Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Prevention of Parkinson’s Disease: From Risk Factors to Early Interventions

Author(s): Ming Guan Ng, Brendan Jun Lam Chan, Rhun Yian Koh, Khuen Yen Ng and Soi Moi Chye*

Volume 23, Issue 6, 2024

Published on: 07 July, 2023

Page: [746 - 760] Pages: 15

DOI: 10.2174/1871527322666230616092054

Price: $65

Abstract

Parkinson’s disease (PD) is a debilitating neurological disorder characterized by progressively worsening motor dysfunction. Currently, available therapies merely alleviate symptoms, and there are no cures. Consequently, some researchers have now shifted their attention to identifying the modifiable risk factors of PD, with the intention of possibly implementing early interventions to prevent the development of PD. Four primary risk factors for PD are discussed including environmental factors (pesticides and heavy metals), lifestyle (physical activity and dietary intake), drug abuse, and individual comorbidities. Additionally, clinical biomarkers, neuroimaging, biochemical biomarkers, and genetic biomarkers could also help to detect prodromal PD. This review compiled available evidence that illustrates the relationship between modifiable risk factors, biomarkers, and PD. In summary, we raise the distinct possibility of preventing PD via early interventions of the modifiable risk factors and early diagnosis.

Graphical Abstract

[1]
Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: Risk factors and prevention. Lancet Neurol 2016; 15(12): 1257-72.
[http://dx.doi.org/10.1016/S1474-4422(16)30230-7] [PMID: 27751556]
[2]
Dorsey ER, Sherer T, Okun MS, Bloem BR. The emerging evidence of the Parkinson Pandemic. J Parkinsons Dis 2018; 8(s1): S3-8.
[http://dx.doi.org/10.3233/JPD-181474] [PMID: 30584159]
[3]
Ou Z, Pan J, Tang S, et al. Global trends in the incidence, prevalence, and years lived with disability of Parkinson's disease in 204 countries/territories from 1990 to 2019. Front Public Health 2021; 9: 776847.
[http://dx.doi.org/10.3389/fpubh.2021.776847] [PMID: 34950630]
[4]
Tomiyama H, Mizuta I, Li Y, et al. LRRK2 P755L variant in sporadic Parkinson’s disease. J Hum Genet 2008; 53(11-12): 1012-5.
[http://dx.doi.org/10.1007/s10038-008-0336-5] [PMID: 18923807]
[5]
DeMaagd G, Philip A. Parkinson’s disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P&T 2015; 40(8): 504-32.
[PMID: 26236139]
[6]
Golpich M, Rahmani B, Mohamed Ibrahim N, et al. Preconditioning as a potential strategy for the prevention of Parkinson’s disease. Mol Neurobiol 2015; 51(1): 313-30.
[http://dx.doi.org/10.1007/s12035-014-8689-6] [PMID: 24696268]
[7]
Kalia LV, Lang AE. Parkinson’s disease. Lancet 2015; 386(9996): 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[8]
Kordower JH, Olanow CW, Dodiya HB, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 2013; 136(8): 2419-31.
[http://dx.doi.org/10.1093/brain/awt192] [PMID: 23884810]
[9]
Giguère N, Burke Nanni S, Trudeau LE. On cell loss and selective vulnerability of neuronal populations in Parkinson’s Disease. Front Neurol 2018; 9: 455.
[http://dx.doi.org/10.3389/fneur.2018.00455] [PMID: 29971039]
[10]
Dickson DW. Parkinson’s disease and parkinsonism: Neuropathology. Cold Spring Harb Perspect Med 2012; 2(8): a009258.
[http://dx.doi.org/10.1101/cshperspect.a009258] [PMID: 22908195]
[11]
Stoker TB, Greenland JC. Parkinson’s Disease: Pathogenesis and Clinical Aspects. Singapore: Codon Publications 2018; pp. 3-26.
[12]
Luo GR, Chen S, Le WD. Are heat shock proteins therapeutic target for Parkinson’s disease? Int J Biol Sci 2006; 3(1): 20-6.
[PMID: 17200688]
[13]
Chaudhuri KR, Healy DG, Schapira AHV. Non-motor symptoms of Parkinson’s disease: Diagnosis and management. Lancet Neurol 2006; 5(3): 235-45.
[http://dx.doi.org/10.1016/S1474-4422(06)70373-8] [PMID: 16488379]
[14]
Irwin DJ, White MT, Toledo JB, et al. Neuropathologic substrates of Parkinson disease dementia. Ann Neurol 2012; 72(4): 587-98.
[http://dx.doi.org/10.1002/ana.23659] [PMID: 23037886]
[15]
Aaseth J, Dusek P, Roos PM. Prevention of progression in Parkinson’s disease. Biometals 2018; 31(5): 737-47.
[http://dx.doi.org/10.1007/s10534-018-0131-5] [PMID: 30030679]
[16]
Radhakrishnan D, Goyal V. Parkinson's disease: A review. Neurol India 2018; 66: 26.
[http://dx.doi.org/10.4103/0028-3886.226451]
[17]
LeWitt PA, Fahn S. Levodopa therapy for Parkinson disease: A look backward and forward. Neurology 2016; 86(14) (Suppl. 1): S3-S12.
[http://dx.doi.org/10.1212/WNL.0000000000002509] [PMID: 27044648]
[18]
Stoker TB, Greenland JC. Parkinson’s Disease: Pathogenesis and Clinical Aspects. Codon Publications 2018; pp. 129-44.
[19]
Fabbri M, Coelho M, Guedes LC, et al. Response of non-motor symptoms to levodopa in late-stage Parkinson’s disease: Results of a levodopa challenge test. Parkinsonism Relat Disord 2017; 39: 37-43.
[http://dx.doi.org/10.1016/j.parkreldis.2017.02.007] [PMID: 28389156]
[20]
Bendi VS, Shou J, Joy S, Torres-Russotto D. Motor fluctuations and levodopa-induced dyskinesias in dopa-responsive dystonia. Parkinsonism Relat Disord 2018; 50: 126-7.
[http://dx.doi.org/10.1016/j.parkreldis.2018.02.011] [PMID: 29467094]
[21]
Chambers-Richards T, Su Y, Chireh B, D’Arcy C. Exposure to toxic occupations and their association with Parkinson’s disease: A systematic review with meta-analysis. Rev Environ Health 2023; 38(1): 65-83.
[http://dx.doi.org/10.1515/reveh-2021-0111] [PMID: 34796708]
[22]
Gunnarsson LG, Bodin L. Parkinson’s disease and occupational exposures: A systematic literature review and meta-analyses. Scand J Work Environ Health 2017; 43(3): 197-209.
[http://dx.doi.org/10.5271/sjweh.3641] [PMID: 28379585]
[23]
Petrovitch H, Ross GW, Abbott RD, et al. Plantation work and risk of Parkinson disease in a population-based longitudinal study. Arch Neurol 2002; 59(11): 1787-92.
[http://dx.doi.org/10.1001/archneur.59.11.1787] [PMID: 12433267]
[24]
Tangamornsuksan W, Lohitnavy O, Sruamsiri R, et al. Paraquat exposure and Parkinson’s disease: A systematic review and meta-analysis. Arch Environ Occup Health 2019; 74(5): 225-38.
[http://dx.doi.org/10.1080/19338244.2018.1492894] [PMID: 30474499]
[25]
Xu S, Yang X, Qian Y, Luo Q, Song Y, Xiao Q. Analysis of serum levels of organochlorine pesticides and related factors in Parkinson’s disease. Neurotoxicology 2022; 88: 216-23.
[http://dx.doi.org/10.1016/j.neuro.2021.12.001] [PMID: 34864106]
[26]
Tanner CM, Kamel F, Ross GW, et al. Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 2011; 119(6): 866-72.
[http://dx.doi.org/10.1289/ehp.1002839] [PMID: 21269927]
[27]
Chen H, Ritz B. The search for environmental causes of Parkinson’s Disease: Moving forward. J Parkinsons Dis 2018; 8(s1): S9-S17.
[http://dx.doi.org/10.3233/JPD-181493] [PMID: 30584168]
[28]
Ball N, Teo WP, Chandra S, Chapman J. Parkinson’s disease and the environment. Front Neurol 2019; 10: 218.
[http://dx.doi.org/10.3389/fneur.2019.00218] [PMID: 30941085]
[29]
Langston JW. The MPTP Story. J Parkinsons Dis 2017; 7(s1): S11-9.
[http://dx.doi.org/10.3233/JPD-179006] [PMID: 28282815]
[30]
Kanthasamy AG, Kitazawa M, Kanthasamy A, Anantharam V. Dieldrin-induced neurotoxicity: Relevance to Parkinson’s disease pathogenesis. Neurotoxicology 2005; 26(4): 701-19.
[http://dx.doi.org/10.1016/j.neuro.2004.07.010] [PMID: 16112328]
[31]
Yuan Y, Yan W, Sun J, Huang J, Mu Z, Chen NH. The molecular mechanism of rotenone-induced α-synuclein aggregation: Emphasizing the role of the calcium/GSK3β pathway. Toxicol Lett 2015; 233(2): 163-71.
[http://dx.doi.org/10.1016/j.toxlet.2014.11.029] [PMID: 25433145]
[32]
Furlong M, Tanner CM, Goldman SM, et al. Protective glove use and hygiene habits modify the associations of specific pesticides with Parkinson’s disease. Environ Int 2015; 75: 144-50.
[http://dx.doi.org/10.1016/j.envint.2014.11.002] [PMID: 25461423]
[33]
Benbrook CM, Davis DR. The dietary risk index system: A tool to track pesticide dietary risks. Environ Health 2020; 19(1): 103.
[http://dx.doi.org/10.1186/s12940-020-00657-z] [PMID: 33050918]
[34]
Nazal M, Zhao H. In heavy metals - Their environmental impacts and mitigation.Environmental Engineering. London: Intechopen Limited 2021.
[35]
Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 2014; 13(10): 1045-60.
[http://dx.doi.org/10.1016/S1474-4422(14)70117-6] [PMID: 25231526]
[36]
Brunette KE, Tran PV, Wobken JD, Carlson ES, Georgieff MK. Gestational and neonatal iron deficiency alters apical dendrite structure of CA1 pyramidal neurons in adult rat hippocampus. Dev Neurosci 2010; 32(3): 238-48.
[http://dx.doi.org/10.1159/000314341] [PMID: 20689287]
[37]
Adani G, Filippini T, Michalke B, Vinceti M. Selenium and other trace elements in the Etiology of Parkinson’s Disease: A systematic review and meta-analysis of case-control studies. Neuroepidemiology 2020; 54(1): 1-23.
[http://dx.doi.org/10.1159/000502357] [PMID: 31454800]
[38]
Garza-Lombó C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R. Neurotoxicity linked to dysfunctional metal ion homeostasis and xenobiotic metal exposure: Redox signaling and oxidative stress. Antioxid Redox Signal 2018; 28(18): 1669-703.
[http://dx.doi.org/10.1089/ars.2017.7272] [PMID: 29402131]
[39]
Mackenzie EL, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: From molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10(6): 997-1030.
[http://dx.doi.org/10.1089/ars.2007.1893] [PMID: 18327971]
[40]
Hoyer W, Cherny D, Subramaniam V, Jovin TM. Impact of the acidic C-terminal region comprising amino acids 109-140 on alpha-synuclein aggregation in vitro. Biochemistry 2004; 43(51): 16233-42.
[http://dx.doi.org/10.1021/bi048453u] [PMID: 15610017]
[41]
Montes S, Rivera-Mancia S, Diaz-Ruiz A, Tristan-Lopez L, Rios C. Copper and copper proteins in Parkinson’s Disease. Oxid Med Cell Longev 2014; 2014: 1-15.
[http://dx.doi.org/10.1155/2014/147251]
[42]
Davies KM, Mercer JFB, Chen N, Double KL. Copper dyshomoeostasis in Parkinson’s disease: Implications for pathogenesis and indications for novel therapeutics. Clin Sci 2016; 130(8): 565-74.
[http://dx.doi.org/10.1042/CS20150153] [PMID: 26957644]
[43]
Tavassoly O, Nokhrin S, Dmitriev OY, Lee JS. Cu(II) and dopamine bind to α-synuclein and cause large conformational changes. FEBS J 2014; 281(12): 2738-53.
[http://dx.doi.org/10.1111/febs.12817] [PMID: 24725464]
[44]
Bowman AB, Kwakye GF, Herrero Hernández E, Aschner M. Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 2011; 25(4): 191-203.
[http://dx.doi.org/10.1016/j.jtemb.2011.08.144] [PMID: 21963226]
[45]
Flora SJS. MetalsBiomarkers in Toxicology. Massachusetts: Academic Press 2014; pp. 485-519.
[http://dx.doi.org/10.1016/B978-0-12-404630-6.00029-4]
[46]
Dobson AW, Erikson KM, Aschner M. Manganese Neurotoxicity. Ann N Y Acad Sci 2004; 1012(1): 115-28.
[http://dx.doi.org/10.1196/annals.1306.009] [PMID: 15105259]
[47]
Sidoryk-Wegrzynowicz M, Aschner M. Role of astrocytes in manganese mediated neurotoxicity. BMC Pharmacol Toxicol 2013; 14(1): 23.
[http://dx.doi.org/10.1186/2050-6511-14-23] [PMID: 23594835]
[48]
Harischandra DS, Ghaisas S, Zenitsky G, et al. Manganese-Induced Neurotoxicity: New insights into the triad of protein misfolding, mitochondrial impairment, and neuroinflammation. Front Neurosci 2019; 13: 654.
[http://dx.doi.org/10.3389/fnins.2019.00654] [PMID: 31293375]
[49]
Sarkar S, Malovic E, Harischandra DS, et al. Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes. Neurotoxicology 2018; 64: 204-18.
[http://dx.doi.org/10.1016/j.neuro.2017.05.009] [PMID: 28539244]
[50]
Martinez-Finley EJ, Gavin CE, Aschner M, Gunter TE. Manganese neurotoxicity and the role of reactive oxygen species. Free Radic Biol Med 2013; 62: 65-75.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.01.032] [PMID: 23395780]
[51]
Raj K, Kaur P, Gupta GD, Singh S. Metals associated neurodegeneration in Parkinson’s disease: Insight to physiological, pathological mechanisms and management. Neurosci Lett 2021; 753: 135873.
[http://dx.doi.org/10.1016/j.neulet.2021.135873] [PMID: 33812934]
[52]
Weisskopf MG, Weuve J, Nie H, et al. Association of cumulative lead exposure with Parkinson’s disease. Environ Health Perspect 2010; 118(11): 1609-13.
[http://dx.doi.org/10.1289/ehp.1002339] [PMID: 20807691]
[53]
Coon S, Stark A, Peterson E, et al. Whole-body lifetime occupational lead exposure and risk of Parkinson’s disease. Environ Health Perspect 2006; 114(12): 1872-6.
[http://dx.doi.org/10.1289/ehp.9102] [PMID: 17185278]
[54]
Ashafaq M, Tabassum H, Vishnoi S, Mohd S, Raisuddin S, Parvez S. Tannic acid alleviates lead acetate-induced neurochemical perturbations in rat brain. Neurosci Lett 2016; 617: 94-100.
[http://dx.doi.org/10.1016/j.neulet.2016.02.001] [PMID: 26851560]
[55]
Patra RC, Rautray AK, Swarup D. Oxidative stress in lead and cadmium toxicity and its Amelioration. Vet Med Int 2011; 2011: 1-9.
[http://dx.doi.org/10.4061/2011/457327]
[56]
Zhang J, Cai T, Zhao F, et al. The role of α-synuclein and tau hyperphosphorylation-mediated autophagy and apoptosis in lead-induced learning and memory injury. Int J Biol Sci 2012; 8(7): 935-44.
[http://dx.doi.org/10.7150/ijbs.4499] [PMID: 22811615]
[57]
Fernandes Azevedo B, Barros Furieri L, Peçanha FM, et al. Toxic effects of mercury on the cardiovascular and central nervous systems. J Biomed Biotechnol 2012; 2012: 1-11.
[http://dx.doi.org/10.1155/2012/949048] [PMID: 21836813]
[58]
Jan A, Azam M, Siddiqui K, Ali A, Choi I, Haq Q. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci 2015; 16(12): 29592-630.
[http://dx.doi.org/10.3390/ijms161226183] [PMID: 26690422]
[59]
Rice KM, Walker EM Jr, Wu M, Gillette C, Blough ER. Environmental mercury and its toxic effects. J Prev Med Public Health 2014; 47(2): 74-83.
[http://dx.doi.org/10.3961/jpmph.2014.47.2.74] [PMID: 24744824]
[60]
Caudle WM, Guillot TS, Lazo CR, Miller GW. Industrial toxicants and Parkinson’s disease. Neurotoxicology 2012; 33(2): 178-88.
[http://dx.doi.org/10.1016/j.neuro.2012.01.010]
[61]
Verstraeten SV, Aimo L, Oteiza PI. Aluminium and lead: Molecular mechanisms of brain toxicity. Arch Toxicol 2008; 82(11): 789-802.
[http://dx.doi.org/10.1007/s00204-008-0345-3] [PMID: 18668223]
[62]
Lukiw WJ, Percy ME, Kruck TP. Nanomolar aluminum induces pro-inflammatory and pro-apoptotic gene expression in human brain cells in primary culture. J Inorg Biochem 2005; 99(9): 1895-8.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.04.021] [PMID: 15961160]
[63]
Pierozan P, Biasibetti H, Schmitz F, et al. Neurotoxicity of methylmercury in isolated astrocytes and neurons: The Cytoskeleton as a main target. Mol Neurobiol 2017; 54(8): 5752-67.
[http://dx.doi.org/10.1007/s12035-016-0101-2] [PMID: 27660266]
[64]
Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y. Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: An X-ray microanalysis. J Neurochem 1991; 56(2): 446-51.
[http://dx.doi.org/10.1111/j.1471-4159.1991.tb08170.x] [PMID: 1988548]
[65]
Kozlowski H, Luczkowski M, Remelli M, Valensin D. Copper, zinc and iron in neurodegenerative diseases (Alzheimer’s, Parkinson’s and prion diseases). Coord Chem Rev 2012; 256(19-20): 2129-41.
[http://dx.doi.org/10.1016/j.ccr.2012.03.013]
[66]
Cheng P, Yu J, Huang W, et al. Dietary intake of iron, zinc, copper, and risk of Parkinson’s disease: A meta-analysis. Neurol Sci 2015; 36(12): 2269-75.
[http://dx.doi.org/10.1007/s10072-015-2349-0] [PMID: 26265293]
[67]
Acheampong F, Akenten JW, Imoro R, Agbesie HR, Abaye D. Evaluation of heavy metal pollution in the Suame Industrial Area, Kumasi, Ghana. J Health Pollut 2016; 6(10): 56-63.
[http://dx.doi.org/10.5696/2156-9614-6-10.56] [PMID: 30524785]
[68]
Baby R, Saifullah B, Hussein MZ. Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Res Lett 2019; 14(1): 341.
[http://dx.doi.org/10.1186/s11671-019-3167-8] [PMID: 31712991]
[69]
Singh N, Kumar D, Sahu AP. Arsenic in the environment: Effects on human health and possible prevention. J Environ Biol 2007; 28(2) (Suppl.): 359-65.
[PMID: 17929751]
[70]
Goodwin VA, Richards SH, Taylor RS, Taylor AH, Campbell JL. The effectiveness of exercise interventions for people with Parkinson’s disease: A systematic review and meta-analysis. Mov Disord 2008; 23(5): 631-40.
[http://dx.doi.org/10.1002/mds.21922] [PMID: 18181210]
[71]
Yang F, Trolle Lagerros Y, Bellocco R, et al. Physical activity and risk of Parkinson’s disease in the Swedish National March Cohort. Brain 2015; 138(2): 269-75.
[http://dx.doi.org/10.1093/brain/awu323] [PMID: 25410713]
[72]
Mak MK, Wong-Yu IS, Shen X, Chung CL. Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat Rev Neurol 2017; 13(11): 689-703.
[http://dx.doi.org/10.1038/nrneurol.2017.128] [PMID: 29027544]
[73]
Lai CH, Chen HC, Liou TH, Li W, Chen SC. Exercise interventions for individuals with neurological disorders. Am J Phys Med Rehabil 2019; 98(10): 921-30.
[http://dx.doi.org/10.1097/PHM.0000000000001247] [PMID: 31206360]
[74]
Fang X, Han D, Cheng Q, et al. Association of levels of physical activity with risk of Parkinson Disease. JAMA Netw Open 2018; 1(5): e182421.
[http://dx.doi.org/10.1001/jamanetworkopen.2018.2421] [PMID: 30646166]
[75]
Llamas-Velasco S, Contador I, Méndez-Guerrero A, et al. Physical activity and risk of Parkinson’s disease and parkinsonism in a prospective population-based study (NEDICES). Prev Med Rep 2021; 23: 101485.
[http://dx.doi.org/10.1016/j.pmedr.2021.101485] [PMID: 34307002]
[76]
Svensson M, Lexell J, Deierborg T. Effects of physical exercise on neuroinflammation, neuroplasticity, neurodegeneration, and behavior. Neurorehabil Neural Repair 2015; 29(6): 577-89.
[http://dx.doi.org/10.1177/1545968314562108] [PMID: 25527485]
[77]
Bloomer RJ, Schilling BK, Karlage R, Ledoux MS, Pfeiffer RF, Callegari J. Effect of resistance training on blood oxidative stress in Parkinson disease. Med Sci Sports Exerc 2008; 40(8): 1385-9.
[http://dx.doi.org/10.1249/MSS.0b013e31816f1550] [PMID: 18614956]
[78]
Tuon T, Valvassori SS, Lopes-Borges J, et al. Physical training exerts neuroprotective effects in the regulation of neurochemical factors in an animal model of Parkinson’s disease. Neuroscience 2012; 227: 305-12.
[http://dx.doi.org/10.1016/j.neuroscience.2012.09.063] [PMID: 23041759]
[79]
Koo JH, Jang YC, Hwang DJ, et al. Treadmill exercise produces neuroprotective effects in a murine model of Parkinson’s disease by regulating the TLR2/MyD88/NF-κB signaling pathway. Neuroscience 2017; 356: 102-13.
[http://dx.doi.org/10.1016/j.neuroscience.2017.05.016] [PMID: 28527958]
[80]
Foley TE, Fleshner M. Neuroplasticity of dopamine circuits after exercise: Implications for central fatigue. Neuromolecular Med 2008; 10(2): 67-80.
[http://dx.doi.org/10.1007/s12017-008-8032-3] [PMID: 18274707]
[81]
Monteiro-Junior RS, Cevada T, Oliveira BRR, et al. We need to move more: Neurobiological hypotheses of physical exercise as a treatment for Parkinson’s disease. Med Hypotheses 2015; 85(5): 537-41.
[http://dx.doi.org/10.1016/j.mehy.2015.07.011] [PMID: 26209418]
[82]
Gerecke KM, Jiao Y, Pani A, Pagala V, Smeyne RJ. Exercise protects against MPTP-induced neurotoxicity in mice. Brain Res 2010; 1341: 72-83.
[http://dx.doi.org/10.1016/j.brainres.2010.01.053] [PMID: 20116369]
[83]
Earhart GM, Falvo MJ. Parkinson disease and exercise. Compr Physiol 3(2)2013; : 833-48.
[http://dx.doi.org/10.1002/cphy.c100047]
[84]
Crotty GF, Schwarzschild MA. Chasing protection in Parkinson’s disease: Does exercise reduce risk and progression? Front Aging Neurosci 2020; 12: 186.
[http://dx.doi.org/10.3389/fnagi.2020.00186] [PMID: 32636740]
[85]
Hsueh SC, Chen KY, Lai JH, et al. Voluntary physical exercise improves subsequent motor and cognitive impairments in a rat model of Parkinson’s Disease. Int J Mol Sci 2018; 19(2): 508.
[http://dx.doi.org/10.3390/ijms19020508] [PMID: 29419747]
[86]
Palasz E, Niewiadomski W, Gasiorowska A, Mietelska-Porowska A, Niewiadomska G. Neuroplasticity and neuroprotective effect of treadmill training in the chronic mouse model of Parkinson’s Disease. Neural Plast 2019; 2019: 1-14.
[http://dx.doi.org/10.1155/2019/8215017]
[87]
Alonso-Frech F, Sanahuja JJ, Rodriguez AM. Exercise and physical therapy in early management of Parkinson disease. Neurologist 2011; 17(6) (Suppl. 1): S47-53.
[http://dx.doi.org/10.1097/NRL.0b013e31823968ec] [PMID: 22045326]
[88]
Nabi M, Tabassum N. Role of environmental toxicants on neurodegenerative disorders. Frontiers in Toxicology 2022; 4: 837579.
[http://dx.doi.org/10.3389/ftox.2022.837579] [PMID: 35647576]
[89]
Olsson E, Byberg L, Höijer J, Kilander L, Larsson SC. Milk and fermented milk intake and Parkinson’s disease: Cohort study. Nutrients 2020; 12(9): 2763.
[http://dx.doi.org/10.3390/nu12092763] [PMID: 32927800]
[90]
Agim ZS, Cannon JR. Dietary factors in the etiology of Parkinson’s disease. BioMed Res Int 2015; 2015: 1-16.
[http://dx.doi.org/10.1155/2015/672838]
[91]
Sääksjärvi K, Knekt P, Lundqvist A, et al. A cohort study on diet and the risk of Parkinson’s disease: The role of food groups and diet quality. Br J Nutr 2013; 109(2): 329-37.
[http://dx.doi.org/10.1017/S0007114512000955] [PMID: 22716925]
[92]
Hughes KC, Gao X, Kim IY, et al. Intake of dairy foods and risk of Parkinson disease. Neurology 2017; 89(1): 46-52.
[http://dx.doi.org/10.1212/WNL.0000000000004057] [PMID: 28596209]
[93]
Jiang W, Ju C, Jiang H, Zhang D. Dairy foods intake and risk of Parkinson’s disease: A dose-response meta-analysis of prospective cohort studies. Eur J Epidemiol 2014; 29(9): 613-9.
[http://dx.doi.org/10.1007/s10654-014-9921-4] [PMID: 24894826]
[94]
Abbott RD, Ross GW, Petrovitch H, et al. Midlife milk consumption and substantia nigra neuron density at death. Neurology 2016; 86(6): 512-9.
[http://dx.doi.org/10.1212/WNL.0000000000002254] [PMID: 26658906]
[95]
Lang F, Ma K, Leibrock C, Salker M, Singh Y. The Putative Role of 1,25(OH)2D3 in the association of milk consumption and Parkinson’s Disease. Neurosignals 2020; 28(1): 14-24.
[http://dx.doi.org/10.33594/000000321]
[96]
Argano C, Mallaci Bocchio R, Natoli G, Scibetta S, Lo Monaco M, Corrao S. Protective effect of vitamin D supplementation on COVID-19-related intensive care hospitalization and mortality: Definitive evidence from meta-analysis and trial sequential analysis. Pharmaceuticals 2023; 16(1): 130.
[http://dx.doi.org/10.3390/ph16010130] [PMID: 36678627]
[97]
Chen H, Zhang SM, Hernán MA, Willett WC, Ascherio A. Dietary intakes of fat and risk of Parkinson’s disease. Am J Epidemiol 2003; 157(>11): 1007-14.
[http://dx.doi.org/10.1093/aje/kwg073] [PMID: 12777364]
[98]
Sun Q, Qu Y, Chen X, Xu M-M. Relationship between high dietary fat intake and Parkinson’s disease risk: A meta-analysis. Neural Regen Res 2019; 14(12): 2156-63.
[http://dx.doi.org/10.4103/1673-5374.262599] [PMID: 31397355]
[99]
Dong J, Beard JD, Umbach DM, et al. Dietary fat intake and risk for Parkinson’s disease. Mov Disord 2014; 29(13): 1623-30.
[http://dx.doi.org/10.1002/mds.26032] [PMID: 25186946]
[100]
Wang A, Lin Y, Wu Y, Zhang D. Macronutrients intake and risk of Parkinson’s disease: A meta-analysis. Geriatr Gerontol Int 2015; 15(5): 606-16.
[http://dx.doi.org/10.1111/ggi.12321] [PMID: 25163395]
[101]
Socała K, Szopa A, Serefko A, Poleszak E, Wlaź P. Neuroprotective effects of coffee bioactive compounds: A review. Int J Mol Sci 2020; 22(1): 107.
[http://dx.doi.org/10.3390/ijms22010107] [PMID: 33374338]
[102]
Schepici G, Silvestro S, Bramanti P, Mazzon E. Caffeine: An overview of its beneficial effects in experimental models and clinical trials of Parkinson’s disease. Int J Mol Sci 2020; 21(13): 4766.
[http://dx.doi.org/10.3390/ijms21134766] [PMID: 32635541]
[103]
Kolahdouzan M, Hamadeh MJ. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci Ther 2017; 23(4): 272-90.
[http://dx.doi.org/10.1111/cns.12684] [PMID: 28317317]
[104]
Ross GW, Abbott RD, Petrovitch H, et al. Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 2000; 283(20): 2674-9.
[http://dx.doi.org/10.1001/jama.283.20.2674] [PMID: 10819950]
[105]
Hong CT, Chan L, Bai CH. The effect of caffeine on the risk and progression of Parkinson’s disease: A meta-analysis. Nutrients 2020; 12(6): 1860.
[http://dx.doi.org/10.3390/nu12061860] [PMID: 32580456]
[106]
Grosso G, Godos J, Galvano F, Giovannucci EL. Coffee, caffeine, and health outcomes: An Umbrella review. Annu Rev Nutr 2017; 37(1): 131-56.
[http://dx.doi.org/10.1146/annurev-nutr-071816-064941] [PMID: 28826374]
[107]
Palacios N, Gao X, McCullough ML, et al. Caffeine and risk of Parkinson’s disease in a large cohort of men and women. Mov Disord 2012; 27(10): 1276-82.
[http://dx.doi.org/10.1002/mds.25076] [PMID: 22927157]
[108]
Morató X, Luján R, López-Cano M, et al. The Parkinson’s disease-associated GPR37 receptor interacts with striatal adenosine A2A receptor controlling its cell surface expression and function in vivo. Sci Rep 2017; 7(1): 9452.
[http://dx.doi.org/10.1038/s41598-017-10147-x] [PMID: 28842709]
[109]
Cho BH, Choi SM, Kim JT, Kim BC. Association of coffee consumption and non-motor symptoms in drug-naïve, early-stage Parkinson’s disease. Parkinsonism Relat Disord 2018; 50: 42-7.
[http://dx.doi.org/10.1016/j.parkreldis.2018.02.016] [PMID: 29449185]
[110]
Ren X, Chen JF. Caffeine and Parkinson’s Disease: Multiple benefits and emerging mechanisms. Front Neurosci 2020; 14: 602697.
[http://dx.doi.org/10.3389/fnins.2020.602697] [PMID: 33390888]
[111]
Chen JF. Adenosine receptor control of cognition in normal and disease. Int Rev Neurobiol 2014; 119: 257-307.
[http://dx.doi.org/10.1016/B978-0-12-801022-8.00012-X] [PMID: 25175970]
[112]
Postuma RB, Lang AE, Munhoz RP, et al. Caffeine for treatment of Parkinson disease: A randomized controlled trial. Neurology 2012; 79(7): 651-8.
[http://dx.doi.org/10.1212/WNL.0b013e318263570d]
[113]
Kachroo A, Irizarry MC, Schwarzschild MA. Caffeine protects against combined paraquat and maneb-induced dopaminergic neuron degeneration. Exp Neurol 2010; 223(2): 657-61.
[http://dx.doi.org/10.1016/j.expneurol.2010.02.007] [PMID: 20188092]
[114]
Xu K, Xu YH, Chen JF, Schwarzschild MA. Neuroprotection by caffeine: Time course and role of its metabolites in the MPTP model of Parkinson’s disease. Neuroscience 2010; 167(2): 475-81.
[http://dx.doi.org/10.1016/j.neuroscience.2010.02.020]
[115]
Chen X, Lan X, Roche I, Liu R, Geiger JD. Caffeine protects against MPTP-induced blood-brain barrier dysfunction in mouse striatum. J Neurochem 2008; 107(4): 1147-57.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05697.x] [PMID: 18808450]
[116]
Lu J, Wu M, Yue Z. Autophagy and Parkinson’s Disease. Adv Exp Med Biol 2020; 1207: 21-51.
[http://dx.doi.org/10.1007/978-981-15-4272-5_2] [PMID: 32671737]
[117]
Wierzejska R. Can coffee consumption lower the risk of Alzheimer’s disease and Parkinson’s disease? A literature review. Arch Med Sci 2017; 3(3): 507-14.
[http://dx.doi.org/10.5114/aoms.2016.63599] [PMID: 28507563]
[118]
Liang N, Kitts D. Antioxidant property of coffee components: Assessment of methods that define mechanisms of action. Molecules 2014; 19(11): 19180-208.
[http://dx.doi.org/10.3390/molecules191119180] [PMID: 25415479]
[119]
Zhen C, Li D, Wang H, et al. Neurol Asia 2019; 24: 31-40.
[120]
Chen D, Zhou Y, Lyons KE, Pahwa R, Reddy MB. Green tea consumption reduces oxidative stress in Parkinson’s Disease patients. J Behav Brain Sci 2015; 5(6): 194-202.
[http://dx.doi.org/10.4236/jbbs.2015.56020]
[121]
Cai J, Jing D, Shi M, et al. Epigallocatechin gallate (EGCG) attenuates infrasound-induced neuronal impairment by inhibiting microglia-mediated inflammation. J Nutr Biochem 2014; 25(7): 716-25.
[http://dx.doi.org/10.1016/j.jnutbio.2014.02.012] [PMID: 24746834]
[122]
Reeve AK, Grady JP, Cosgrave EM, et al. Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson’s disease. NPJ Parkinsons Dis 2018; 4(1): 9.
[http://dx.doi.org/10.1038/s41531-018-0044-6] [PMID: 29872690]
[123]
Li FJ, Ji HF, Shen L. ScientificWorldJournal 2012; 2012: 1-6.
[124]
Dutta D, Mohanakumar KP. Tea and Parkinson’s disease: Constituents of tea synergize with antiparkinsonian drugs to provide better therapeutic benefits. Neurochem Int 2015; 89: 181-90.
[http://dx.doi.org/10.1016/j.neuint.2015.08.005] [PMID: 26271432]
[125]
Xu Q, Langley M, Kanthasamy AG, Reddy MB. Epigallocatechin gallate has a neurorescue effect in a mouse model of Parkinson Disease. J Nutr 2017; 147(10): 1926-31.
[http://dx.doi.org/10.3945/jn.117.255034] [PMID: 28835392]
[126]
Zhao J, Xu L, Liang Q, et al. Metal chelator EGCG attenuates Fe(III)-induced conformational transition of α-synuclein and protects AS-PC12 cells against Fe(III)-induced death. J Neurochem 2017; 143(1): 136-46.
[http://dx.doi.org/10.1111/jnc.14142] [PMID: 28792609]
[127]
Anandhan A, Essa MM, Manivasagam T. Therapeutic attenuation of neuroinflammation and apoptosis by black tea theaflavin in chronic MPTP/probenecid model of Parkinson’s disease. Neurotox Res 2013; 23(2): 166-73.
[http://dx.doi.org/10.1007/s12640-012-9332-9] [PMID: 22669749]
[128]
Tan LC, Koh WP, Yuan JM, et al. Differential effects of black versus green tea on risk of Parkinson’s disease in the Singapore Chinese Health Study. Am J Epidemiol 2007; 167(5): 553-60.
[http://dx.doi.org/10.1093/aje/kwm338] [PMID: 18156141]
[129]
Malar DS, Prasanth MI, Brimson JM, et al. Neuroprotective properties of green tea (Camellia sinensis) in Parkinson’s Disease: A review. Molecules 2020; 25(17): 3926.
[http://dx.doi.org/10.3390/molecules25173926] [PMID: 32867388]
[130]
Mei-Li D, Ma H, Yi-Gang M, Hong-Yan L. Protective effects of a green tea polyphenol, epigallocatechin-3-gallate, against sevoflurane-induced neuronal apoptosis involve regulation of CREB/BDNF/TrkB and PI3K/Akt/mTOR signalling pathways in neonatal mice. Can J Physiol Pharmacol 2017; 95: 1396-405.
[http://dx.doi.org/10.1139/cjpp-2016-0333] [PMID: 28679060]
[131]
Lv L, Zhang H, Tan X, et al. Assessing the effects of vitamin D on neural network function in patients with parkinson’s disease by measuring the fraction amplitude of low-frequency fluctuation. Front Aging Neurosci 2021; 13: 763947.
[http://dx.doi.org/10.3389/fnagi.2021.763947] [PMID: 34987377]
[132]
Zhou Z, Zhou R, Zhang Z, Li K. The association between Vitamin D Status, Vitamin D Supplementation, Sunlight Exposure, and Parkinson’s Disease: A systematic review and meta-analysis. Med Sci Monit 2019; 25: 666-74.
[http://dx.doi.org/10.12659/MSM.912840] [PMID: 30672512]
[133]
Ding H, Dhima K, Lockhart KC, et al. Unrecognized vitamin D3 deficiency is common in Parkinson disease: Harvard Biomarker Study. Neurology 2013; 81(17): 1531-7.
[http://dx.doi.org/10.1212/WNL.0b013e3182a95818] [PMID: 24068787]
[134]
Barichella M, Garrì F, Caronni S, et al. Vitamin D Status and Parkinson’s Disease. Brain Sci 2022; 12(6): 790.
[http://dx.doi.org/10.3390/brainsci12060790] [PMID: 35741675]
[135]
Di Somma C, Scarano E, Barrea L, et al. Vitamin D and Neurological Diseases: An endocrine view. Int J Mol Sci 2017; 18(11): 2482.
[http://dx.doi.org/10.3390/ijms18112482] [PMID: 29160835]
[136]
Pertile RAN, Cui X, Eyles DW. Vitamin D signaling and the differentiation of developing dopamine systems. Neuroscience 2016; 333: 193-203.
[http://dx.doi.org/10.1016/j.neuroscience.2016.07.020] [PMID: 27450565]
[137]
Rcom-H’cheo-Gauthier AN, Meedeniya ACB, Pountney DL. Calcipotriol inhibits α-synuclein aggregation in SH - SY 5Y neuroblastoma cells by a Calbindin-D28k-dependent mechanism. J Neurochem 2017; 141(2): 263-74.
[http://dx.doi.org/10.1111/jnc.13971] [PMID: 28164279]
[138]
Olubukola Sinbad O, Folorunsho AA, Olabisi OL, Abimbola Ayoola O, Johnson Temitope E. J Food Sci. Nutr Res 2019; 2: 214-35.
[139]
Ashoori M, Saedisomeolia A. Riboflavin (vitamin B 2) and oxidative stress: A review. Br J Nutr 2014; 111(11): 1985-91.
[http://dx.doi.org/10.1017/S0007114514000178] [PMID: 24650639]
[140]
Perez Visñuk D, Teran M. Neuroprotective effect of riboflavin producing lactic acid bacteria in Parkinsonian models. Neurochem Res 2022; 47: 1269-79.
[PMID: 35113305]
[141]
Marie A, Leroy J, Darricau M, et al. Preventive Vitamin A Supplementation improves striatal function in 6-Hydroxydopamine Hemiparkinsonian rats. Front Nutr 2022; 9: 811843.
[http://dx.doi.org/10.3389/fnut.2022.811843] [PMID: 35178422]
[142]
Abu-Elfotuh K, Hamdan AME, Abbas AN, et al. Evaluating the neuroprotective activities of vinpocetine, punicalagin, niacin and vitamin E against behavioural and motor disabilities of manganese-induced Parkinson’s disease in Sprague Dawley rats. Biomed Pharmacother 2022; 153: 113330.
[http://dx.doi.org/10.1016/j.biopha.2022.113330] [PMID: 35780621]
[143]
Schirinzi T, Martella G, Imbriani P, et al. Dietary Vitamin E as a protective factor for Parkinson’s Disease: Clinical and experimental evidence. Front Neurol 2019; 10: 148.
[http://dx.doi.org/10.3389/fneur.2019.00148] [PMID: 30863359]
[144]
Büttner A. Neurotoxicity and neurodegeneration of drug abuse. Neuropathology of Drug Abuse. 2021; pp. 105-12.
[http://dx.doi.org/10.1007/978-3-030-60531-5_6]
[145]
Granado N, Ares-Santos S, Moratalla R. Methamphetamine and Parkinson’s Disease. Parkinsons Dis 2013; 2013: 1-10.
[http://dx.doi.org/10.1155/2013/308052]
[146]
Kish SJ, Boileau I, Callaghan RC, Tong J. Brain dopamine neurone ‘damage’: Methamphetamine users vs. Parkinson’s disease - a critical assessment of the evidence. Eur J Neurosci 2017; 45(1): 58-66.
[http://dx.doi.org/10.1111/ejn.13363] [PMID: 27519465]
[147]
Curtin K, Fleckenstein AE, Robison RJ, Crookston MJ, Smith KR, Hanson GR. Methamphetamine/amphetamine abuse and risk of Parkinson’s disease in Utah: A population-based assessment. Drug Alcohol Depend 2015; 146: 30-8.
[http://dx.doi.org/10.1016/j.drugalcdep.2014.10.027] [PMID: 25479916]
[148]
Dean AC, Groman SM, Morales AM, London ED. An evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. Neuropsychopharmacology 2013; 38(2): 259-74.
[http://dx.doi.org/10.1038/npp.2012.179]
[149]
Wang S, Witt S. The Parkinson’s disease-associated protein α-synuclein disrupts stress signaling - a possible implication for methamphetamine use? Microb Cell 2014; 1(4): 131-2.
[http://dx.doi.org/10.15698/mic2014.04.137] [PMID: 25343141]
[150]
Ferreira C, Almeida C, Tenreiro S, Quintas A. Neuroprotection or neurotoxicity of illicit drugs on Parkinson’s Disease. Life 2020; 10(6): 86.
[http://dx.doi.org/10.3390/life10060086] [PMID: 32545328]
[151]
Chen L, Huang E, Wang H, Qiu P, Liu C. RNA interference targeting α-synuclein attenuates methamphetamine-induced neurotoxicity in SH-SY5Y cells. Brain Res 2013; 1521: 59-67.
[http://dx.doi.org/10.1016/j.brainres.2013.05.016] [PMID: 23688541]
[152]
Ersche KD, Acosta-Cabronero J, Jones PS, et al. Disrupted iron regulation in the brain and periphery in cocaine addiction. Transl Psychiatry 2017; 7(2): e1040-0.
[http://dx.doi.org/10.1038/tp.2016.271] [PMID: 28221362]
[153]
Illés A, Balicza P, Molnár V, Bencsik R, Szilvási I, Molnar MJ. Dynamic interaction of genetic risk factors and cocaine abuse in the background of Parkinsonism - a case report. BMC Neurol 2019; 19(1): 260.
[http://dx.doi.org/10.1186/s12883-019-1496-y] [PMID: 31660902]
[154]
Hsiung H, Patel K, Hundal H, Baccouche BM, Tsao KW. Preventing substance abuse in adolescents: A review of high-impact strategies. Cureus 2022; 14(7): e27361.
[http://dx.doi.org/10.7759/cureus.27361] [PMID: 36046301]
[155]
Belvisi D, Pellicciari R, Fabbrini G, Tinazzi M, Berardelli A, Defazio G. Modifiable risk and protective factors in disease development, progression and clinical subtypes of Parkinson’s disease: What do prospective studies suggest? Neurobiol Dis 2020; 134: 104671.
[http://dx.doi.org/10.1016/j.nbd.2019.104671] [PMID: 31706021]
[156]
Cervantes-Arriaga A, Esquivel-Zapata Ó, Escobar-Valdivia E, García-Romero D, Alcocer-Salas Á, Rodríguez-Violante M. Gaceta de Mexico 2022 2022; 157.
[157]
Fang F, Chen H, Feldman AL, Kamel F, Ye W, Wirdefeldt K. Head injury and Parkinson’s disease: A population-based study. Mov Disord 2012; 27(13): 1632-5.
[http://dx.doi.org/10.1002/mds.25143] [PMID: 23143933]
[158]
Lin SR, Chen SF, Yang YC, Hsu CY, Shen YC. Association between hyperthyroidism and risk of incident in Parkinson’s disease. Endocr Connect 2021; 10(1): 13-20.
[http://dx.doi.org/10.1530/EC-20-0554] [PMID: 33263564]
[159]
Bose A, Petsko GA, Eliezer D. Parkinson’s Disease and Melanoma: Co-Occurrence and Mechanisms. J Parkinsons Dis 2018; 8(3): 385-98.
[http://dx.doi.org/10.3233/JPD-171263] [PMID: 29991141]
[160]
Delic V, Beck KD, Pang KCH, Citron BA. Biological links between traumatic brain injury and Parkinson’s disease. Acta Neuropathol Commun 2020; 8(1): 45.
[http://dx.doi.org/10.1186/s40478-020-00924-7] [PMID: 32264976]
[161]
Buchman AS, Leurgans SE, Nag S, Bennett DA, Schneider JA. Cerebrovascular disease pathology and parkinsonian signs in old age. Stroke 2011; 42(11): 3183-9.
[http://dx.doi.org/10.1161/STROKEAHA.111.623462] [PMID: 21885844]
[162]
Ye Q, Wen Y, Al-Kuwari N, Chen X. Association between Parkinson’s Disease and Melanoma: Putting the pieces together. Front Aging Neurosci 2020; 12: 60.
[http://dx.doi.org/10.3389/fnagi.2020.00060] [PMID: 32210791]
[163]
Chen Y, Sun X, Lin Y, Zhang Z, Gao Y, Wu IXY. Non-Genetic risk factors for Parkinson’s Disease: An overview of 46 systematic reviews. J Parkinsons Dis 2021; 11(3): 919-35.
[http://dx.doi.org/10.3233/JPD-202521] [PMID: 33814465]
[164]
Wang S, Mao S, Xiang D, Fang C. Association between depression and the subsequent risk of Parkinson’s disease: A meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86: 186-92.
[http://dx.doi.org/10.1016/j.pnpbp.2018.05.025] [PMID: 29859854]
[165]
Noyce AJ, Bestwick JP, Silveira-Moriyama L, et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol 2012; 72(6): 893-901.
[http://dx.doi.org/10.1002/ana.23687] [PMID: 23071076]
[166]
Faustino PR, Duarte GS, Chendo I, et al. Risk of developing parkinson disease in bipolar disorder. JAMA Neurol 2020; 77(2): 192-8.
[http://dx.doi.org/10.1001/jamaneurol.2019.3446] [PMID: 31609378]
[167]
Shin HW, Chung SJ. Drug-Induced Parkinsonism. J Clin Neurol 2012; 8(1): 15-21.
[http://dx.doi.org/10.3988/jcn.2012.8.1.15] [PMID: 22523509]
[168]
de Germay S, Montastruc F, Carvajal A, Lapeyre-Mestre M, Montastruc JL. Drug-induced parkinsonism: Revisiting the epidemiology using the WHO pharmacovigilance database. Parkinsonism Relat Disord 2020; 70: 55-9.
[http://dx.doi.org/10.1016/j.parkreldis.2019.12.011] [PMID: 31865063]
[169]
Shiraiwa N, Tamaoka A, Ohkoshi N. Clinical features of drug-induced Parkinsonism. Neurol Int 2018; 10(4): 7877.
[http://dx.doi.org/10.4081/ni.2018.7877] [PMID: 30687468]
[170]
Wisidagama S, Selladurai A, Wu P, Isetta M, Serra-Mestres J. Recognition and management of antipsychotic-induced parkinsonism in older adults: A narrative review. Medicines 2021; 8(6): 24.
[http://dx.doi.org/10.3390/medicines8060024] [PMID: 34073269]
[171]
Estevez-Fraga C, Zeun P, López-Sendón Moreno JL. Current methods for the treatment and prevention of drug-induced parkinsonism and tardive dyskinesia in the elderly. Drugs Aging 2018; 35(11): 959-71.
[http://dx.doi.org/10.1007/s40266-018-0590-y] [PMID: 30357723]
[172]
Erro R, Bhatia KP, Tinazzi M. Parkinsonism following neuroleptic exposure: A double-hit hypothesis? Mov Disord 2015; 30(6): 780-5.
[http://dx.doi.org/10.1002/mds.26209] [PMID: 25801826]
[173]
López-Sendón J, Mena MA, Mena MA, de Yébenes JG. Drug-induced parkinsonism. Expert Opin Drug Saf 2013; 12: 487-96.
[PMID: 23540800]
[174]
Surmeier DJ, Schumacker PT. Calcium, bioenergetics, and neuronal vulnerability in Parkinson’s disease. J Biol Chem 2013; 288(15): 10736-41.
[http://dx.doi.org/10.1074/jbc.R112.410530] [PMID: 23086948]
[175]
Oh YS, Kwon DY, Kim JS, Park MH, Berg D. Transcranial sonographic findings may predict prognosis of gastroprokinetic drug-induced parkinsonism. Parkinsonism Relat Disord 2018; 46: 36-40.
[http://dx.doi.org/10.1016/j.parkreldis.2017.10.011] [PMID: 29111425]
[176]
Lương K. The role of β-adrenergic blockers in Parkinson's disease: Possible genetic and cell-signaling mechanisms. Am J Alzheimers Dis Other Demen 2013; 28: 306-17.
[PMID: 23695225]
[177]
Koren G, Norton G, Radinsky K, Shalev V. Chronic use of β-Blockers and the risk of Parkinson’s Disease. Clin Drug Investig 2019; 39(5): 463-8.
[http://dx.doi.org/10.1007/s40261-019-00771-y] [PMID: 30868473]
[178]
Jamora D, Lim SH, Pan A, Tan L, Tan EK. Valproate-induced Parkinsonism in epilepsy patients. Mov Disord 2007; 22(1): 130-3.
[http://dx.doi.org/10.1002/mds.21188] [PMID: 17115396]
[179]
Sudevan R, Raj M, Vasudevan D, et al. Compliance of secondary prevention strategies in coronary artery disease patients with and without diabetes mellitus - A cross-sectional analytical survey from Kerala, India. Indian J Endocrinol Metab 2021; 25(2): 129-35.
[http://dx.doi.org/10.4103/ijem.IJEM_532_20] [PMID: 34660241]
[180]
Milano F, Cerro G, Santoni F, et al. Parkinson’s Disease patient monitoring: A real-time tracking and tremor detection system based on magnetic measurements. Sensors 2021; 21(12): 4196.
[http://dx.doi.org/10.3390/s21124196] [PMID: 34207306]
[181]
Schrag A, Horsfall L, Walters K, Noyce A, Petersen I. Prediagnostic presentations of Parkinson’s disease in primary care: A case-control study. Lancet Neurol 2015; 14(1): 57-64.
[http://dx.doi.org/10.1016/S1474-4422(14)70287-X] [PMID: 25435387]
[182]
Postuma RB, Aarsland D, Barone P, et al. Identifying prodromal Parkinson’s disease: Pre-Motor disorders in Parkinson’s disease. Mov Disord 2012; 27(5): 617-26.
[http://dx.doi.org/10.1002/mds.24996] [PMID: 22508280]
[183]
Doty RL. Olfaction in Parkinson’s disease. Parkinsonism Relat Disord 2007; 13 (Suppl. 3): S225-8.
[http://dx.doi.org/10.1016/S1353-8020(08)70006-3] [PMID: 18267240]
[184]
Berendse HW, Ponsen MM. Detection of preclinical Parkinson's disease along the olfactory trac(t). J Neural Transm Suppl 2006; 2006(70): 321-5.
[http://dx.doi.org/10.1007/978-3-211-45295-0_48]
[185]
Krismer F, Pinter B, Mueller C, et al. Sniffing the diagnosis: Olfactory testing in neurodegenerative parkinsonism. Parkinsonism Relat Disord 2017; 35: 36-41.
[http://dx.doi.org/10.1016/j.parkreldis.2016.11.010] [PMID: 27890451]
[186]
Saito Y, Shioya A, Sano T, Sumikura H, Murata M, Murayama S. Lewy body pathology involves the olfactory cells in Parkinson’s disease and related disorders. Mov Disord 2016; 31(1): 135-8.
[http://dx.doi.org/10.1002/mds.26463] [PMID: 26748832]
[187]
Khoo TK, Yarnall AJ, Duncan GW, et al. The spectrum of nonmotor symptoms in early Parkinson disease. Neurology 2013; 80(3): 276-81.
[http://dx.doi.org/10.1212/WNL.0b013e31827deb74] [PMID: 23319473]
[188]
Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 2015; 30(12): 1591-601.
[http://dx.doi.org/10.1002/mds.26424] [PMID: 26474316]
[189]
Huang SF, Chen K, Wu JJ, et al. Odor identification test in idiopathic REM-behavior disorder and Parkinson’s Disease in china. PLoS One 2016; 11(8): e0160199.
[http://dx.doi.org/10.1371/journal.pone.0160199] [PMID: 27483429]
[190]
Ylikoski A, Martikainen K, Partinen M. Parasomnias and isolated sleep symptoms in Parkinson’s disease: A questionnaire study on 661 patients. J Neurol Sci 2014; 346(1-2): 204-8.
[http://dx.doi.org/10.1016/j.jns.2014.08.025] [PMID: 25201715]
[191]
Postuma RB, Iranzo A, Hogl B, et al. Risk factors for neurodegeneration in idiopathic rapid eye movement sleep behavior disorder: A multicenter study. Ann Neurol 2015; 77(5): 830-9.
[http://dx.doi.org/10.1002/ana.24385] [PMID: 25767079]
[192]
Eisensehr I, Linke R, Noachtar S, Schwarz J, Gildehaus FJ, Tatsch K. Reduced striatal dopamine transporters in idiopathic rapid eye movement sleep behaviour disorder. Brain 2000; 123(6): 1155-60.
[http://dx.doi.org/10.1093/brain/123.6.1155] [PMID: 10825354]
[193]
Ellmore TM, Castriotta RJ, Hendley KL, et al. Altered nigrostriatal and nigrocortical functional connectivity in rapid eye movement sleep behavior disorder. Sleep 2013; 36(12): 1885-92.
[http://dx.doi.org/10.5665/sleep.3222]
[194]
Pedrosa Carrasco AJ, Timmermann L, Pedrosa DJ. Management of constipation in patients with Parkinson’s disease. NPJ Parkinsons Dis 2018; 4(1): 6.
[http://dx.doi.org/10.1038/s41531-018-0042-8] [PMID: 29560414]
[195]
He R, Yan X, Guo J, Xu Q, Tang B, Sun Q. Recent advances in biomarkers for Parkinson’s Disease. Front Aging Neurosci 2018; 10: 305.
[http://dx.doi.org/10.3389/fnagi.2018.00305] [PMID: 30364199]
[196]
Cersosimo MG, Raina GB, Pecci C, et al. Gastrointestinal manifestations in Parkinson’s disease: Prevalence and occurrence before motor symptoms. J Neurol 2013; 260(5): 1332-8.
[http://dx.doi.org/10.1007/s00415-012-6801-2] [PMID: 23263478]
[197]
Politis M, Piccini P, Andreas-Antonios R. Clinical utility of DaTscan™ (123I-Ioflupane Injection) in the diagnosis of Parkinsonian Syndromes Degener Neurol Neuromuscul Dis 2013; 3: 33-9.
[http://dx.doi.org/10.2147/DNND.S19807]
[198]
Brigo F, Matinella A, Erro R, Tinazzi M. [123I]FP-CIT SPECT (DaTSCAN) may be a useful tool to differentiate between Parkinson’s disease and vascular or drug-induced parkinsonisms: A meta-analysis. Eur J Neurol 2014; 21(11): 1369-e90.
[http://dx.doi.org/10.1111/ene.12444] [PMID: 24779862]
[199]
Baglieri A, Marino MA, Morabito R, Di Lorenzo G, Bramanti P, Marino S. Differences between conventional and nonconventional MRI techniques in Parkinson’s disease. Funct Neurol 2013; 28(2): 73-82.
[PMID: 24125556]
[200]
Szewczyk-Krolikowski K, Menke RAL, Rolinski M, et al. Functional connectivity in the basal ganglia network differentiates PD patients from controls. Neurology 2014; 83(3): 208-14.
[http://dx.doi.org/10.1212/WNL.0000000000000592] [PMID: 24920856]
[201]
Sung YH, Noh Y, Lee J, Kim EY. Drug-induced Parkinsonism versus Idiopathic Parkinson Disease: Utility of Nigrosome 1 with 3-T Imaging. Radiology 2016; 279(3): 849-58.
[http://dx.doi.org/10.1148/radiol.2015151466] [PMID: 26690908]
[202]
Cosottini M, Frosini D, Pesaresi I, et al. MR imaging of the substantia nigra at 7 T enables diagnosis of Parkinson disease. Radiology 2014; 271(3): 831-8.
[http://dx.doi.org/10.1148/radiol.14131448] [PMID: 24601752]
[203]
Zhang Y, Burock MA. Diffusion tensor imaging in Parkinson’s Disease and Parkinsonian Syndrome: A systematic review. Front Neurol 2020; 11: 531993.
[http://dx.doi.org/10.3389/fneur.2020.531993] [PMID: 33101169]
[204]
Schwarz ST, Abaei M, Gontu V, Morgan PS, Bajaj N, Auer DP. Diffusion tensor imaging of nigral degeneration in Parkinson’s disease: A region-of-interest and voxel-based study at 3T and systematic review with meta-analysis. Neuroimage Clin 2013; 3: 481-8.
[http://dx.doi.org/10.1016/j.nicl.2013.10.006] [PMID: 24273730]
[205]
Kaufmann H, Goldstein DS. Autonomic dysfunction in Parkinson disease. Handb Clin Neurol 2013; 117: 259-78.
[http://dx.doi.org/10.1016/B978-0-444-53491-0.00021-3] [PMID: 24095131]
[206]
Oka H, Toyoda C, Yogo M, Mochio S. Cardiovascular dysautonomia in de novo Parkinson’s disease without orthostatic hypotension. Eur J Neurol 2011; 18(2): 286-92.
[http://dx.doi.org/10.1111/j.1468-1331.2010.03135.x] [PMID: 20602633]
[207]
Rascol O, Schelosky L. 123 I-metaiodobenzylguanidine scintigraphy in Parkinson’s disease and related disorders. Mov Disord 2009; 24(S2) (Suppl. 2): S732-41.
[http://dx.doi.org/10.1002/mds.22499] [PMID: 19877202]
[208]
Masdeu JC, Arbizu J, Toledo J, Valero M. [SPECT and PET in neurology]. Neurologia 2006; 21(5): 219-25.
[PMID: 16788863]
[209]
Treglia G, Cason E, Stefanelli A, et al. MIBG scintigraphy in differential diagnosis of Parkinsonism: A meta-analysis. Clin Auton Res 2012; 22(1): 43-55.
[http://dx.doi.org/10.1007/s10286-011-0135-5] [PMID: 21792729]
[210]
Powell A, Gallur L, Koopowitz L, Hayes MW. Parkinsonism in the psychiatric setting: An update on clinical differentiation and management. BMJ Neurology Open 2020; 2(1): e000034.
[http://dx.doi.org/10.1136/bmjno-2019-000034] [PMID: 33681781]
[211]
Gaenslen A, Berg D. Early diagnosis of Parkinson’s disease. Int Rev Neurobiol 2010; 90: 81-92.
[http://dx.doi.org/10.1016/S0074-7742(10)90006-8] [PMID: 20692495]
[212]
Bouwmans AEP, Vlaar AMM, Mess WH, Kessels A, Weber WEJ. Specificity and sensitivity of transcranial sonography of the substantia nigra in the diagnosis of Parkinson’s disease: Prospective cohort study in 196 patients. BMJ Open 2013; 3(4): e002613.
[http://dx.doi.org/10.1136/bmjopen-2013-002613] [PMID: 23550093]
[213]
Tao A, Chen G, Deng Y, Xu R. Accuracy of transcranial sonography of the substantia nigra for detection of Parkinson’s Disease: A systematic review and meta-analysis. Ultrasound Med Biol 2019; 45(3): 628-41.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2018.11.010] [PMID: 30612821]
[214]
Spiegel J, Hellwig D, Möllers MO, et al. Transcranial sonography and [123I]FP-CIT SPECT disclose complementary aspects of Parkinson’s disease. Brain 2006; 129(5): 1188-93.
[http://dx.doi.org/10.1093/brain/awl042] [PMID: 16513685]
[215]
Berg D, Siefker C, Becker G. Echogenicity of the substantia nigra in Parkinson’s disease and its relation to clinical findings. J Neurol 2001; 248(8): 684-9.
[http://dx.doi.org/10.1007/s004150170114] [PMID: 11569897]
[216]
Bandopadhyay R. Sequential extraction of soluble and insoluble Alpha-Synuclein from Parkinsonian Brains. J Vis Exp 2016; 107(107): 53415.
[PMID: 26780369]
[217]
Visanji NP, Marras C, Hazrati LN, Liu LWC, Lang AE. Alimentary, my dear Watson? The challenges of enteric α-synuclein as a Parkinson’s disease biomarker. Mov Disord 2014; 29(4): 444-50.
[http://dx.doi.org/10.1002/mds.25789] [PMID: 24375496]
[218]
Foulds PG, Diggle P, Mitchell JD, et al. A longitudinal study on α-synuclein in blood plasma as a biomarker for Parkinson’s disease. Sci Rep 2013; 3(1): 2540.
[http://dx.doi.org/10.1038/srep02540] [PMID: 23985836]
[219]
Donadio V, Incensi A, Leta V, et al. Skin nerve -synuclein deposits: A biomarker for idiopathic Parkinson disease. Neurology 2014; 82(15): 1362-9.
[http://dx.doi.org/10.1212/WNL.0000000000000316] [PMID: 24634456]
[220]
Agúndez JAG, Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E. Drug and xenobiotic biotransformation in the blood-brain barrier: A neglected issue. Front Cell Neurosci 2014; 8: 335.
[PMID: 25368552]
[221]
Parnetti L, Chiasserini D, Persichetti E, et al. Cerebrospinal fluid lysosomal enzymes and alpha-synuclein in Parkinson’s disease. Mov Disord 2014; 29(8): 1019-27.
[http://dx.doi.org/10.1002/mds.25772] [PMID: 24436092]
[222]
Mondello S, Constantinescu R, Zetterberg H, Andreasson U, Holmberg B, Jeromin A. CSF α-synuclein and UCH-L1 levels in Parkinson’s disease and atypical parkinsonian disorders. Parkinsonism Relat Disord 2014; 20(4): 382-7.
[http://dx.doi.org/10.1016/j.parkreldis.2014.01.011] [PMID: 24507721]
[223]
Kalia LV. Biomarkers for cognitive dysfunction in Parkinson’s disease. Parkinsonism Relat Disord 2018; 46 (Suppl. 1): S19-23.
[http://dx.doi.org/10.1016/j.parkreldis.2017.07.023] [PMID: 28781202]
[224]
Pan L, Meng L, He M, Zhang Z. Tau in the pathophysiology of Parkinson’s Disease. J Mol Neurosci 2021; 71(11): 2179-91.
[http://dx.doi.org/10.1007/s12031-020-01776-5] [PMID: 33459970]
[225]
Gramotnev DK, Gramotnev G, Gramotnev A, Summers MJ. Path analysis of biomarkers for cognitive decline in early Parkinson’s disease. PLoS One 2022; 17(5): e0268379.
[http://dx.doi.org/10.1371/journal.pone.0268379] [PMID: 35560326]
[226]
Chen X, Burdett TC, Desjardins CA, et al. Disrupted and transgenic urate oxidase alter urate and dopaminergic neurodegeneration. Proc Natl Acad Sci USA 2013; 110(1): 300-5.
[http://dx.doi.org/10.1073/pnas.1217296110] [PMID: 23248282]
[227]
Saito Y, Noguchi N. Oxidation of DJ-1 in blood and brain of Parkinson′s Disease Patients- Usability as an early diagnosis marker. Free Radic Biol Med 2016; 100: S166-7.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.438]
[228]
Kikusato M, Nakamura K, Mikami Y, Mujahid A, Toyomizu M. The suppressive effect of dietary coenzyme Q 10 on mitochondrial reactive oxygen species production and oxidative stress in chickens exposed to heat stress. Anim Sci J 2016; 87(10): 1244-51.
[http://dx.doi.org/10.1111/asj.12543] [PMID: 26707541]
[229]
Shen C, Guo Y, Luo W, Lin C, Ding M. Serum urate and the risk of Parkinson’s disease: Results from a meta-analysis. Can J Neurol Sci 2013; 40(1): 73-9.
[http://dx.doi.org/10.1017/S0317167100012981] [PMID: 23250131]
[230]
Schwarzschild MA, Schwid SR, Marek K, et al. Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch Neurol 2008; 65(6): 716-23.
[http://dx.doi.org/10.1001/archneur.2008.65.6.nct70003] [PMID: 18413464]
[231]
Lin X, Cook TJ, Zabetian CP, et al. DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease. Sci Rep 2012; 2(1): 954.
[http://dx.doi.org/10.1038/srep00954] [PMID: 23233873]
[232]
Sohmiya M, Tanaka M, Wei Tak N, et al. Redox status of plasma coenzyme Q10 indicates elevated systemic oxidative stress in Parkinson’s disease. J Neurol Sci 2004; 223(2): 161-6.
[http://dx.doi.org/10.1016/j.jns.2004.05.007] [PMID: 15337618]
[233]
García-Moreno JM, Martín de Pablos A, García-Sánchez MI, et al. May serum levels of advanced oxidized protein products serve as a prognostic marker of disease duration in patients with idiopathic Parkinson’s disease? Antioxid Redox Signal 2013; 18(11): 1296-302.
[http://dx.doi.org/10.1089/ars.2012.5026] [PMID: 23121480]
[234]
Isobe C, Abe T, Terayama Y. Levels of reduced and oxidized coenzymeQ-10 and 8-hydroxy-2′-deoxyguanosine in the cerebrospinal fluid of patients with living Parkinson’s disease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process. Neurosci Lett 2010; 469(1): 159-63.
[http://dx.doi.org/10.1016/j.neulet.2009.11.065] [PMID: 19944739]
[235]
Terkelsen MH, Klaestrup IH, Hvingelby V, Lauritsen J, Pavese N, Romero-Ramos M. J Parkinsons Dis 2022; 1-15.
[236]
Cebrián C, Zucca FA, Mauri P, et al. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun 2014; 5(1): 3633.
[http://dx.doi.org/10.1038/ncomms4633] [PMID: 24736453]
[237]
Lindqvist D, Hall S, Surova Y, et al. Cerebrospinal fluid inflammatory markers in Parkinson’s disease - Associations with depression, fatigue, and cognitive impairment. Brain Behav Immun 2013; 33: 183-9.
[http://dx.doi.org/10.1016/j.bbi.2013.07.007] [PMID: 23911592]
[238]
Santiago J, Potashkin J. Current challenges towards the development of a blood test for Parkinson’s Disease. Diagnostics 2014; 4(4): 153-64.
[http://dx.doi.org/10.3390/diagnostics4040153] [PMID: 26852683]
[239]
Stokholm MG, Iranzo A, Østergaard K, et al. Assessment of neuroinflammation in patients with idiopathic rapid-eye-movement sleep behaviour disorder: A case-control study. Lancet Neurol 2017; 16(10): 789-96.
[http://dx.doi.org/10.1016/S1474-4422(17)30173-4] [PMID: 28684245]
[240]
Kim C, Alcalay R. Genetic forms of Parkinson’s Disease. Semin Neurol 2017; 37(2): 135-46.
[http://dx.doi.org/10.1055/s-0037-1601567] [PMID: 28511254]
[241]
Deng H, Wang P, Jankovic J. The genetics of Parkinson disease. Ageing Res Rev 2018; 42: 72-85.
[http://dx.doi.org/10.1016/j.arr.2017.12.007] [PMID: 29288112]
[242]
Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease. Lancet Neurol 2020; 19(2): 170-8.
[http://dx.doi.org/10.1016/S1474-4422(19)30287-X] [PMID: 31521533]
[243]
Cook L, Schulze J, Naito A, Alcalay RN. The role of genetic testing for Parkinson’s Disease. Curr Neurol Neurosci Rep 2021; 21(4): 17.
[http://dx.doi.org/10.1007/s11910-021-01100-7] [PMID: 33686495]
[244]
Healy DG, Falchi M, O’Sullivan SS, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: A case-control study. Lancet Neurol 2008; 7(7): 583-90.
[http://dx.doi.org/10.1016/S1474-4422(08)70117-0] [PMID: 18539534]
[245]
Rivero-Ríos P, Romo-Lozano M, Fasiczka R, Naaldijk Y, Hilfiker S. LRRK2-Related Parkinson’s Disease due to altered endolysosomal biology with variable lewy body pathology: A hypothesis. Front Neurosci 2020; 14: 556.
[http://dx.doi.org/10.3389/fnins.2020.00556] [PMID: 32581693]
[246]
Gündner AL, Duran-Pacheco G, Zimmermann S, et al. Path mediation analysis reveals GBA impacts Lewy body disease status by increasing α-synuclein levels. Neurobiol Dis 2019; 121: 205-13.
[http://dx.doi.org/10.1016/j.nbd.2018.09.015] [PMID: 30236861]
[247]
Beavan M, McNeill A, Proukakis C, Hughes DA, Mehta A, Schapira AHV. Evolution of prodromal clinical markers of Parkinson disease in a GBA mutation-positive cohort. JAMA Neurol 2015; 72(2): 201-8.
[http://dx.doi.org/10.1001/jamaneurol.2014.2950] [PMID: 25506732]
[248]
Siddiqui IJ, Pervaiz N, Abbasi AA. The Parkinson Disease gene SNCA: Evolutionary and structural insights with pathological implication. Sci Rep 2016; 6(1): 24475.
[http://dx.doi.org/10.1038/srep24475] [PMID: 27080380]
[249]
Shen T, Pu J, Si X, Ye R, Zhang B. An update on potential therapeutic strategies for Parkinson’s disease based on pathogenic mechanisms. Expert Rev Neurother 2016; 16(6): 711-22.
[http://dx.doi.org/10.1080/14737175.2016.1179112] [PMID: 27138872]
[250]
Repici M, Giorgini F. DJ-1 in Parkinson’s Disease: Clinical insights and therapeutic perspectives. J Clin Med 2019; 8(9): 1377.
[http://dx.doi.org/10.3390/jcm8091377] [PMID: 31484320]
[251]
Goiran T, Eldeeb MA, Zorca CE, Fon EA. Hallmarks and molecular tools for the study of mitophagy in Parkinson’s Disease. Cells 2022; 11(13): 2097.
[http://dx.doi.org/10.3390/cells11132097] [PMID: 35805181]
[252]
Periquet M, Latouche M, Lohmann E, et al. Parkin mutations are frequent in patients with isolated early-onset parkinsonism. Brain 2003; 126(6): 1271-8.
[http://dx.doi.org/10.1093/brain/awg136] [PMID: 12764050]
[253]
Singleton AB, Farrer MJ, Bonifati V. The genetics of Parkinson’s disease: Progress and therapeutic implications. Mov Disord 2013; 28(1): 14-23.
[http://dx.doi.org/10.1002/mds.25249] [PMID: 23389780]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy