org/10.3389/fcimb.2020.525097] [PMID: 33134186]
[24]
Lundkvist, G.B.; Kristensson, K.; Bentivoglio, M. Why trypanosomes cause sleeping sickness. Physiology, 2004, 19(4), 198-206.
[http://dx.doi.org/10.1152/physiol.00006.2004] [PMID: 15304634]
[25]
Barrett, M.P.; Croft, S.L. Management of trypanosomiasis and leishmaniasis. Br. Med. Bull., 2012, 104(1), 175-196.
[http://dx.doi.org/10.1093/bmb/lds031] [PMID: 23137768]
[26]
Palmer, J.J. Sensing sleeping sickness: Local symptom-making in South Sudan. Med. Anthropol., 2020, 39(6), 457-473.
[http://dx.doi.org/10.1080/01459740.2019.1689976] [PMID: 31852244]
[27]
Boatin, B.A.; Wyatt, G.B.; Wurapa, F.K.; Bulsara, M.K. Use of symptoms and signs for diagnosis of Trypanosoma brucei rhodesiense trypanosomiasis by rural health personnel. Bull. World Health Organ., 1986, 64(3), 389-395.
[PMID: 3490318]
[28]
Kennedy, P.G.E. Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol., 2013, 12(2), 186-194.
[http://dx.doi.org/10.1016/S1474-4422(12)70296-X] [PMID: 23260189]
[29]
Caffrey, C.; Scory, S.; Steverding, D. Cysteine proteinases of trypanosome parasites: Novel targets for chemotherapy. Curr. Drug Targets, 2000, 1(2), 155-162.
[http://dx.doi.org/10.2174/1389450003349290] [PMID: 11465068]
[30]
Vago, A.R.; Silva, D.M.; Adad, S.J.; Correa-Oliveira, R.; Reis, D.Á. Chronic Chagas disease: Presence of parasite DNA in the oesophagus of patients without megaoesophagus. Trans. R. Soc. Trop. Med. Hyg., 2003, 97(3), 308-309.
[http://dx.doi.org/10.1016/S0035-9203(03)90155-6] [PMID: 15228249]
[31]
de Meis, J.; Barreto de Albuquerque, J.; Silva dos Santos, D.; Farias-de-Oliveira, D.A.; Berbert, L.R.; Cotta-de-Almeida, V.; Savino, W. Trypanosoma cruzi entrance through systemic or mucosal infection sites differentially modulates regional immune response following acute infection in mice. Front. Immunol., 2013, 4, 216.
[http://dx.doi.org/10.3389/fimmu.2013.00216] [PMID: 23898334]
[32]
Tarleton, R.L. Trypanosoma cruzi and Chagas disease: Cause and effect. American Trypanosomiasis; Tyler, K.M; Miles, M.A., Ed.; Springer US: Boston, MA, 2003, Vol. 7, pp. 107-115.
[http://dx.doi.org/10.1007/978-1-4419-9206-2_10]
[33]
Siklos, M.; BenAissa, M.; Thatcher, G.R.J. Cysteine proteases as therapeutic targets: Does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm. Sin. B, 2015, 5(6), 506-519.
[http://dx.doi.org/10.1016/j.apsb.2015.08.001] [PMID: 26713267]
[34]
Beatriz Vermelho, A. Trypanosoma cruzi peptidases: An overview. Open Parasitol. J., 2010, 4(1), 120-131.
[http://dx.doi.org/10.2174/1874421401004010120]
[35]
Bossard, G.; Cuny, G.; Geiger, A. Secreted proteases of Trypanosoma brucei gambiense: Possible targets for sleeping sickness control? Biofactors, 2013, 39(4), 407-414.
[http://dx.doi.org/10.1002/biof.1100] [PMID: 23553721]
[36]
Troeberg, L.; Pike, R.N.; Morty, R.E.; Berry, R.K.; Coetzer, T.H.T.; Lonsdale-Eccles, J.D. Proteases from Trypanosoma brucei brucei. Purification, characterisation and interactions with host regulatory molecules. Eur. J. Biochem., 1996, 238(3), 728-736.
[http://dx.doi.org/10.1111/j.1432-1033.1996.0728w.x] [PMID: 8706674]
[37]
Verma, S.; Dixit, R.; Pandey, K.C. Cysteine proteases: Modes of activation and future prospects as pharmacological targets. Front. Pharmacol., 2016, 7, 107.
[http://dx.doi.org/10.3389/fphar.2016.00107] [PMID: 27199750]
[38]
Coulombe, R.; Grochulski, P.; Sivaraman, J.; Ménard, R.; Mort, J.S.; Cygler, M. Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J., 1996, 15(20), 5492-5503.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00934.x] [PMID: 8896443]
[39]
Yan, H.B.; Lou, Z.Z.; Li, L.; Brindley, P.J.; Zheng, Y.; Luo, X.; Hou, J.; Guo, A.; Jia, W.Z.; Cai, X. Genome-wide analysis of regulatory proteases sequences identified through bioinformatics data mining in Taenia solium. BMC Genomics, 2014, 15(1), 428.
[http://dx.doi.org/10.1186/1471-2164-15-428] [PMID: 24899069]
[40]
Puente, X.S.; Sánchez, L.M.; Overall, C.M.; López-Otín, C. Human and mouse proteases: A comparative genomic approach. Nat. Rev. Genet., 2003, 4(7), 544-558.
[http://dx.doi.org/10.1038/nrg1111] [PMID: 12838346]
[41]
Santos, C.C.; Sant’anna, C.; Terres, A.; Cunha-e-Silva, N.L.; Scharfstein, J. de A Lima, A.P. Chagasin, the endogenous cysteine-protease inhibitor of Trypanosoma cruzi, modulates parasite differentiation and invasion of mammalian cells. J. Cell Sci., 2005, 118(Pt 5), 901-915.
[http://dx.doi.org/10.1242/jcs.01677] [PMID: 15713748]
[42]
Erez, E.; Fass, D.; Bibi, E. How intramembrane proteases bury hydrolytic reactions in the membrane. Nature, 2009, 459(7245), 371-378.
[http://dx.doi.org/10.1038/nature08146] [PMID: 19458713]
[43]
Schechter, I.; Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun., 1967, 27(2), 157-162.
[http://dx.doi.org/10.1016/S0006-291X(67)80055-X] [PMID: 6035483]
[44]
Rosenthal, P.; Sijwali, P.; Singh, A.; Shenai, B. Cysteine proteases of malaria parasites: Targets for chemotherapy. Curr. Pharm. Des., 2002, 8(18), 1659-1672.
[http://dx.doi.org/10.2174/1381612023394197] [PMID: 12132997]
[45]
Pandey, K.C.; Dixit, R. Structure-function of falcipains: Malarial cysteine proteases. J. Trop. Med., 2012, 2012, 1-11.
[http://dx.doi.org/10.1155/2012/345195] [PMID: 22529862]
[46]
Pišlar, A. Mitrović A.; Sabotič J.; Pečar Fonović U.; Perišić Nanut, M.; Jakoš, T.; Senjor, E.; Kos, J. The role of cysteine peptidases in coronavirus cell entry and replication: The therapeutic potential of cathepsin inhibitors. PLoS Pathog., 2020, 16(11), e1009013.
[http://dx.doi.org/10.1371/journal.ppat.1009013] [PMID: 33137165]
[47]
Osipiuk, J.; Azizi, S.A.; Dvorkin, S.; Endres, M.; Jedrzejczak, R.; Jones, K.A.; Kang, S.; Kathayat, R.S.; Kim, Y.; Lisnyak, V.G.; Maki, S.L.; Nicolaescu, V.; Taylor, C.A.; Tesar, C.; Zhang, Y.A.; Zhou, Z.; Randall, G.; Michalska, K.; Snyder, S.A.; Dickinson, B.C.; Joachimiak, A. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun., 2021, 12(1), 743.
[http://dx.doi.org/10.1038/s41467-021-21060-3] [PMID: 33531496]
[48]
Cho, C.C.; Li, S.G.; Lalonde, T.J.; Yang, K.S.; Yu, G.; Qiao, Y.; Xu, S.; Ray Liu, W. Drug repurposing for the SARS-CoV-2 papain-like protease. ChemMedChem, 2022, 17(1), e202100455.
[http://dx.doi.org/10.1002/cmdc.202100455] [PMID: 34423563]
[49]
Sajid, M.; McKerrow, J.H. Cysteine proteases of parasitic organisms. Mol. Biochem. Parasitol., 2002, 120(1), 1-21.
[http://dx.doi.org/10.1016/S0166-6851(01)00438-8] [PMID: 11849701]
[50]
Steverding, D.; Sexton, D.W.; Wang, X.; Gehrke, S.S.; Wagner, G.K.; Caffrey, C.R. Trypanosoma brucei: Chemical evidence that cathepsin L is essential for survival and a relevant drug target. Int. J. Parasitol., 2012, 42(5), 481-488.
[http://dx.doi.org/10.1016/j.ijpara.2012.03.009] [PMID: 22549023]
[51]
Rosas-Jimenez, J.G.; Garcia-Revilla, M.A.; Madariaga-Mazon, A.; Martinez-Mayorga, K. Predictive global models of Cruzain inhibitors with large chemical coverage. ACS Omega, 2021, 6(10), 6722-6735.
[http://dx.doi.org/10.1021/acsomega.0c05645] [PMID: 33748586]
[52]
Barbosa da Silva, E.; Dall, E.; Briza, P.; Brandstetter, H.; Ferreira, R.S. Cruzain structures: Apocruzain and cruzain bound to S-methyl thiomethanesulfonate and implications for drug design. Acta Crystallogr. F Struct. Biol. Commun., 2019, 75(6), 419-427.
[http://dx.doi.org/10.1107/S2053230X19006320] [PMID: 31204688]
[53]
Turk, V.; Stoka, V.; Vasiljeva, O.; Renko, M.; Sun, T.; Turk, B.; Turk, D. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta. Proteins Proteomics, 2012, 1824(1), 68-88.
[http://dx.doi.org/10.1016/j.bbapap.2011.10.002] [PMID: 22024571]
[54]
Kerr, I.D.; Wu, P.; Marion-Tsukamaki, R.; Mackey, Z.B.; Brinen, L.S. Crystal Structures of TbCatB and rhodesain, potential chemotherapeutic targets and major cysteine proteases of Trypanosoma brucei. PLoS Negl. Trop. Dis., 2010, 4(6), e701.
[http://dx.doi.org/10.1371/journal.pntd.0000701] [PMID: 20544024]
[55]
Martinez-Mayorga, K.; Byler, K.G.; Ramirez-Hernandez, A.I.; Terrazas-Alvares, D.E. Cruzain inhibitors: Efforts made, current leads and a structural outlook of new hits. Drug Discov. Today, 2015, 20(7), 890-898.
[http://dx.doi.org/10.1016/j.drudis.2015.02.004] [PMID: 25697479]
[56]
Nicoll-Griffith, D.A. Use of cysteine-reactive small molecules in drug discovery for trypanosomal disease. Expert Opin. Drug Discov., 2012, 7(4), 353-366.
[http://dx.doi.org/10.1517/17460441.2012.668520] [PMID: 22458506]
[57]
Grab, D.J.; Garcia-Garcia, J.C.; Nikolskaia, O.V.; Kim, Y.V.; Brown, A.; Pardo, C.A.; Zhang, Y.; Becker, K.G.; Wilson, B.A. de A Lima, A.P.; Scharfstein, J.; Dumler, J.S. Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells. PLoS Negl. Trop. Dis., 2009, 3(7), e479.
[http://dx.doi.org/10.1371/journal.pntd.0000479] [PMID: 19621073]
[58]
Johé, P.; Jaenicke, E.; Neuweiler, H.; Schirmeister, T.; Kersten, C.; Hellmich, U.A. Structure, interdomain dynamics, and pH-dependent autoactivation of pro-rhodesain, the main lysosomal cysteine protease from African trypanosomes. J. Biol. Chem., 2021, 296, 100565.
[http://dx.doi.org/10.1016/j.jbc.2021.100565] [PMID: 33745969]
[59]
Kamphuis, I.G.; Kalk, K.H.; Swarte, M.B.A.; Drenth, J. Structure of papain refined at 1.65 Å resolution. J. Mol. Biol., 1984, 179(2), 233-256.
[http://dx.doi.org/10.1016/0022-2836(84)90467-4] [PMID: 6502713]
[60]
Roy, S.; Choudhury, D.; Aich, P.; Dattagupta, J.K.; Biswas, S. The structure of a thermostable mutant of pro-papain reveals its activation mechanism. Acta Crystallogr. D Biol. Crystallogr., 2012, 68(12), 1591-1603.
[http://dx.doi.org/10.1107/S0907444912038607] [PMID: 23151624]
[61]
Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res., 2018, 46(D1), D624-D632.
[http://dx.doi.org/10.1093/nar/gkx1134] [PMID: 29145643]
[62]
Vernet, T.; Berti, P.J.; de Montigny, C.; Musil, R.; Tessier, D.C.; Ménard, R.; Magny, M.C.; Storer, A.C.; Thomas, D.Y. Processing of the papain precursor. The ionization state of a conserved amino acid motif within the Pro region participates in the regulation of intramolecular processing. J. Biol. Chem., 1995, 270(18), 10838-10846.
[http://dx.doi.org/10.1074/jbc.270.18.10838] [PMID: 7738022]
[63]
Troeberg, L.; Morty, R.E.; Pike, R.N.; Lonsdale-Eccles, J.D.; Palmer, J.T.; McKerrow, J.H.; Coetzer, T.H.T. Cysteine proteinase inhibitors kill cultured bloodstream forms of Trypanosoma brucei brucei. Exp. Parasitol., 1999, 91(4), 349-355.
[http://dx.doi.org/10.1006/expr.1998.4386] [PMID: 10092479]
[64]
Scharfstein, J.; Schmitz, V.; Morandi, V.; Capella, M.M.A.; Lima, A.P.C.A.; Morrot, A.; Juliano, L.; Müller-Esterl, W. Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin B(2) receptors. J. Exp. Med., 2000, 192(9), 1289-1300.
[http://dx.doi.org/10.1084/jem.192.9.1289] [PMID: 11067878]
[65]
Mackey, Z.B.; O’Brien, T.C.; Greenbaum, D.C.; Blank, R.B.; McKerrow, J.H. A cathepsin B-like protease is required for host protein degradation in Trypanosoma brucei. J. Biol. Chem., 2004, 279(46), 48426-48433.
[http://dx.doi.org/10.1074/jbc.M402470200] [PMID: 15326171]
[66]
Girard, M.; Giraud, S.; Courtioux, B.; Jauberteau-Marchan, M.O.; Bouteille, B. Endothelial cell activation in the presence of African trypanosomes. Mol. Biochem. Parasitol., 2005, 139(1), 41-49.
[http://dx.doi.org/10.1016/j.molbiopara.2004.09.008] [PMID: 15610818]
[67]
Aparicio, I.M.; Scharfstein, J.; Lima, A.P.C.A. A new cruzipain-mediated pathway of human cell invasion by Trypanosoma cruzi requires trypomastigote membranes. Infect. Immun., 2004, 72(10), 5892-5902.
[http://dx.doi.org/10.1128/IAI.72.10.5892-5902.2004] [PMID: 15385491]
[68]
Caffrey, C.R.; Hansell, E.; Lucas, K.D.; Brinen, L.S.; Alvarez Hernandez, A.; Cheng, J.; Gwaltney, S.L., II; Roush, W.R.; Stierhof, Y.D.; Bogyo, M.; Steverding, D.; McKerrow, J.H. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Mol. Biochem. Parasitol., 2001, 118(1), 61-73.
[http://dx.doi.org/10.1016/S0166-6851(01)00368-1] [PMID: 11704274]
[69]
Grab, D.J.; Nikolskaia, O.; Kim, Y.V.; Lonsdale-Eccles, J.D.; Ito, S.; Hara, T.; Fukuma, T.; Nyarko, E.; Kim, K.J.; Stins, M.F.; Delannoy, M.J.; Rodgers, J.; Kim, K.S. African trypanosome interactions with an in vitro model of the human blood-brain barrier. J. Parasitol., 2004, 90(5), 970-979.
[http://dx.doi.org/10.1645/GE-287R] [PMID: 15562595]
[70]
Meirelles, M.N.L.; Juliano, L.; Carmona, E.; Silva, S.G.; Costa, E.M.; Murta, A.C.M.; Scharfstein, J. Inhibitors of the major cysteinyl proteinase (GP57/51) impair host cell invasion and arrest the intracellular development of Trypanosoma cruzi in vitro. Mol. Biochem. Parasitol., 1992, 52(2), 175-184.
[http://dx.doi.org/10.1016/0166-6851(92)90050-T] [PMID: 1620157]
[71]
Bonaldo, M.C.; d’Escoffier, L.N.; Salles, J.M.; Goldenberg, S. Characterization and expression of proteases during Trypanosoma cruzi metacyclogenesis. Exp. Parasitol., 1991, 73(1), 44-51.
[http://dx.doi.org/10.1016/0014-4894(91)90006-I] [PMID: 2055300]
[72]
Gazzinelli, R.T.; Leme, V.M.; Cancado, J.R.; Gazzinelli, G.; Scharfstein, J. Identification and partial characterization of Trypanosoma cruzi antigens recognized by T cells and immune sera from patients with Chagas’ disease. Infect. Immun., 1990, 58(5), 1437-1444.
[http://dx.doi.org/10.1128/iai.58.5.1437-1444.1990] [PMID: 2108932]
[73]
Carbonetto, C.H.; Malchiodi, E.L.; Chiaramonte, M.; De Isola, D.; Fossati, C.A.; Margni, R.A. Isolation of a Trypanosoma cruzi antigen by affinity chromatography with a monoclonal antibody. Preliminary evaluation of its possible applications in serological tests. Clin. Exp. Immunol., 2008, 82(1), 93-96.
[http://dx.doi.org/10.1111/j.1365-2249.1990.tb05409.x] [PMID: 2119921]
[74]
Duschak, V.G.; Riarte, A.; Segura, E.L.; Laucella, S.A. Humoral immune response to cruzipain and cardiac dysfunction in chronic Chagas disease. Immunol. Lett., 2001, 78(3), 135-142.
[http://dx.doi.org/10.1016/S0165-2478(01)00255-3] [PMID: 11578687]
[75]
Martínez, J.; Campetella, O.; Frasch, A.C.C.; Cazzulo, J.J. The reactivity of sera from chagasic patients against different fragments of cruzipain, the major cysteine proteinase from Trypanosoma cruzi, suggests the presence of defined antigenic and catalytic domains. Immunol. Lett., 1993, 35(2), 191-196.
[http://dx.doi.org/10.1016/0165-2478(93)90090-O] [PMID: 7685319]
[76]
Murta, A.C.M.; Persechini, P.M.; Padron, T.S.; de Souza, W.; Guimarães, J.A.; Scharfstein, J. Structural and functional identification of GP57/51 antigen of Trypanosoma cruzi as a cysteine proteinase. Mol. Biochem. Parasitol., 1990, 43(1), 27-38.
[http://dx.doi.org/10.1016/0166-6851(90)90127-8] [PMID: 1705310]
[77]
Lima, A.P.C.; Tessier, D.C.; Thomas, D.Y.; Scharfstein, J.; Storer, A.C.; Vernet, T. Identification of new cysteine protease gene isoforms in Trypanosoma cruzi. Mol. Biochem. Parasitol., 1994, 67(2), 333-338.
[http://dx.doi.org/10.1016/0166-6851(94)00144-8] [PMID: 7870137]
[78]
Eakin, A.E.; Mills, A.A.; Harth, G.; McKerrow, J.H.; Craik, C.S. The sequence, organization, and expression of the major cysteine protease (cruzain) from Trypanosoma cruzi. J. Biol. Chem., 1992, 267(11), 7411-7420. 7411. 7420
[http://dx.doi.org/10.1016/S0021-9258(18)42533-1] [PMID: 1559982]
[79]
Gillmor, S.A.; Craik, C.S.; Fletterick, R.J. Structural determinants of specificity in the cysteine protease cruzain. Protein Sci., 1997, 6(8), 1603-1611.
[http://dx.doi.org/10.1002/pro.5560060801] [PMID: 9260273]
[80]
Santos, V.C.; Oliveira, A.E.R.; Campos, A.C.B.; Reis-Cunha, J.L.; Bartholomeu, D.C.; Teixeira, S.M.R.; Lima, A.P.C.A.; Ferreira, R.S. The gene repertoire of the main cysteine protease of Trypanosoma cruzi, cruzipain, reveals four sub-types with distinct active sites. Sci. Rep., 2021, 11(1), 18231.
[http://dx.doi.org/10.1038/s41598-021-97490-2] [PMID: 34521898]
[81]
Judice, W.A.S.; Cezari, M.H.S.; Lima, A.P.C.A.; Scharfstein, J.; Chagas, J.R.; Tersariol, I.L.S.; Juliano, M.A.; Juliano, L. Comparison of the specificity, stability and individual rate constants with respective activation parameters for the peptidase activity of cruzipain and its recombinant form, cruzain, from Trypanosoma cruzi. Eur. J. Biochem., 2001, 268(24), 6578-6586.
[http://dx.doi.org/10.1046/j.0014-2956.2001.02612.x] [PMID: 11737212]
[82]
McGrath, M.E.; Eakin, A.E.; Engel, J.C.; McKerrow, J.H.; Craik, C.S.; Fletterick, R.J. The crystal structure of cruzain: A therapeutic target for Chagas’ disease. J. Mol. Biol., 1995, 247(2), 251-259.
[http://dx.doi.org/10.1006/jmbi.1994.0137] [PMID: 7707373]
[83]
Barbosa Da Silva, E.; Sharma, V.; Hernandez-Alvarez, L.; Tang, A.H.; Stoye, A.; O’Donoghue, A.J.; Gerwick, W.H.; Payne, R.J.; McKerrow, J.H.; Podust, L.M. Intramolecular interactions enhance the potency of gallinamide a analogues against Trypanosoma cruzi. J. Med. Chem., 2022, 65(5), 4255-4269.
[http://dx.doi.org/10.1021/acs.jmedchem.1c02063] [PMID: 35188371]
[84]
Lima, A.P.C.A.; dos Reis, F.C.G.; Serveau, C.; Lalmanach, G.; Juliano, L.; Ménard, R.; Vernet, T.; Thomas, D.Y.; Storer, A.C.; Scharfstein, J. Cysteine protease isoforms from Trypanosoma cruzi, cruzipain 2 and cruzain, present different substrate preference and susceptibility to inhibitors. Mol. Biochem. Parasitol., 2001, 114(1), 41-52.
[http://dx.doi.org/10.1016/S0166-6851(01)00236-5] [PMID: 11356512]
[85]
Lima, A.P.C.A.; Almeida, P.C.; Tersariol, I.L.S.; Schmitz, V.; Schmaier, A.H.; Juliano, L.; Hirata, I.Y.; Müller-Esterl, W.; Chagas, J.R.; Scharfstein, J. Heparan sulfate modulates kinin release by Trypanosoma cruzi through the activity of cruzipain. J. Biol. Chem., 2002, 277(8), 5875-5881.
[http://dx.doi.org/10.1074/jbc.M108518200] [PMID: 11726662]
[86]
Talavera-López, C.; Messenger, L.A.; Lewis, M.D.; Yeo, M.; Reis-Cunha, J.L.; Matos, G.M.; Bartholomeu, D.C.; Calzada, J.E.; Saldaña, A.; Ramírez, J.D.; Guhl, F.; Ocaña-Mayorga, S.; Costales, J.A.; Gorchakov, R.; Jones, K.; Nolan, M.S.; Teixeira, S.M.R.; Carrasco, H.J.; Bottazzi, M.E.; Hotez, P.J.; Murray, K.O.; Grijalva, M.J.; Burleigh, B.; Grisard, E.C.; Miles, M.A.; Andersson, B. Repeat-driven generation of antigenic diversity in a major human pathogen, Trypanosoma cruzi. Front. Cell. Infect. Microbiol., 2021, 11, 614665.
[http://dx.doi.org/10.3389/fcimb.2021.614665] [PMID: 33747978]
[87]
Weatherly, D.B.; Peng, D.; Tarleton, R.L. Recombination-driven generation of the largest pathogen repository of antigen variants in the protozoan Trypanosoma cruzi. BMC Genomics, 2016, 17(1), 729.
[http://dx.doi.org/10.1186/s12864-016-3037-z] [PMID: 27619017]
[88]
Campetella, O.; Henriksson, J.; Åslund, U.; Frasch, A.C.C.; Pettersson, U.; Cazzulo, J.J. The major cysteine proteinase (cruzipain) from Trypanosoma cruzi is encoded by multiple polymorphic tandemly organized genes located on different chromosomes. Mol. Biochem. Parasitol., 1992, 50(2), 225-234.
[http://dx.doi.org/10.1016/0166-6851(92)90219-A] [PMID: 1311053]
[89]
Denise, H.; Barrett, M.P. Uptake and mode of action of drugs used against sleeping sickness. Biochem. Pharmacol., 2001, 61(1), 1-5.
[http://dx.doi.org/10.1016/S0006-2952(00)00477-9] [PMID: 11137702]
[90]
Coura, J.R.; Abreu, L.L.; Willcox, H.P.F.; Petana, W. Estudo comparativo controlado com emprego de benznidazole, nifurtimox e placebo, na forma crônica da doença de Chagas, em uma área de campo com transmissão interrompida. I. Avaliação preliminar. Rev. Soc. Bras. Med. Trop., 1997, 30(2), 139-144.
[http://dx.doi.org/10.1590/S0037-86821997000200009] [PMID: 9148337]
[91]
Pollastri, M.P. Fexinidazole: A new drug for african sleeping sickness on the horizon. Trends Parasitol., 2018, 34(3), 178-179.
[http://dx.doi.org/10.1016/j.pt.2017.12.002] [PMID: 29275007]
[92]
Bahia, M.T.; Andrade, I.M.; Martins, T.A.F.; Nascimento, Á.F.S.; Diniz, L.F.; Caldas, I.S.; Talvani, A.; Trunz, B.B.; Torreele, E.; Ribeiro, I. Fexinidazole: A potential new drug candidate for Chagas disease. PLoS Negl. Trop. Dis., 2012, 6(11), e1870.
[http://dx.doi.org/10.1371/journal.pntd.0001870] [PMID: 23133682]
[93]
Wéry, M. Drug used in the treatment of sleeping sickness (human African trypanosomiasis: HAT). Int. J. Antimicrob. Agents, 1994, 4(3), 227-238.
[http://dx.doi.org/10.1016/0924-8579(94)90012-4] [PMID: 18611614]
[94]
Voogd, T.E.; Vansterkenburg, E.L.; Wilting, J.; Janssen, L.H. Recent research on the biological activity of suramin. Pharmacol. Rev., 1993, 45(2), 177-203.
[PMID: 8396782]
[95]
Steverding, D. The development of drugs for treatment of sleeping sickness: A historical review. Parasit. Vectors, 2010, 3(1), 15.
[http://dx.doi.org/10.1186/1756-3305-3-15] [PMID: 20219092]
[96]
Fairlamb, A.H. Chemotherapy of human African trypanosomiasis: Current and future prospects. Trends Parasitol., 2003, 19(11), 488-494.
[http://dx.doi.org/10.1016/j.pt.2003.09.002] [PMID: 14580959]
[97]
Barrett, S.V.; Barrett, M.P. Anti-sleeping sickness drugs and cancer chemotherapy. Parasitol. Today, 2000, 16(1), 7-9.
[http://dx.doi.org/10.1016/S0169-4758(99)01560-4] [PMID: 10637579]
[98]
Barrett, M.P.; Boykin, D.W.; Brun, R.; Tidwell, R.R. Human African trypanosomiasis: Pharmacological reengagement with a neglected disease. Br. J. Pharmacol., 2007, 152(8), 1155-1171.
[http://dx.doi.org/10.1038/sj.bjp.0707354] [PMID: 17618313]
[99]
Paine, M.F.; Wang, M.Z.; Generaux, C.N.; Boykin, D.W.; Wilson, W.D.; De Koning, H.P.; Olson, C.A.; Pohlig, G.; Burri, C.; Brun, R.; Murilla, G.A.; Thuita, J.K.; Barrett, M.P.; Tidwell, R.R. Diamidines for human African trypanosomiasis. Curr. Opin. Investig. Drugs, 2010, 11(8), 876-883.
[PMID: 20721830]
[100]
Shapiro, T.A.; Englund, P.T. Selective cleavage of kinetoplast DNA minicircles promoted by anti trypanosomal drugs. Proc. Natl. Acad. Sci. USA, 1990, 87(3), 950-954.
[http://dx.doi.org/10.1073/pnas.87.3.950] [PMID: 2153980]
[101]
Bosch, F.; Rosich, L. The contributions of Paul Ehrlich to pharmacology: A tribute on the occasion of the centenary of his Nobel Prize. Pharmacology, 2008, 82(3), 171-179.
[http://dx.doi.org/10.1159/000149583] [PMID: 18679046]
[102]
Carter, N.S.; Fairlamb, A.H. Arsenical-resistant trypanosomes lack an unusual adenosine transporter. Nature, 1993, 361(6408), 173-176.
[http://dx.doi.org/10.1038/361173a0] [PMID: 8421523]
[103]
Barrett, M.P.; Fairlamb, A.H. The biochemical basis of arsenical-diamidine crossresistance in African trypanosomes. Parasitol. Today, 1999, 15(4), 136-140.
[http://dx.doi.org/10.1016/S0169-4758(99)01414-3] [PMID: 10322334]
[104]
Schaftingen, E.; Opperdoes, F.R.; Hers, H.G. Effects of various metabolic conditions and of the trivalent arsenical melarsen oxide on the intracellular levels of fructose 2,6-bisphosphate and of glycolytic intermediates in Trypanosoma brucei. Eur. J. Biochem., 1987, 166(3), 653-661.
[http://dx.doi.org/10.1111/j.1432-1033.1987.tb13563.x] [PMID: 3038548]
[105]
Brun, R.; Don, R.; Jacobs, R.T.; Wang, M.Z.; Barrett, M.P. Development of novel drugs for human African trypanosomiasis. Future Microbiol., 2011, 6(6), 677-691.
[http://dx.doi.org/10.2217/fmb.11.44] [PMID: 21707314]
[106]
Bacchi, C.J.; Nathan, H.C.; Hutner, S.H.; McCann, P.P.; Sjoerdsma, A. Polyamine metabolism: A potential therapeutic target in trypanosomes. Science, 1980, 210(4467), 332-334.
[http://dx.doi.org/10.1126/science.6775372] [PMID: 6775372]
[107]
Docampo, R.; Moreno, S.N.J.; Stoppani, A.O.M.; Leon, W.; Cruz, F.S.; Villalta, F.; Muniz, R.F.A. Mechanism of nifurtimox toxicity in different forms of Trypanosoma cruzi. Biochem. Pharmacol., 1981, 30(14), 1947-1951.
[http://dx.doi.org/10.1016/0006-2952(81)90204-5] [PMID: 7023488]
[108]
Tsuhako, M.H.; Alves, M.J.M.; Colli, W.; Filardi, L.S.; Brener, Z.; Augusto, O. Comparative studies of nifurtimox uptake and metabolism by drug-resistant and susceptible strains of Trypanosoma cruzi. Comp. Biochem. Physiol. C Comp. Pharmacol., 1991, 99(3), 317-321.
[http://dx.doi.org/10.1016/0742-8413(91)90248-R] [PMID: 1685402]
[109]
Pépin, J.; Milord, F.; Meurice, F.; Ethier, L.; Loko, L.; Mpia, B. High-dose nifurtimox for arseno-resistant Trypanosoma brucei gambiense sleeping sickness: An open trial in central Zaire. Trans. R. Soc. Trop. Med. Hyg., 1992, 86(3), 254-256.
[http://dx.doi.org/10.1016/0035-9203(92)90298-Q] [PMID: 1412646]
[110]
Dias, J.C.P.; Coura, J.R.; Yasuda, M.A.S. The present situation, challenges, and perspectives regarding the production and utilization of effective drugs against human Chagas disease. Rev. Soc. Bras. Med. Trop., 2014, 47(1), 123-125.
[http://dx.doi.org/10.1590/0037-8682-0248-2013] [PMID: 24603750]
[111]
Pinazo, M.J.; Guerrero, L.; Posada, E.; Rodríguez, E.; Soy, D.; Gascon, J. Benznidazole-related adverse drug reactions and their relationship to serum drug concentrations in patients with chronic chagas disease. Antimicrob. Agents Chemother., 2013, 57(1), 390-395.
[http://dx.doi.org/10.1128/AAC.01401-12] [PMID: 23114763]
[112]
Kaiser, M.; Bray, M.A.; Cal, M.; Bourdin Trunz, B.; Torreele, E.; Brun, R. Anti trypanosomal activity of fexinidazole, a new oral nitroimidazole drug candidate for treatment of sleeping sickness. Antimicrob. Agents Chemother., 2011, 55(12), 5602-5608.
[http://dx.doi.org/10.1128/AAC.00246-11] [PMID: 21911566]
[113]
Torreele, E.; Bourdin Trunz, B.; Tweats, D.; Kaiser, M.; Brun, R.; Mazué, G.; Bray, M.A.; Pécoul, B. Fexinidazole--a new oral nitroimidazole drug candidate entering clinical development for the treatment of sleeping sickness. PLoS Negl. Trop. Dis., 2010, 4(12), e923.
[http://dx.doi.org/10.1371/journal.pntd.0000923] [PMID: 21200426]
[114]
Ding, D.; Zhao, Y.; Meng, Q.; Xie, D.; Nare, B.; Chen, D.; Bacchi, C.J.; Yarlett, N.; Zhang, Y.K.; Hernandez, V.; Xia, Y.; Freund, Y.; Abdulla, M.; Ang, K.H.; Ratnam, J.; McKerrow, J.H.; Jacobs, R.T.; Zhou, H.; Plattner, J.J. Discovery of novel benzoxaborole-based potent anti trypanosomal agents. ACS Med. Chem. Lett., 2010, 1(4), 165-169.
[http://dx.doi.org/10.1021/ml100013s] [PMID: 24900190]
[115]
Jones, D.C.; Foth, B.J.; Urbaniak, M.D.; Patterson, S.; Ong, H.B.; Berriman, M.; Fairlamb, A.H. Genomic and proteomic studies on the mode of action of oxaboroles against the African trypanosome. PLoS Negl. Trop. Dis., 2015, 9(12), e0004299.
[http://dx.doi.org/10.1371/journal.pntd.0004299] [PMID: 26684831]
[116]
Unciti-Broceta, J.D.; Maceira, J.; Morales, S.; García-Pérez, A.; Muñóz-Torres, M.E.; Garcia-Salcedo, J.A. Nicotinamide inhibits the lysosomal cathepsin b-like protease and kills African trypanosomes. J. Biol. Chem., 2013, 288(15), 10548-10557.
[http://dx.doi.org/10.1074/jbc.M112.449207] [PMID: 23443665]
[117]
Steverding, D.; Rushworth, S.A.; Florea, B.I.; Overkleeft, H.S. Trypanosoma brucei: Inhibition of cathepsin L is sufficient to kill bloodstream forms. Mol. Biochem. Parasitol., 2020, 235, 111246.
[http://dx.doi.org/10.1016/j.molbiopara.2019.111246] [PMID: 31743688]
[118]
Chen, Y.T.; Lira, R.; Hansell, E.; McKerrow, J.H.; Roush, W.R. Synthesis of macrocyclic trypanosomal cysteine protease inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(22), 5860-5863.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.012] [PMID: 18585034]
[119]
Ferreira, L.G.; Andricopulo, A.D. Targeting cysteine proteases in Trypanosomatid disease drug discovery. Pharmacol. Ther., 2017, 180, 49-61.
[http://dx.doi.org/10.1016/j.pharmthera.2017.06.004] [PMID: 28579388]
[120]
Du, X.; Hansell, E.; Engel, J.C.; Caffrey, C.R.; Cohen, F.E.; McKerrow, J.H. Aryl ureas represent a new class of anti-trypanosomal agents. Chem. Biol., 2000, 7(9), 733-742.
[http://dx.doi.org/10.1016/S1074-5521(00)00018-1] [PMID: 10980453]
[121]
Giroud, M.; Dietzel, U.; Anselm, L.; Banner, D.; Kuglstatter, A.; Benz, J.; Blanc, J.B.; Gaufreteau, D.; Liu, H.; Lin, X.; Stich, A.; Kuhn, B.; Schuler, F.; Kaiser, M.; Brun, R.; Schirmeister, T.; Kisker, C.; Diederich, F.; Haap, W. Repurposing a library of human cathepsin L ligands: Identification of macrocyclic lactams as potent rhodesain and Trypanosoma brucei inhibitors. J. Med. Chem., 2018, 61(8), 3350-3369.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01869] [PMID: 29590750]
[122]
Mosi, R.; Baird, I.R.; Cox, J.; Anastassov, V.; Cameron, B.; Skerlj, R.T.; Fricker, S.P. Rhenium inhibitors of Cathepsin B (ReO(SYS)X (Where Y = S, py; X = Cl, Br, SPhOMe- p)): Synthesis and mechanism of inhibition. J. Med. Chem., 2006, 49(17), 5262-5272.
[http://dx.doi.org/10.1021/jm060357z] [PMID: 16913715]
[123]
Mott, B.T.; Ferreira, R.S.; Simeonov, A.; Jadhav, A.; Ang, K.K.H.; Leister, W.; Shen, M.; Silveira, J.T.; Doyle, P.S.; Arkin, M.R.; McKerrow, J.H.; Inglese, J.; Austin, C.P.; Thomas, C.J.; Shoichet, B.K.; Maloney, D.J. Identification and optimization of inhibitors of trypanosomal cysteine proteases: Cruzain, rhodesain, and TbCatB. J. Med. Chem., 2010, 53(1), 52-60.
[http://dx.doi.org/10.1021/jm901069a] [PMID: 19908842]
[124]
Vicik, R.; Hoerr, V.; Glaser, M.; Schultheis, M.; Hansell, E.; McKerrow, J.H.; Holzgrabe, U.; Caffrey, C.R.; Ponte-Sucre, A.; Moll, H.; Stich, A.; Schirmeister, T. Aziridine-2,3-dicarboxylate inhibitors targeting the major cysteine protease of Trypanosoma brucei as lead trypanocidal agents. Bioorg. Med. Chem. Lett., 2006, 16(10), 2753-2757.
[http://dx.doi.org/10.1016/j.bmcl.2006.02.026] [PMID: 16516467]
[125]
Ettari, R.; Previti, S.; Maiorana, S.; Allegra, A.; Schirmeister, T.; Grasso, S.; Zappalà, M. Drug combination studies of curcumin and genistein against rhodesain of Trypanosoma brucei rhodesiense. Nat. Prod. Res., 2019, 33(24), 3577-3581.
[http://dx.doi.org/10.1080/14786419.2018.1483927] [PMID: 29897253]
[126]
Lavrado, J.; Mackey, Z.; Hansell, E.; McKerrow, J.H.; Paulo, A.; Moreira, R. Anti trypanosomal and cysteine protease inhibitory activities of alkyldiamine cryptolepine derivatives. Bioorg. Med. Chem. Lett., 2012, 22(19), 6256-6260.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.104] [PMID: 22926067]
[127]
Mallari, J.P.; Shelat, A.A.; Obrien, T.; Caffrey, C.R.; Kosinski, A.; Connelly, M.; Harbut, M.; Greenbaum, D.; McKerrow, J.H.; Guy, R.K. Development of potent purine-derived nitrile inhibitors of the trypanosomal protease TbcatB. J. Med. Chem., 2008, 51(3), 545-552.
[http://dx.doi.org/10.1021/jm070760l] [PMID: 18173229]
[128]
Mallari, J.P.; Shelat, A.A.; Kosinski, A.; Caffrey, C.R.; Connelly, M.; Zhu, F.; McKerrow, J.H.; Guy, R.K. Structure-guided development of selective TbcatB inhibitors. J. Med. Chem., 2009, 52(20), 6489-6493.
[http://dx.doi.org/10.1021/jm900908p] [PMID: 19769357]
[129]
Braga, S.F.P.; Santos, V.C.; Vieira, R.P.; Silva, E.B.; Monti, L.; Krake, S.H.; Martinez, P.D.G.; Dias, L.C.; Caffrey, C.R.; Siqueira-Neto, J.L.; de Oliveira, R.B.; Ferreira, R.S. From rational design to serendipity: Discovery of novel thiosemicarbazones as potent trypanocidal compounds. Eur. J. Med. Chem., 2022, 244, 114876.
[http://dx.doi.org/10.1016/j.ejmech.2022.114876] [PMID: 36343429]
[130]
Romero, E.L.; Morilla, M.J. Nanotechnological approaches against Chagas disease. Adv. Drug Deliv. Rev., 2010, 62(4-5), 576-588.
[http://dx.doi.org/10.1016/j.addr.2009.11.025] [PMID: 19941920]
[131]
Figueiredo da Silva, A.A.; Vieira, L.C.; Krieger, M.A.; Goldenberg, S.; Zanchin, N.I.T.; Guimarães, B.G. Crystal structure of chagasin, the endogenous cysteine-protease inhibitor from Trypanosoma cruzi. J. Struct. Biol., 2007, 157(2), 416-423.
[http://dx.doi.org/10.1016/j.jsb.2006.07.017] [PMID: 17011790]
[132]
Brak, K.; Doyle, P.S.; McKerrow, J.H.; Ellman, J.A. Identification of a new class of nonpeptidic inhibitors of cruzain. J. Am. Chem. Soc., 2008, 130(20), 6404-6410.
[http://dx.doi.org/10.1021/ja710254m] [PMID: 18435536]
[133]
McKerrow, J.; Engel, J.C.; Caffrey, C.R. Cysteine protease inhibitors as chemotherapy for parasitic infections. Bioorg. Med. Chem., 1999, 7(4), 639-644.
[http://dx.doi.org/10.1016/S0968-0896(99)00008-5] [PMID: 10353643]
[134]
Silva, J.R.A.; Cianni, L.; Araujo, D.; Batista, P.H.J.; de Vita, D.; Rosini, F.; Leitão, A.; Lameira, J.; Montanari, C.A. Assessment of the cruzain cysteine protease reversible and irreversible covalent inhibition mechanism. J. Chem. Inf. Model., 2020, 60(3), 1666-1677.
[http://dx.doi.org/10.1021/acs.jcim.9b01138] [PMID: 32126170]
[135]
Boudreau, P.D.; Miller, B.W.; McCall, L.I.; Almaliti, J.; Reher, R.; Hirata, K.; Le, T.; Siqueira-Neto, J.L.; Hook, V.; Gerwick, W.H. Design of gallinamide A analogs as potent inhibitors of the cysteine proteases human cathepsin L and Trypanosoma cruzi cruzain. J. Med. Chem., 2019, 62(20), 9026-9044.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00294] [PMID: 31539239]
[136]
Ferreira, R.S.; Dessoy, M.A.; Pauli, I.; Souza, M.L.; Krogh, R.; Sales, A.I.L.; Oliva, G.; Dias, L.C.; Andricopulo, A.D. Synthesis, biological evaluation, and structure-activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents. J. Med. Chem., 2014, 57(6), 2380-2392.
[http://dx.doi.org/10.1021/jm401709b] [PMID: 24533839]
[137]
Yang, P.Y.; Wang, M.; Li, L.; Wu, H.; He, C.Y.; Yao, S.Q. Design, synthesis and biological evaluation of potent azadipeptide nitrile inhibitors and activity-based probes as promising anti-Trypanosoma brucei agents. Chemistry, 2012, 18(21), 6528-6541.
[http://dx.doi.org/10.1002/chem.201103322] [PMID: 22488888]
[138]
Brak, K.; Kerr, I.D.; Barrett, K.T.; Fuchi, N.; Debnath, M.; Ang, K.; Engel, J.C.; McKerrow, J.H.; Doyle, P.S.; Brinen, L.S.; Ellman, J.A. Nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitors as promising new leads for Chagas disease chemotherapy. J. Med. Chem., 2010, 53(4), 1763-1773.
[http://dx.doi.org/10.1021/jm901633v] [PMID: 20088534]
[139]
Chen, Y.T.; Brinen, L.S.; Kerr, I.D.; Hansell, E.; Doyle, P.S.; McKerrow, J.H.; Roush, W.R. In vitro and in vivo studies of the trypanocidal properties of WRR-483 against Trypanosoma cruzi. PLoS Negl. Trop. Dis., 2010, 4(9), e825.
[http://dx.doi.org/10.1371/journal.pntd.0000825] [PMID: 20856868]
[140]
Trossini, G.H.G.; Malvezzi, A. T-do Amaral, A.; Rangel-Yagui, C.O.; Izidoro, M.A.; Cezari, M.H.; Juliano, L.; Chin, C.M.; Menezes, C.M.; Ferreira, E.I. Cruzain inhibition by hydroxymethylnitrofurazone and nitrofurazone: Investigation of a new target in Trypanosoma cruzi. J. Enzyme Inhib. Med. Chem., 2010, 25(1), 62-67.
[http://dx.doi.org/10.3109/14756360902941058] [PMID: 20030510]
[141]
Choe, Y.; Brinen, L.S.; Price, M.S.; Engel, J.C.; Lange, M.; Grisostomi, C.; Weston, S.G.; Pallai, P.V.; Cheng, H.; Hardy, L.W.; Hartsough, D.S.; McMakin, M.; Tilton, R.F.; Baldino, C.M.; Craik, C.S. Development of α-keto-based inhibitors of cruzain, a cysteine protease implicated in Chagas disease. Bioorg. Med. Chem., 2005, 13(6), 2141-2156.
[http://dx.doi.org/10.1016/j.bmc.2004.12.053] [PMID: 15727867]
[142]
Greenbaum, D.C.; Mackey, Z.; Hansell, E.; Doyle, P.; Gut, J.; Caffrey, C.R.; Lehrman, J.; Rosenthal, P.J.; McKerrow, J.H.; Chibale, K. Synthesis and structure-activity relationships of parasiticidal thiosemicarbazone cysteine protease inhibitors against Plasmodium falciparum, Trypanosoma brucei, and Trypanosoma cruzi. J. Med. Chem., 2004, 47(12), 3212-3219.
[http://dx.doi.org/10.1021/jm030549j] [PMID: 15163200]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy