Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Therapeutic Management with Repurposing Approaches: A Mystery During COVID-19 Outbreak

Author(s): Soumik Chaudhury, Paranjeet Kaur*, Deepali Gupta, Palak Anand, Manish Chaudhary, Siddhita Tiwari, Amit Mittal, Jeena Gupta, Sukhmeen Kaur, Varsh Deep Singh, Dakshita Dhawan, Princejyot Singh and Sanjeev Kumar Sahu*

Volume 24, Issue 6, 2024

Published on: 09 August, 2023

Page: [712 - 733] Pages: 22

DOI: 10.2174/1566524023666230613141746

Price: $65

conference banner
Abstract

The ubiquitous pandemic that emerged due to COVID-19 affected the whole planet. People all over the globe became vulnerable to the unpredictable emergence of coronavirus. The sudden emergence of respiratory disease in coronavirus infected several patients. This affected human life drastically, from mild symptoms to severe illness, leading to mortality. COVID-19 is an exceptionally communicable disease caused by SARS-CoV-2. According to a genomic study, the viral spike RBD interactions with the host ACE2 protein from several coronavirus strains and the interaction between RBD and ACE2 highlighted the potential change in affinity from the virus causing the COVID-19 outbreak to a progenitor type of SARS-CoV-2. SARS-CoV-2, which could be the principal reservoir, is phylogenetically related to the SARS-like bat virus. Other research works reported that intermediary hosts for the transmission of viruses to humans could include cats, bats, snakes, pigs, ferrets, orangutans, and monkeys. Even with the arrival of vaccines and individuals getting vaccinated and treated with FDAapproved repurposed drugs like Remdesivir, the first and foremost steps aimed towards the possible control and minimization of community transmission of the virus include social distancing, self-realization, and self-health care. In this review paper, we discussed and summarized various approaches and methodologies adopted and proposed by researchers all over the globe to help with the management of this zoonotic outbreak by following repurposed approaches.

[1]
Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol 2020; 92(4): 401-2.
[http://dx.doi.org/10.1002/jmv.25678] [PMID: 31950516]
[2]
Hui DS, I Azhar E, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis 2020; 91: 264-6.
[http://dx.doi.org/10.1016/j.ijid.2020.01.009] [PMID: 31953166]
[3]
Gorbalenya AE, Baker SC, Baric R, et al. Severe acute respiratory syndrome-related coronavirus: The species and its viruses–a statement of the Coronavirus Study Group. Nat Microbiol 2020; 5: 536-44.
[http://dx.doi.org/10.1101/2020.02.07.937862]
[4]
Burki TK. Coronavirus in China. Lancet Respir Med 2020; 8(3): 238.
[http://dx.doi.org/10.1016/S2213-2600(20)30056-4] [PMID: 32027848]
[5]
Burrell CJ, Howard CR, Murphy FA. Fenner and White’s medical virology. Amsterdam: Elsevier 2016.
[6]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[7]
Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents 2020; 55(3): 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[8]
Organization WH. Laboratory testing for coronavirus disease (‎‎‎ COVID-19)‎‎‎ in suspected human cases: Interim guidance, 19 March 2020. Geneva, Switzerland: World Health Organization 2020.
[9]
Wang N, Shi X, Jiang L, et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res 2013; 23(8): 986-93.
[http://dx.doi.org/10.1038/cr.2013.92] [PMID: 23835475]
[10]
Zhong NS, Zheng BJ, Li YM, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet 2003; 362(9393): 1353-8.
[http://dx.doi.org/10.1016/S0140-6736(03)14630-2] [PMID: 14585636]
[11]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[12]
Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020; 395(10223): 514-23.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[13]
Kan B, Wang M, Jing H, et al. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J Virol 2005; 79(18): 11892-900.
[http://dx.doi.org/10.1128/JVI.79.18.11892-11900.2005] [PMID: 16140765]
[14]
Zheng BJ, Guan Y, Wong KH, et al. SARS-related virus predating SARS outbreak, Hong Kong. Emerg Infect Dis 2004; 10(2): 176-8.
[http://dx.doi.org/10.3201/eid1002.030533] [PMID: 15030679]
[15]
Xiao K, Zhai J, Feng Y, et al. Isolation and characterization of 2019-nCoV-like coronavirus from Malayan pangolins. BioRxiv 2020; 2020: 951335.
[http://dx.doi.org/10.1101/2020.02.17.951335]
[16]
Mukherjee B. Analysis of Global Research Trends in Coronaviruses: A Bibliometric Investigation. J Scientomet Res 2020; 9(2): 185-94.
[http://dx.doi.org/10.5530/jscires.9.2.22]
[17]
Hamid S, Mir MY, Rohela GK. Novel coronavirus disease (COVID-19): A pandemic (epidemiology, pathogenesis and potential therapeutics). New Microbes New Infect 2020; 35: 100679.
[http://dx.doi.org/10.1016/j.nmni.2020.100679] [PMID: 32322401]
[18]
World Health Organization. (2020). Coronavirus disease (COVID-19), 12 October 2020. World Health Organization. https://apps.who.int/iris/handle/10665/336034.
[19]
Davies NG, Klepac P, Liu Y, et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat Med 2020; 26(8): 1205-11.
[http://dx.doi.org/10.1038/s41591-020-0962-9] [PMID: 32546824]
[20]
Shapiro V. COVID-19 sex-age mortality modeling-a use case of risk-based vaccine prioritization. SocArXiv 2021; 2021: 5c8bd.
[http://dx.doi.org/10.31219/osf.io/5c8bd]
[21]
Chang D, Lin M, Wei L, et al. Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside Wuhan, China. JAMA 2020; 323(11): 1092-3.
[http://dx.doi.org/10.1001/jama.2020.1623] [PMID: 32031568]
[22]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[23]
Wang D, Yin Y, Hu C, et al. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. Crit Care 2020; 24(1): 188.
[http://dx.doi.org/10.1186/s13054-020-02895-6] [PMID: 32354360]
[24]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[25]
Woo PCY, Lau SKP, Huang Y, Yuen KY. Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med (Maywood) 2009; 234(10): 1117-27.
[http://dx.doi.org/10.3181/0903-MR-94] [PMID: 19546349]
[26]
de Souza Luna LK, Heiser V, Regamey N, et al. Generic detection of coronaviruses and differentiation at the prototype strain level by reverse transcription-PCR and nonfluorescent low-density microarray. J Clin Microbiol 2007; 45(3): 1049-52.
[http://dx.doi.org/10.1128/JCM.02426-06] [PMID: 17229859]
[27]
Letko M, Munster V. Functional assessment of cell entry and receptor usage for lineage B β-coronaviruses, including 2019-nCoV. BioRxiv 2020; 2020: 915660.
[http://dx.doi.org/10.1101/2020.01.22.915660]
[28]
Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 2020; 27(3): 325-8.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[29]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418-23.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[30]
Gralinski LE, Menachery VD. Return of the Coronavirus: 2019-nCoV. Viruses 2020; 12(2): 135.
[http://dx.doi.org/10.3390/v12020135] [PMID: 31991541]
[31]
Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 2020; 63(3): 457-60.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[32]
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020; 94(7): e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[33]
Halma MTJ, Wever MJA, Abeln S, Roche D, Wuite GJL. Therapeutic potential of compounds targeting SARS-CoV-2 helicase. Front Chem 2022; 10: 1062352.
[http://dx.doi.org/10.3389/fchem.2022.1062352] [PMID: 36561139]
[34]
Wehbe Z, Hammoud S, Soudani N, Zaraket H, El-Yazbi A, Eid AH. Molecular insights into SARS COV-2 interaction with cardiovascular disease: Role of RAAS and MAPK signaling. Front Pharmacol 2020; 11: 836.
[http://dx.doi.org/10.3389/fphar.2020.00836] [PMID: 32581799]
[35]
Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses — drug discovery and therapeutic options. Nat Rev Drug Discov 2016; 15(5): 327-47.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[36]
Chan JFW, Lau SKP, To KKW, Cheng VCC, Woo PCY, Yuen KY. Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev 2015; 28(2): 465-522.
[http://dx.doi.org/10.1128/CMR.00102-14] [PMID: 25810418]
[37]
Cheng VCC, Lau SKP, Woo PCY, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 2007; 20(4): 660-94.
[http://dx.doi.org/10.1128/CMR.00023-07] [PMID: 17934078]
[38]
Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282: 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[39]
van Boheemen S, de Graaf M, Lauber C, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 2012; 3(6): e00473-12.
[http://dx.doi.org/10.1128/mBio.00473-12] [PMID: 23170002]
[40]
Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e286.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[41]
Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res 2019; 105: 93-116.
[http://dx.doi.org/10.1016/bs.aivir.2019.08.002] [PMID: 31522710]
[42]
Singh Tomar PP, Arkin IT. SARS-CoV-2 E protein is a potential ion channel that can be inhibited by Gliclazide and Memantine. Biochem Biophys Res Commun 2020; 530(1): 10-4.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.206] [PMID: 32828269]
[43]
Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge. Virol J 2019; 16(1): 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[44]
McBride R, van Zyl M, Fielding B. The coronavirus nucleocapsid is a multifunctional protein. Viruses 2014; 6(8): 2991-3018.
[http://dx.doi.org/10.3390/v6082991] [PMID: 25105276]
[45]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-4.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[46]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e278.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[47]
Lu L, Liu Q, Zhu Y, et al. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat Commun 2014; 5(1): 3067.
[http://dx.doi.org/10.1038/ncomms4067] [PMID: 24473083]
[48]
Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020; 11(1): 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[49]
Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J Virol 2003; 77(16): 8801-11.
[http://dx.doi.org/10.1128/JVI.77.16.8801-8811.2003] [PMID: 12885899]
[50]
Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA 2009; 106(14): 5871-6.
[http://dx.doi.org/10.1073/pnas.0809524106] [PMID: 19321428]
[51]
Shirato K, Kawase M, Matsuyama S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol 2013; 87(23): 12552-61.
[http://dx.doi.org/10.1128/JVI.01890-13] [PMID: 24027332]
[52]
Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol 2010; 84(24): 12658-64.
[http://dx.doi.org/10.1128/JVI.01542-10] [PMID: 20926566]
[53]
Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol 2011; 85(2): 873-82.
[http://dx.doi.org/10.1128/JVI.02062-10] [PMID: 21068237]
[54]
Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol 2012; 86(12): 6537-45.
[http://dx.doi.org/10.1128/JVI.00094-12] [PMID: 22496216]
[55]
Gil C, Ginex T, Maestro I, et al. COVID-19: Drug targets and potential treatments. J Med Chem 2020; 63(21): 12359-86.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[56]
Dai W, Zhang B, Jiang XM, et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 2020; 368(6497): 1331-5.
[http://dx.doi.org/10.1126/science.abb4489] [PMID: 32321856]
[57]
Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020; 582(7811): 289-93.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[58]
Yin W, Mao C, Luan X, et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 2020; 368(6498): 1499-504.
[http://dx.doi.org/10.1126/science.abc1560] [PMID: 32358203]
[59]
Gretebeck LM, Subbarao K. Animal models for SARS and MERS coronaviruses. Curr Opin Virol 2015; 13: 123-9.
[http://dx.doi.org/10.1016/j.coviro.2015.06.009] [PMID: 26184451]
[60]
Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11(1): 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[61]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[62]
Maiti AK. Therapeutic challenges in COVID-19. Curr Mol Med 2023.
[PMID: 36567277]
[63]
Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020; 395(10223): e30-1.
[http://dx.doi.org/10.1016/S0140-6736(20)30304-4] [PMID: 32032529]
[64]
Cascella M, Rajnik M, Aleem A, Dulebohn S, Di Napoli R. Features, evaluation, and treatment of coronavirus (COVID-19). Treasure Island, FL: StatPearls 2021.
[65]
Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol 2020; 92(6): 568-76.
[http://dx.doi.org/10.1002/jmv.25748] [PMID: 32134116]
[66]
Younis NK, Zareef RO, Al Hassan SN, Bitar F, Eid AH, Arabi M. Features, evaluation, and treatment of coronavirus (COVID-19). StatPearls 2020.
[http://dx.doi.org/10.3389/fphar.2020.597985]
[67]
Zareef RO, Younis NK, Bitar F, Eid AH, Arabi M. COVID-19 in pediatric patients: A focus on CHD patients. Front Cardiovasc Med 2020; 27(7): 612460.
[http://dx.doi.org/10.3389/fcvm.2020.612460]
[68]
Chu CM, Cheng VC, Hung IF, et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax 2004; 59(3): 252-6.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[69]
de Wilde AH, Jochmans D, Posthuma CC, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother 2014; 58(8): 4875-84.
[http://dx.doi.org/10.1128/AAC.03011-14] [PMID: 24841269]
[70]
Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther 2020; 14(1): 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[71]
Sur VP, Sen MK, Komrskova K. In Silico identification and validation of organic triazole based ligands as potential inhibitory drug compounds of SARS-CoV-2 main protease. Molecules 2021; 26(20): 6199.
[http://dx.doi.org/10.3390/molecules26206199] [PMID: 34684780]
[72]
Yan D, Liu XY, Zhu Y, et al. Factors associated with prolonged viral shedding and impact of lopinavir/ritonavir treatment in hospitalised non-critically ill patients with SARS-CoV-2 infection. Eur Respir J 2020; 56(1): 2000799.
[http://dx.doi.org/10.1183/13993003.00799-2020] [PMID: 32430428]
[73]
Yao TT, Qian JD, Zhu WY, Wang Y, Wang GQ. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus—A possible reference for coronavirus disease-19 treatment option. J Med Virol 2020; 92(6): 556-63.
[http://dx.doi.org/10.1002/jmv.25729] [PMID: 32104907]
[74]
Chan KS, Lai ST, Chu CM, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: A multicentre retrospective matched cohort study. Hong Kong Med J 2003; 9(6): 399-406.
[PMID: 14660806]
[75]
Kotwani A, Gandra S. Potential pharmacological agents for COVID-19. Indian J Public Health 2020; 64 (Suppl. 6): 112.
[http://dx.doi.org/10.4103/ijph.IJPH_456_20] [PMID: 32496239]
[76]
Wei P-F. Diagnosis and treatment protocol for novel coronavirus pneumonia (trial version 7). Chin Med J 2020; 133(9): 1087-95.
[http://dx.doi.org/10.1097/CM9.0000000000001399] [PMID: 32358325]
[77]
Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[78]
Ray Y, Paul SR, Bandopadhyay P, et al. Clinical and immunological benefits of convalescent plasma therapy in severe COVID-19: insights from a single center open label randomised control trial. Nat Commun 2022; 13: 383.
[79]
Sosyal D, Ozmen O, Bektay MY, Izzettin FV. Treatment of coronavirus disease 2019: A comprehensive review. J Ideas Health 2020; 3(4): 228-42.
[http://dx.doi.org/10.47108/jidhealth.Vol3.Iss4.71]
[80]
Jeon S, Ko M, Lee J, et al. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob Agents Chemother 2020; 64(7): e00819-20.
[http://dx.doi.org/10.1128/AAC.00819-20] [PMID: 32366720]
[81]
Siegel D, Hui HC, Doerffler E, et al. Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-Nucleoside (GS-5734) for the treatment of ebola and emerging viruses. J Med Chem 2017; 60(5): 1648-61.
[82]
Al-Karmalawy AA, Soltane R, Abo Elmaaty A, et al. Coronavirus Disease (COVID-19) control between drug repurposing and vaccination: A Comprehensive Overview. Vaccines (Basel) 2021; 9(11): 1317.
[http://dx.doi.org/10.3390/vaccines9111317] [PMID: 34835248]
[83]
Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395(10236): 1569-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[84]
Boseley S. First trial for potential Covid-19 drug shows it has no effect. The Guardian 2020. Available from: https://www.theguardian.com/world/2020/apr/23/high-hopes-drug-for-covid-19-treatment-failed-in-full-trial.
[85]
Zuckerman DM. Emergency use authorizations (EUAs) versus FDA approval: implications for covid-19 and public health. Am J Public Health 2021; 111(6): 1065-9.
[86]
Al-Tawfiq JA, Al-Homoud AH, Memish ZA. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med Infect Dis 2020; 34: 101615.
[http://dx.doi.org/10.1016/j.tmaid.2020.101615] [PMID: 32145386]
[87]
Aleem A, Kothadia JP. Remdesivir. Treasure Island, FL: StatPearls 2021.
[88]
Jorgensen SCJ, Kebriaei R, Dresser LD. Remdesivir: Review of pharmacology, pre‐clinical data, and emerging clinical experience for COVID-19. Pharmacotherapy 2020; 40(7): 659-71.
[http://dx.doi.org/10.1002/phar.2429] [PMID: 32446287]
[89]
Eastman RT, Roth JS, Brimacombe KR, et al. Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent Sci 2020; 6(5): 672-83.
[http://dx.doi.org/10.1021/acscentsci.0c00489] [PMID: 32483554]
[90]
Younis NK, Zareef RO, Fakhri G, Bitar F, Eid AH, Arabi M. COVID-19: Potential therapeutics for pediatric patients. Pharmacol Rep 2021; 73(6): 1520-38.
[http://dx.doi.org/10.1007/s43440-021-00316-1] [PMID: 34458951]
[91]
Sanders J, Monogue M, Jodlowski T, Cutrell J. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA 2020; 323(18): 1824-36.
[92]
Stockman LJ, Bellamy R, Garner P. SARS: Systematic review of treatment effects. PLoS Med 2006; 3(9): e343.
[http://dx.doi.org/10.1371/journal.pmed.0030343] [PMID: 16968120]
[93]
Arabi YM, Mandourah Y, Al-Hameed F, et al. Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome. Am J Respir Crit Care Med 2018; 197(6): 757-67.
[http://dx.doi.org/10.1164/rccm.201706-1172OC] [PMID: 29161116]
[94]
Altınbas S, Holmes JA, Altınbas A. Hepatitis C virus infection in pregnancy: An update. Gastroenterol Nurs 2020; 43(1): 12-21.
[http://dx.doi.org/10.1097/SGA.0000000000000404] [PMID: 31990870]
[95]
Falzarano D, de Wit E, Martellaro C, Callison J, Munster VJ, Feldmann H. Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Sci Rep 2013; 3(1): 1686.
[http://dx.doi.org/10.1038/srep01686] [PMID: 23594967]
[96]
McCurry J. Japanese flu drug “clearly effective” in treating coronavirus, says China. The Guardian. 2020; p. 18. Available from: https://www.theguardian.com/world/2020/mar/18/japanese-flu-drug-clearly-effective-in-treating-coronavirus-says-china
[97]
Cai Q, Yang M, Liu D, et al. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering (Beijing) 2020; 6(10): 1192-8.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[98]
Nasir M, Perveen RA, Saha SK, Talha KA, Selina F, Islam MA. Systematic review on repurposing use of Favipiravir against SARS-CoV-2. Mymensingh Med J 2020; 29(3): 747-54.
[PMID: 32844821]
[99]
Reddy EK, Battula S, Anwar S, Sajith AM. Drug re-purposing approach and potential therapeutic strategies to treat COVID-19. Mini Rev Med Chem 2021; 21(6): 704-23.
[http://dx.doi.org/10.2174/1389557520666201113105940] [PMID: 33185159]
[100]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[101]
Drożdżal S, Rosik J, Lechowicz K, et al. FDA approved drugs with pharmacotherapeutic potential for SARS-CoV-2 (COVID-19) therapy. Drug Resist Updat 2020; 53: 100719.
[http://dx.doi.org/10.1016/j.drup.2020.100719] [PMID: 32717568]
[102]
Kadam RU, Wilson IA. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc Natl Acad Sci USA 2017; 114(2): 206-14.
[http://dx.doi.org/10.1073/pnas.1617020114] [PMID: 28003465]
[103]
Khamitov RA, Loginova SIa, Shchukina VN, Borisevich SV, Maksimov VA, Shuster AM. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures. Vopr Virusol 2008; 53(4): 9-13.
[PMID: 18756809]
[104]
Low ZY, Yip AJW, Lal SK. Repositioning Ivermectin for Covid-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication. Biochim Biophys Acta Mol Basis Dis 2022; 1868(2): 166294.
[http://dx.doi.org/10.1016/j.bbadis.2021.166294] [PMID: 34687900]
[105]
Patil VM, Verma S, Masand N. Prospective mode of action of Ivermectin: SARS-CoV-2. Eur J Med Chem 2022; 4: 100018.
[106]
Chavda VP, Gajjar N, Shah N, Dave DJ. Darunavir ethanolate: Repurposing an anti-HIV drug in COVID-19 treatment. Eur J Med Chem Rep 2021; 3: 100013.
[http://dx.doi.org/10.1016/j.ejmcr.2021.100013] [PMID: 36575695]
[107]
Saviñon-Flores F, Méndez E, López-Castaños M, et al. A review on SERS-based detection of human virus infections: influenza and coronavirus. Biosensors 2021; 11(3): 66.
[http://dx.doi.org/10.3390/bios11030066] [PMID: 33670852]
[108]
Paules CI, Marston HD, Fauci AS. Coronavirus infections—more than just the common cold. JAMA 2020; 323(8): 707-8.
[http://dx.doi.org/10.1001/jama.2020.0757] [PMID: 31971553]
[109]
Yousefi B, Valizadeh S, Ghaffari H, Vahedi A, Karbalaei M, Eslami M. A global treatments for coronaviruses including COVID‐19. J Cell Physiol 2020; 235(12): 9133-42.
[http://dx.doi.org/10.1002/jcp.29785] [PMID: 32394467]
[110]
Lam S, Lombardi A, Ouanounou A. COVID-19: A review of the proposed pharmacological treatments. Eur J Pharmacol 2020; 886: 173451.
[http://dx.doi.org/10.1016/j.ejphar.2020.173451] [PMID: 32768505]
[111]
Younis NK, Zareef RO, Fakhri G, Bitar F, Eid AH, Arabi M. COVID-19: potential therapeutics for pediatric patients. Pharmacol Rep 2021; 73: 1520-38.
[112]
Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci 2017; 74(13): 2345-60.
[http://dx.doi.org/10.1007/s00018-017-2473-5] [PMID: 28214990]
[113]
Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise review: Multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med 2017; 6(12): 2173-85.
[http://dx.doi.org/10.1002/sctm.17-0129] [PMID: 29076267]
[114]
Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int 2019; 2019: 9628536.
[http://dx.doi.org/10.1155/2019/9628536]
[115]
US Food and Drug Administration. FDA Combating COVID19 With Therapeutics. 2020. Available from: https://www.fda.gov/media/136832/download
[116]
US Food and Drug Administration Approved Cellular and Gene Therapy Products. 2019. https://www.fda.gov/vaccines-blood-biologics/cellular-genetherapy-products/approved-cellular-and-gene-therapyproducts.
[118]
Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 2020; 11(2): 216-28.
[http://dx.doi.org/10.14336/AD.2020.0228] [PMID: 32257537]
[119]
Shu L, Niu C, Li R, et al. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res Ther 2020; 11(1): 361.
[http://dx.doi.org/10.1186/s13287-020-01875-5] [PMID: 32811531]
[120]
Abdelgawad M, Bakry NS, Farghali AA, Abdel-Latif A, Lotfy A. Mesenchymal stem cell-based therapy and exosomes in COVID-19: current trends and prospects. Stem Cell Res Ther 2021; 12(1): 469.
[http://dx.doi.org/10.1186/s13287-021-02542-z] [PMID: 34419143]
[121]
Rawson TM, Moore LSP, Zhu N, et al. Bacterial and fungal coinfection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis 2020; 71(9): ciaa530.
[http://dx.doi.org/10.1093/cid/ciaa530] [PMID: 32358954]
[122]
Emmerson AM. Cefuroxime axetil. J Antimicrob Chemother 1988; 22(2): 101-4.
[http://dx.doi.org/10.1093/jac/22.2.101] [PMID: 3053551]
[123]
Durojaiye AB, Clarke JRD, Stamatiades GA, Wang C. Repurposing cefuroxime for treatment of COVID-19: A scoping review of in silico studies. J Biomol Struct Dyn 2021; 39(12): 4547-54.
[http://dx.doi.org/10.1080/07391102.2020.1777904] [PMID: 32538276]
[124]
Kalirajan R, Iniyavan K, Rathika G, Pandiselvi A. Molecular docking studies, in-silico ADMET screening, MM-GBSA binding free energy of some novel chalcone substituted 9-anilinoacridines as topoisomerase II inhibitors. Int J Comput Biol Drug Des 2020; 13(4): 347-58.
[http://dx.doi.org/10.1504/IJCBDD.2020.111053]
[125]
Shang XF, Morris-Natschke SL, Liu YQ, et al. Biologically active quinoline and quinazoline alkaloids part I. Med Res Rev 2018; 38(3): 775-828.
[http://dx.doi.org/10.1002/med.21466] [PMID: 28902434]
[126]
Shang XF, Morris-Natschke SL, Yang GZ, et al. Biologically active quinoline and quinazoline alkaloids part II. Med Res Rev 2018; 38(5): 1614-60.
[http://dx.doi.org/10.1002/med.21492] [PMID: 29485730]
[127]
Zhang L, Lin D, Sun X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020; 368(6489): 409-12.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[128]
Quimque MTJ, Notarte KIR, Fernandez RAT, et al. Virtual screening-driven drug discovery of SARS-CoV2 enzyme inhibitors targeting viral attachment, replication, post-translational modification and host immunity evasion infection mechanisms. J Biomol Struct Dyn 2020; 1-18.
[PMID: 32476574]
[129]
Ismail EM, Shantier SW, Mohammed MS, Musa HH, Osman W, Mothana RA. Quinoline and quinazoline alkaloids against COVID-19: An in silico multitarget approach. J Chemist 2021; 2021: 3613268.
[http://dx.doi.org/10.1155/2021/3613268]
[130]
Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19—preliminary report. N Engl J Med 2020; 383(19): 1813-26.
[http://dx.doi.org/10.1056/NEJMoa2007764]
[131]
Elfiky AA. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective. J Biomol Struct Dyn 2021; 39(9): 3204-12.
[PMID: 32338164]
[132]
Ekins S, Mottin M, Ramos PRPS, et al. Déjà vu: Stimulating open drug discovery for SARS-CoV-2. Drug Discov Today 2020; 25(5): 928-41.
[http://dx.doi.org/10.1016/j.drudis.2020.03.019] [PMID: 32320852]
[133]
Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV — a target for vaccine and therapeutic development. Nat Rev Microbiol 2009; 7(3): 226-36.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[134]
Rios C, Gomes I, Devi LA. μ opioid and CB1 cannabinoid receptor interactions: Reciprocal inhibition of receptor signaling and neuritogenesis. Br J Pharmacol 2006; 148(4): 387-95.
[http://dx.doi.org/10.1038/sj.bjp.0706757] [PMID: 16682964]
[135]
Ribaudo G, Ongaro A, Oselladore E, Zagotto G, Memo M, Gianoncelli A. A computational approach to drug repurposing against SARS-CoV-2 RNA dependent RNA polymerase (RdRp). J Biomol Struct Dyn 2020; 40(3): 1-8.
[PMID: 32948103]
[136]
Chugh A, Sehgal I, Khurana N, et al. Comparative docking studies of drugs and phytocompounds for emerging variants of SARS-CoV-2. 3 Biotech 2023; 13(1): 36.
[http://dx.doi.org/10.1007/s13205-022-03450-6] [PMID: 36619821]
[137]
Usman MM, Ismail S, Teoh TC. Vaccine research and development: Tuberculosis as a global health threat. Cent Eur J Immunol 2017; 2(2): 196-204.
[http://dx.doi.org/10.5114/ceji.2017.69362] [PMID: 28867962]
[138]
Hegarty PK, Kamat AM, Zafirakis H, Dinardo A. BCG vaccination may be protective against Covid-19. preprint 2020; 10.
[http://dx.doi.org/10.13140/RG.2.2.35948.10880]
[139]
Miller A, Reandelar MJ, Fasciglione K, Roumenova V, Li Y, Otazu GH. Correlation between universal BCG vaccination policy and reduced mortality for COVID-19. MedRxiv 2020; 2020: 20042937.
[http://dx.doi.org/10.1101/2020.03.24.20042937]
[140]
Macedo A, Febra C. Relation between BCG coverage rate and COVID-19 infection worldwide. Med Hypotheses 2020; 142: 109816.
[http://dx.doi.org/10.1016/j.mehy.2020.109816] [PMID: 32408071]
[141]
de Bree LCJ, Marijnissen RJ, Kel JM, et al. Bacillus calmette–guérin-induced Trained immunity is not Protective for experimental influenza a/anhui/1/2013 (h7n9) infection in Mice. Front Immunol 2018; 9: 869.
[http://dx.doi.org/10.3389/fimmu.2018.00869] [PMID: 29760700]
[142]
Arts RJW, Blok BA, Aaby P, et al. Long-term in vitro and in vivo effects of γ-irradiated BCG on innate and adaptive immunity. J Leukoc Biol 2015; 98(6): 995-1001.
[http://dx.doi.org/10.1189/jlb.4MA0215-059R] [PMID: 26082519]
[143]
Ylli A, Wu YY, Burazeri G, Pirkle C, Sentell T. The lower COVID-19 related mortality and incidence rates in Eastern European countries are associated with delayed start of community circulation. PLoS One 2020; 15(12): e0243411.
[http://dx.doi.org/10.1371/journal.pone.0243411] [PMID: 33270782]
[144]
Narayanan A, Narwal M, Majowicz SA, et al. Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay. Commun Biol 2022; 5(1): 169.
[http://dx.doi.org/10.1038/s42003-022-03090-9] [PMID: 35217718]
[145]
Meher K, Saranya K, Reddy A, et al. Differential activity of repurposed drugs as receptor binding domain antagonists for omicron and native strains of SarsCov2. bioRxiv 2022; 2022: 483630.
[http://dx.doi.org/10.1101/2022.03.09.483630]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy