Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Editorial

Recent Advancements in DNA Hairpin-based Fluorescent Probes

Author(s): Nikita Sharma, Debashish D. Das and Pooja A. Chawla*

Volume 23, Issue 5, 2023

Published on: 05 July, 2023

Page: [368 - 370] Pages: 3

DOI: 10.2174/1566523223666230619150006

Price: $65

conference banner
[1]
Xiao Y, Wu Z, Wong KY, Liu Z. Hairpin DNA probes based on target-induced in situ generation of luminescent silver nanoclusters. Chem Commun 2014; 50(37): 4849-52.
[http://dx.doi.org/10.1039/c4cc01154f] [PMID: 24686790]
[2]
Xu J, Jiang R, Feng Y, et al. Functional nucleic acid-based fluorescent probes for metal ion detection. Coord Chem Rev 2022; 459: 214453.
[http://dx.doi.org/10.1016/j.ccr.2022.214453]
[3]
Wang K, Huang J, Yang X, He X, Liu J. Recent advances in fluorescent nucleic acid probes for living cell studies. Analyst 2013; 138(1): 62-71.
[http://dx.doi.org/10.1039/C2AN35254K] [PMID: 23154215]
[4]
Huang J, Wu J, Li Z. Biosensing using hairpin DNA probes. Rev Anal Chem 2015; 34(1-2): 1-27.
[http://dx.doi.org/10.1515/revac-2015-0010]
[5]
Huang J, Yang X, He X, et al. Design and bioanalytical applications of DNA hairpin-based fluorescent probes. Trends Analyt Chem 2014; 53: 11-20.
[http://dx.doi.org/10.1016/j.trac.2013.08.007]
[6]
He JL, Zhang Y, Yang C, et al. Hybridization chain reaction based DNAzyme fluorescent sensor for l -histidine assay. Anal Methods 2019; 11(16): 2204-10.
[http://dx.doi.org/10.1039/C9AY00526A]
[7]
Sczepanski JT, Joyce GF. Specific inhibition of microRNA processing using L-RNA aptamers. J Am Chem Soc 2015; 137(51): 16032-7.
[http://dx.doi.org/10.1021/jacs.5b06696] [PMID: 26652064]
[8]
Zhao X, Dai X, Zhao S, et al. Aptamer-based fluorescent sensors for the detection of cancer biomarkers. Spectrochim Acta A Mol Biomol Spectrosc 2021; 247: 119038.
[http://dx.doi.org/10.1016/j.saa.2020.119038] [PMID: 33120124]
[9]
Lai Y, Li M, Liao X, Zou L. DNAzyme-regulated CRISPR/Cas12a based fluorescent biosensor for sensitive detection of alkaline phosphatase activity and inhibition. Anal Chim Acta 2022; 1233: 340518.
[http://dx.doi.org/10.1016/j.aca.2022.340518] [PMID: 36283791]
[10]
Ren W, Pang J, Ma R, et al. A signal on-off fluorescence sensor based on the self-assembly DNA tetrahedron for simultaneous detection of ochratoxin A and aflatoxin B1. Anal Chim Acta 2022; 1198: 339566.
[http://dx.doi.org/10.1016/j.aca.2022.339566] [PMID: 35190127]
[11]
Liang Z, Huang X, Tong Y, Lin X, Chen Z. Engineering an endonuclease-assisted rolling circle amplification synergistically catalyzing hairpin assembly mediated fluorescence platform for miR-21 detection. Talanta 2022; 247: 123568.
[http://dx.doi.org/10.1016/j.talanta.2022.123568] [PMID: 35609481]
[12]
Zou H, Lin C, Zan H, et al. A novel fluorescent aptasensor for ultrasensitive detection of Helicobacter pylori in stool samples based on catalytic hairpin assembly cascade hybridization chain reaction. Sens Actuators B Chem 2022; 368: 132157.
[http://dx.doi.org/10.1016/j.snb.2022.132157]
[13]
Shibata A, Higashi SL, Ikeda M. Nucleic acid-based fluorescent sensor systems: A review. Polym J 2022; 54(6): 751-66.
[http://dx.doi.org/10.1038/s41428-022-00623-1]
[14]
Geng F, Wang D, Shao C, Li G, Xu M, Feng L. Simple construction of a two-component fluorescent sensor for turn-on detection of Hg2+ in human serum. Anal Bioanal Chem 2022; 414(5): 2021-8.
[http://dx.doi.org/10.1007/s00216-021-03837-z] [PMID: 35013805]
[15]
Ma Y, Wu C, Yang W, Gao Z, Chen L. DNA hybridization-induced fluorescence variation in ThT: A new strategy of developing aqueous sensors for MO genes. Analyst 2022; 147(8): 1631-40.
[http://dx.doi.org/10.1039/D1AN02301B] [PMID: 35302559]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy