Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Letter Article

Efficient, Green One-Pot Synthesis of Antimicrobial Agents: Functionalized DPTS Catalyst for the Preparation of 2-Amino-4-Aryl-5-Oxo-4HChromene- 3-Carbonitriles, with Theoretical Calculations

Author(s): Razika Beldi*, Nadjet Aimene, Badra Barhouchi, Bachir Zouchoune and Raouf Boulcina

Volume 10, Issue 4, 2023

Published on: 28 August, 2023

Page: [263 - 275] Pages: 13

DOI: 10.2174/2213337210666230616094312

Price: $65

Abstract

Background: In the search for a new and effective synthetic approach to biologically chromene-derived compounds, a series of 2-amino-7, 7-dimethyl-5-oxo-4Htetrahydrochromene- 3-carbonitrile derivatives (4a-i) were synthesized. This synthesis involved the use of 4-(dimethylamino)pyridiniump-toluenesulfonate (DPTS) as a catalyst in an aqueous medium. Additionally, the relative stability between isomers was investigated using DFT/B3LYP calculations.

Methods: The target compounds were synthesized through a multicomponent reaction of 5,5- dimethyl-1,3-cyclohexanedione (dimedone) 1, various arylaldehydes (2a-i), and malononitrile 3 in water and were recrystallized in ethanol. The reaction was promoted using DPTS, which is a lowtoxic, inexpensive, commercially available, and easy-to-handle catalyst.

Results: The catalytic activity of DPTS was investigated in a condensation reaction conducted in an aqueous medium at room temperature. All synthesized compounds displayed considerable antimicrobial activities against human pathogenic bacteria and fungi.

Conclusion: The developed synthetic protocol demonstrates energy efficiency, shorter reaction time, environmental friendliness, high product yields with purity, and scalability to gram-scale synthesis. DPTS proved to be a valuable contribution to the field of organocatalysis. The synthesized compounds were screened for in vitro antimicrobial activities, demonstrating varying potency against the microbial strains. Compound 4h exhibited the most potent activity with a zone of inhibition (ZOI) measuring 15 mm against E.coli. This was followed by compounds 4b, 4d, 4f, and 4g, which displayed a ZOI of 12 mm. Furthermore, the antifungal results revealed promising anticandidal activity for compounds 4b, 4e, and 4h, with a lower minimum inhibitory concentration (MIC) of 0.031 mg/ml. In addition, molecular electrostatic potential (MEP) mapping, reactivity indices such as electronegativity, electrophilic index, softness, and hardness, as well as frontier molecular orbitals (HOMO-LUMO), were used to provide further evidence regarding the stability and reactivity of the synthesized products.

Next »
Graphical Abstract

[1]
Dömling A, Ugi I. Multicomponent reactions with isocyanides. Angew Chem Int Ed 2000; 39(18): 3168-210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[2]
Levi L, Müller TJJ. Multicomponent syntheses of functional chromophores. Chem Soc Rev 2016; 45(10): 2825-46.
[http://dx.doi.org/10.1039/C5CS00805K] [PMID: 26898222]
[3]
Tietze LF. Domino Reactions in organic synthesis. Chem Rev 1996; 96(1): 115-36.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746]
[4]
a) Dömling A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 2006; 106(1): 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771];
b) Eckert H. Diversity oriented syntheses of conventional heterocycles by smart multi component reactions (MCRs) of the last decade. Molecules 2012; 17(1): 1074-102.
[http://dx.doi.org/10.3390/molecules17011074] [PMID: 22267194];
c) de Graaff C, Ruijter E, Orru RVA. Recent developments in asymmetric multicomponent reactions. Chem Soc Rev 2012; 41(10): 3969-4009.
[http://dx.doi.org/10.1039/c2cs15361k] [PMID: 22546840];
d) Rotstein BH, Zaretsky S, Rai V, Yudin AK. Small heterocycles in multicomponent reactions. Chem Rev 2014; 114(16): 8323-59.
[http://dx.doi.org/10.1021/cr400615v] [PMID: 25032909]
[5]
Dabiri M, Tisseh ZN, Bahramnejad M, Bazgir A. Sonochemical multi-component synthesis of spirooxindoles. Ultrason Sonochem 2011; 18(5): 1153-9.
[http://dx.doi.org/10.1016/j.ultsonch.2010.12.004] [PMID: 21216172]
[6]
Hasaninejad A, Zare A, Shekouhy M. Highly efficient synthesis of triazolo[1,2-a]indazole-triones and novel spiro triazolo[1,2-a]indazole-tetraones under solvent-free conditions. Tetrahedron 2011; 67(2): 390-400.
[http://dx.doi.org/10.1016/j.tet.2010.11.029]
[7]
Maleki B, Kahoo GE, Tayebee R. One-pot synthesis of polysubstituted imidazoles catalysed by an ionic liquid. Org Prep Proced Int 2015; 47(6): 461-72.
[http://dx.doi.org/10.1080/00304948.2015.1088757]
[8]
Makarem S, Mohammadi AA, Fakhari AR. A multi-component electro-organic synthesis of 2-amino-4H-chromenes. Tetrahedron Lett 2008; 49(50): 7194-6.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.006]
[9]
Elinson MN, Dorofeev AS, Miloserdov FM, Ilovaisky AI, Feducovich SK, Belyakov PA. Catalysis of salicylaldehydes and two different acids with electricity: First example of an efficient multicomponent chromene scaffold. Adv Synth Catal 2008; 350(4): 591-601.
[http://dx.doi.org/10.1002/adsc.200700493]
[10]
Khafagy MM, Abd El-Wahab AHF, Eid FA, El-Agrody AM. Synthesis of halogen derivatives of benzo[h]chromene and benzo[a]anthracene with promising antimicrobial activities. Farmaco 2002; 57(9): 715-22.
[http://dx.doi.org/10.1016/S0014-827X(02)01263-6] [PMID: 12385521]
[11]
Smith PW, Sollis SL, Howes PD, et al. Dihydropyrancarboxamides related to zanamivir: A new series of inhibitors of influenza virus sialidases. 1. Discovery, synthesis, biological activity, and structure-activity relationships of 4-guanidino- and 4-amino-4H-pyran-6-carboxamides. J Med Chem 1998; 41(6): 787-97.
[http://dx.doi.org/10.1021/jm970374b] [PMID: 9526555]
[12]
Martínez-Grau A, Marco J. Friedländer reaction on 2-amino-3-cyano-4H-pyrans: Synthesis of derivatives of 4H-pyran [2,3-b] quinoline, new tacrine analogues. Bioorg Med Chem Lett 1997; 7(24): 3165-70.
[http://dx.doi.org/10.1016/S0960-894X(97)10165-2]
[13]
Dell CP, Smith CW. European Patent 537949, 1993.
[14]
Mohr SJ, Chirigos MA, Fuhrman FS, Pryor JW. Pyran copolymer as an effective adjuvant to chemotherapy against a murine leukemia and solid tumor. Cancer Res 1975; 35(12): 3750-4.
[PMID: 1192431]
[15]
Anderson DR, Hegde S, Reinhard E, et al. Aminocyanopyridine inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK-2). Bioorg Med Chem Lett 2005; 15(6): 1587-90.
[http://dx.doi.org/10.1016/j.bmcl.2005.01.067] [PMID: 15745802]
[16]
Skommer J, Wlodkowic D, Mättö M, Eray M, Pelkonen J. HA14-1, a small molecule Bcl-2 antagonist, induces apoptosis and modulates action of selected anticancer drugs in follicular lymphoma B cells. Leuk Res 2006; 30(3): 322-31.
[http://dx.doi.org/10.1016/j.leukres.2005.08.022] [PMID: 16213584]
[17]
Wang JL, Liu D, Zhang ZJ, et al. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci 2000; 97(13): 7124-9.
[http://dx.doi.org/10.1073/pnas.97.13.7124] [PMID: 10860979]
[18]
Ellis GP. Chromenes, chromanones, and chromones. In: The Chemistry of Heterocyclic Compounds Chromenes. New York, NY: John Wiley 1977; pp. 11-139.
[http://dx.doi.org/10.1002/9780470187012]
[19]
Hafez EA, Elnagdi MH, Elagamey AA, El-Taweel FAM. Nitriles in heterocyclic synthesis: Novel synthesis of benzo[c]coumarin and of benzo[c]pyrano[3,2-c]quinoline derivatives. Heterocycle 1987; 26(4): 903-7.
[http://dx.doi.org/10.3987/R-1987-04-0903]
[20]
Jensen AA, Erichsen MN, Nielsen CW, Stensbøl TB, Kehler J, Bunch L. Discovery of the first selective inhibitor of excitatory amino acid transporter subtype 1. J Med Chem 2009; 52(4): 912-5.
[http://dx.doi.org/10.1021/jm8013458] [PMID: 19161278]
[21]
Akocak S, Şen B, Lolak N, et al. One-pot three-component synthesis of 2-Amino-4H-Chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-StructNano-Objects 2017; 11: 25-31.
[http://dx.doi.org/10.1016/j.nanoso.2017.06.002]
[22]
Gao Y, Du DM. Enantioselective synthesis of 2-amino-5,6,7,8-tetrahydro-5-oxo-4H-chromene-3-carbonitriles using squaramide as the catalyst. Tetrahedron Asymmetry 2012; 23(18-19): 1343-9.
[http://dx.doi.org/10.1016/j.tetasy.2012.09.011]
[23]
Ding D, Zhao CG. Organocatalyzed synthesis of 2-amino-8-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles. Tetrahedron Lett 2010; 51(9): 1322-5.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.139] [PMID: 20161684]
[24]
Magar RL, Thorat PB, Bhagavan RP, Rajendra PP. Organocatalyzed synthesis of 2-Amino-4H-Chromenes: An Enantioselective approach. Curr Organocatal 2018; 5: 74-81.
[http://dx.doi.org/10.2174/2213337205666180614120400]
[25]
Mohammadi P, Sheibani H. Synthesis and characterization of Fe3O4@SiO2 guanidine-poly acrylic acid nanocatalyst and using it for one-pot synthesis of 4H-benzo[b]pyrans and dihydropyrano[c]chromenes in water. Mater Chem Phys 2019; 228: 140-6.
[http://dx.doi.org/10.1016/j.matchemphys.2018.11.058]
[26]
Datta B, Pasha MA. Glycine catalyzed convenient synthesis of 2-amino-4H-chromenes in aqueous medium under sonic condition. Ultrason Sonochem 2012; 19(4): 725-8.
[http://dx.doi.org/10.1016/j.ultsonch.2012.01.006] [PMID: 22325141]
[27]
Khodaei MM, Bahrami K, Farrokhi A. Amberlite IRA-400 (OH−) as a catalyst in the preparation of 4H-benzo[b]pyrans in aqueous media. Synth Commun 2010; 40(10): 1492-9.
[http://dx.doi.org/10.1080/00397910903097336]
[28]
Oshiro PB, da Silva GLPS, de Menezes ML, da Silva-Filho LC, Silva-Filho LC. Synthesis of 4H-chromenes promoted by NbCl5 through multicomponent reaction. Tetrahedron Lett 2015; 56(30): 4476-9.
[http://dx.doi.org/10.1016/j.tetlet.2015.05.099]
[29]
Harichandran G, Parameswari P, Shanmugam P. An efficient solvent free Amberlite IRA-400 Cl resin mediated multicomponent synthesis and photophysical properties of fluorescent 4 H -chromene derivatives. Dyes Pigments 2017; 139: 541-8.
[http://dx.doi.org/10.1016/j.dyepig.2016.12.026]
[30]
Sarrafi Y, Mehrasbi E, Vahid A, Tajbakhsh M. Well-ordered mesoporous silica nanoparticles as a recoverable catalyst for one-pot multicomponent synthesis of 4H-chromene derivatives. Chin J Catal 2012; 33(9-10): 1486-94.
[http://dx.doi.org/10.1016/S1872-2067(11)60423-3]
[31]
Zavar S. A novel three component synthesis of 2-amino-4H-chromenes derivatives using nano ZnO catalyst. Arab J Chem 2017; 10: S67-70.
[http://dx.doi.org/10.1016/j.arabjc.2012.07.011]
[32]
Pradhan S, Sahu V, Mishra BG. CaO-ZrO2 nanocomposite oxide prepared by urea hydrolysis method as heterogeneous base catalyst for synthesis of chromene analogues. J Mol Catal Chem 2016; 425: 297-309.
[http://dx.doi.org/10.1016/j.molcata.2016.10.031]
[33]
Li LY, Zeng Q-Q, Yang Y-X, et al. A domino reaction for the synthesis of 2-amino-4 H -chromene derivatives using bovine serum albumin as a catalyst. J Mol Catal, B Enzym 2015; 122: 1-7.
[http://dx.doi.org/10.1016/j.molcatb.2015.08.005]
[34]
Magar RL, Thorat PB, Jadhav VB, et al. Silica gel supported polyamine: A versatile catalyst for one pot synthesis of 2-amino-4H-chromene derivatives. J Mol Catal Chem 2013; 374-375: 118-24.
[http://dx.doi.org/10.1016/j.molcata.2013.03.022]
[35]
Gao S, Tsai CH, Tseng C, Yao CF. Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media. Tetrahedron 2008; 64(38): 9143-9.
[http://dx.doi.org/10.1016/j.tet.2008.06.061]
[36]
Naimi-Jamal MR, Mashkouri S, Sharifi A. An efficient, multicomponent approach for solvent-free synthesis of 2-amino-4H-chromene scaffold. Mol Divers 2010; 14(3): 473-7.
[http://dx.doi.org/10.1007/s11030-010-9246-5] [PMID: 20373141]
[37]
Seifi M, Sheibani H. High surface area MgO as a highly effective heterogeneous base catalyst for three-component synthesis of tetrahydrobenzopyran and 3,4-dihydropyrano[c]chromene derivatives in aqueous media. Catal Lett 2008; 126(3-4): 275-9.
[http://dx.doi.org/10.1007/s10562-008-9603-5]
[38]
Kumar D, Reddy VB, Sharad S, Dube U, Kapur S. A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes. Eur J Med Chem 2009; 44(9): 3805-9.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.017] [PMID: 19419801]
[39]
Jin TS, Wang AQ, Wang X, Zhang JS, Li TS. A clean onepot synthesis of tetrahydrobenzo[b]pyran derivatives catalyzed by hexadecyltrimethyl ammonium bromide in aqueous media. Synlett 2004; 5(5): 0871-3.
[http://dx.doi.org/10.1055/s-2004-820025]
[40]
Devi I, Bhuyan PJ. Sodium bromide catalysed one-pot synthesis of tetrahydrobenzo[b]pyrans via a three-component cyclocondensation under microwave irradiation and solvent free conditions. Tetrahedron Lett 2004; 45(47): 8625-7.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.158]
[41]
Amine KI, Boulcina R, Debache A. Novel one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones and 3,4,7,8- tetrahydroquinazoline-2,5-diones using pyridinium p-toluenesufonate as catalyst. Lett Org Chem 2015; 12(2): 77-84.
[http://dx.doi.org/10.2174/1570178612666141226193727]
[42]
Mahdjoub S, Derabli C, Boulcina R, Kirsch G, Debache A. Design and synthesis of novel 2-hydroxy-1,4-benzoxazine derivatives through three-component petasis reaction catalyzed by pyridinium toluene-sulphonate. J Chem Res 2016; 40(8): 449-52.
[http://dx.doi.org/10.3184/174751916X14656634976813]
[43]
Boureghda C, Amine KI, Carboni B, Boulcina R, Kermiche O, Debache A. A facile one-pot and green multi-component synthesis of 2-amino-4hpyrans promoted by pyridinium p-toluenesulfonate in aqueous medium. Lett Org Chem 2016; 13: 482-90.
[http://dx.doi.org/10.2174/1570178613666160822164749]
[44]
Laroum R, Debache A. New eco-friendly procedure for the synthesis of 4-arylmethylene-isoxazol-5(4 H)-ones catalyzed by pyridinium p -toluenesulfonate (PPTS) in aqueous medium. Synth Commun 2018; 48(14): 1876-82.
[http://dx.doi.org/10.1080/00397911.2018.1473440]
[45]
Martin N, Pascual C, Seoane C, Soto LL. The use of some activated nitriles in heterocyclic synthesis. Heterocycles 1987; 26: 2811-6.
[http://dx.doi.org/10.3987/R-1987-11-2811]
[46]
Harb AFA, Hesien AHM, Metwally SA, Elnagdi MH. Notizen/Notes polyazanaphthalenes, I the reaction of ethyl 6‐amino‐5‐cyano‐4‐aryl‐2‐methyl‐4H‐pyran‐3‐carboxylate with nucleophilic reagents. Liebigs Ann Chem 1989; 1989(6): 585-8.
[http://dx.doi.org/10.1002/jlac.1989198901102]
[47]
Zayed SE, Abou Elmaged EI, Metwally SA, Elnagdi MH. Reactions of six-membered heterocyclic β-enaminonitriles with electrophilic reagents. Collect Czech Chem Commun 1991; 56(10): 2175-82.
[http://dx.doi.org/10.1135/cccc19912175]
[48]
Elnagdi MH, Abdel-Motaleb RM, Mustafa M, Zayed MF, Kamel EM. Studies on heterocyclic enamines: New syntheses of 4 H -pyranes, pyranopyrazoles and pyranopyrimidines. J Heterocycl Chem 1987; 24(6): 1677-81.
[http://dx.doi.org/10.1002/jhet.5570240635]
[49]
Moore JS, Stupp SI. Room temperature polyesterification. Macromolecules 1990; 23(1): 65-70.
[http://dx.doi.org/10.1021/ma00203a013]
[50]
Redouane MA, Khiri-Meribout N, Benzerka S, Debache A. [DMImd-DMP]: A highly efficient and reusable catalyst for the synthesis of 4H-benzo[b]pyran derivatives. Heterocycl Commun 2019; 25(1): 167-79.
[http://dx.doi.org/10.1515/hc-2019-0025]
[51]
Berghe D, Vlietinck J. Screening methods for antibacterial and antiviral agents from higher plants. Plant Biochem 1991; 6: 47-68.
[52]
Matthew AW. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard M7-A7;. Wayne, PA: CLSI 2006.
[53]
Weinstein MP. Clinical performance standards for antimicrobial susceptibility testing; National committee for clinical laboratory standards: NCCLS 2019.
[54]
ADF 2022.1, SCM, Theoretical chemistry.
[55]
Baerends EJ, Ellis DE, Ros P. Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure. Chem Phys 1973; 2(1): 41-51.
[http://dx.doi.org/10.1016/0301-0104(73)80059-X]
[56]
te Velde G, Baerends EJ. Numerical integration for polyatomic systems. J Comput Phys 1992; 99(1): 84-98.
[http://dx.doi.org/10.1016/0021-9991(92)90277-6]
[57]
Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ. Towards an order- N DFT method. Theor Chem Acc 1998; 99(6): 391-403.
[http://dx.doi.org/10.1007/s002140050353]
[58]
Bickelhaupt FM, Baerends EJ. Kohn-Sham density functional theory: Predicting and understanding chemistry. Rev Comput Chem 2007; 15: 1-86.
[http://dx.doi.org/10.1002/9780470125922.ch1]
[59]
te Velde G, Bickelhaupt FM, Baerends EJ, et al. Chemistry with ADF. J Comput Chem 2001; 22(9): 931-67.
[http://dx.doi.org/10.1002/jcc.1056]
[60]
Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can J Phys 1980; 58(8): 1200-11.
[http://dx.doi.org/10.1139/p80-159]
[61]
Becke AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993; 98(7): 5648-52.
[http://dx.doi.org/10.1063/1.464913]
[62]
Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 1988; 37(2): 785-9.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[63]
Saouli S, Selatnia I, Zouchoune B, et al. Synthesis, spectroscopic characterization, crystal structure, DFT studies and biological activities of new hydrazone derivative: 1-(2,5-bis((E)-4-isopropylbenzylidene)cyclope ntylidene)-2-(2,4-dinitrophenyl) hydrazine. J Mol Struct 2020; 1213: 128203.
[http://dx.doi.org/10.1016/j.molstruc.2020.128203]
[64]
Zouchoune B. How the ascorbic acid and hesperidin do improve the biological activities of the cinnamon: Theoretical investigation. Struct Chem 2020; 31(6): 2333-40.
[http://dx.doi.org/10.1007/s11224-020-01594-w] [PMID: 32837117]
[65]
Zouchoune B. Theoretical investigation on the biological activities of ginger and some of its combinations: An overview of the antioxidant activity. Struct Chem 2021; 32(4): 1659-72.
[http://dx.doi.org/10.1007/s11224-021-01725-x]
[66]
Nemdili H, Zouchoune B, Saber Zendaoui M, Ferhati A. Structural, bonding and redox properties of 34-electron bimetallic complexes and their oxidized 32- and 33-electron and reduced 35- and 36-electron derivatives containing the indenyl fused π-system: A DFT overview. Polyhedron 2019; 160: 219-28.
[http://dx.doi.org/10.1016/j.poly.2018.12.049]
[67]
Mansouri L, Zouchoune B. Substitution effects and electronic properties of the azo dye (1-phenylazo-2-naphthol) species: A TD-DFT electronic spectra investigation. Can J Chem 2015; 93(5): 509-17.
[http://dx.doi.org/10.1139/cjc-2014-0436]
[68]
Zouchoune B, Mansouri L. Electronic structure and UV–Vis spectra simulation of square planar Bis(1-(4-methylphenylazo)-2-naphtol)-Transition metal complexes [M(L)2]x (M = Ni, Pd, Pt, Cu, Ag, and x = − 1, 0, + 1): DFT and TD-DFT study. Struct Chem 2019; 30(3): 691-701.
[http://dx.doi.org/10.1007/s11224-018-1215-0]
[69]
Li XH, Liu XR, Zhang XZ. Molecular structure and vibrational spectra of three substituted 4-thioflavones by density functional theory and ab initio Hartree–Fock calculations. Spectrochim Acta A Mol Biomol Spectrosc 2011; 78(1): 528-36.
[http://dx.doi.org/10.1016/j.saa.2010.11.022] [PMID: 21156350]
[70]
Versluis L, Ziegler T. The determination of molecular structures by density functional theory. The evaluation of analytical energy gradients by numerical integration. J Chem Phys 1988; 88(1): 322-8.
[http://dx.doi.org/10.1063/1.454603]
[71]
Fan L, Ziegler T. Application of density functional theory to infrared absorption intensity calculations on main group molecules. J Chem Phys 1992; 96(12): 9005-12.
[http://dx.doi.org/10.1063/1.462258]
[72]
Fan L, Ziegler T. Application of density functional theory to infrared absorption intensity calculations on transition-metal carbonyls. J Phys Chem 1992; 96(17): 6937-41.
[http://dx.doi.org/10.1021/j100196a016]
[73]
Bhat SI. Catalyst-Free cascade synthesis of densely functionalized chromenes in water. Asian J Chem 2019; 31(11): 2532-6.
[http://dx.doi.org/10.14233/ajchem.2019.22191]
[74]
Ramesh R, Maheswari S, Malecki JG, Lalitha A. NaN3 catalyzed highly convenient access to functionalized 4H-chromenes: A green one-pot approach for diversity amplification. Polycycl Aromat Compd 2020; 40(5): 1581-94.
[http://dx.doi.org/10.1080/10406638.2018.1564678]
[75]
Khiri-Meribout N, Benzerka S, Redouane MA, Debache A. Highly efficient, reusable, functionalized pyridinium salts as a catalyst for the simple and cost-effective preparation of tetrahydro[b]benzopyran derivatives. Curr Organocatal 2022; 9(3): 252-61.
[http://dx.doi.org/10.2174/2213337209666220217112937]
[76]
Farah S, Bouchakri N, Zendaoui SM, Saillard JY, Zouchoune B. Electronic structure of bis-azepine transition-metal complexes: A DFT investigation. J Mol Struct THEOCHEM 2010; 953(1-3): 143-50.
[http://dx.doi.org/10.1016/j.theochem.2010.05.019]
[77]
Farah S, Ababsa S, Benhamada N, Zouchoune B. Theoretical investigation of the coordination of dibenzazepine to transition-metal complexes: A DFT study. Polyhedron 2010; 29(13): 2722-30.
[http://dx.doi.org/10.1016/j.poly.2010.06.020]
[78]
Bouchakri N, Benmachiche A, Zouchoune B. Bonding analysis and electronic structure of transition metal–benzoquinoline complexes: A theoretical study. Polyhedron 2011; 30(16): 2644-53.
[http://dx.doi.org/10.1016/j.poly.2011.07.012]
[79]
Chetioui S, Zouchoune B, Merazig H, Bouaoud SE, Rouag DA, Djukic JP. Synthesis, spectroscopic characterization, crystal structure and theoretical investigation of two azo-palladium (II) complexes derived from substituted (1-phenylazo)-2-naphtol. Trans Met Chem (Weinh) 2021; 46(2): 91-101.
[http://dx.doi.org/10.1007/s11243-020-00425-5]
[80]
Drideh S, Zouchoune B, Zendaoui SM, Saillard JY. Electronic structure and structural diversity in indenyl in heterobinuclear transition-metal half-sandwich complexes. Theor Chem Acc 2018; 137(7): 99.
[http://dx.doi.org/10.1007/s00214-018-2285-1]
[81]
Zendaoui SM, Saillard JY, Zouchoune B. Ten-electron donor indenyl anion in binuclear transition-metal sandwich complexes: Electronic structure and bonding analysis. ChemistrySelect 2016; 1(5): 940-8.
[http://dx.doi.org/10.1002/slct.201600309]
[82]
Bensalem N, Zouchoune B. Coordination capabilities of anthracene ligand in binuclear sandwich complexes: DFT investigation. Struct Chem 2016; 27(6): 1781-92.
[http://dx.doi.org/10.1007/s11224-016-0798-6]
[83]
Aihara J. Reduced HOMO−LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J Phys Chem A 1999; 103: 7487-95.
[http://dx.doi.org/10.1021/jp990092i]
[84]
Manolopoulos DE, May JC, Down SE. Theoretical studies of the fullerenes: C34 to C70. Chem Phys Lett 1991; 181(2-3): 105-11.
[http://dx.doi.org/10.1016/0009-2614(91)90340-F]
[85]
Ruiz-Morales Y. HOMO−LUMO gap as an index of molecular size and structure for polycyclic aromatic hydrocarbons (PAHs) and asphaltenes: A theoretical study. I. J Phys Chem A 2002; 106(46): 11283-308.
[http://dx.doi.org/10.1021/jp021152e]
[86]
Padmaja L, Ravikumar C, Sajan D, et al. Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin-A2. J Raman Spectrosc 2009; 40(4): 419-28.
[http://dx.doi.org/10.1002/jrs.2145]
[87]
Fukui K. Role of frontier orbitals in chemical reactions. Science 1982; 218(4574): 747-54.
[http://dx.doi.org/10.1126/science.218.4574.747] [PMID: 17771019]
[88]
De Proft F, Martin JML, Geerlings P. Calculation of molecular electrostatic potentials and Fukui functions using density functional methods. Chem Phys Lett 1996; 256(4-5): 400-8.
[http://dx.doi.org/10.1016/0009-2614(96)00469-1]
[89]
Wiberg KB. Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 1968; 24(3): 1083-96.
[http://dx.doi.org/10.1016/0040-4020(68)88057-3]
[90]
Weinhold F, Landis CR. Valence and bonding: A natural bond orbital donor-acceptor perspective. Cambridge University Press 2005; p. 760.
[http://dx.doi.org/10.1021/ed084p43]
[91]
Weinhold F, Glendening ED. NBO 7.0 program manual: Natural bond orbital analysis programs (2001); Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin: Madison, WI 53706 2001.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy