Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Attenuation of NLRP3 Inflammasome by Cigarette Smoke is Correlated with Decreased Defense Response of Oral Epithelial Cells to Candida albicans

Author(s): Fan Huang, Ruiqi Xie, Ruowei Li, Liu Liu, Maomao Zhao, Qiong Wang, Weida Liu, Pei Ye*, Wenmei Wang* and Xiang Wang*

Volume 24, Issue 6, 2024

Published on: 17 July, 2023

Page: [790 - 800] Pages: 11

DOI: 10.2174/1566524023666230612143038

Price: $65

Abstract

Background: It is well recognized that both smoke and Candida infection are crucial risk factors for oral mucosal diseases. The nucleotide-binding domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and its downstream effectors, interleukin (IL)-1β and IL-18, are pivotal to the host defense against Candida and other pathogens.

Methods: The present study was designed to explore the effects of cigarette smoke and C. albicans on the NLRP3 inflammasome and its downstream signal pathway via in vitro cell model. Oral epithelial cells (Leuk-1 cells) were exposed to cigarette smoke extract (CSE) for 3 days and/or challenged with C. albicans.

Results: Microscopically, Leuk-1 cells exerted a defense response to C. albicans by markedly limiting the formation of germ tubes and microcolonies. CSE clearly eliminated the defense response of Leuk-1 cells. Functionally, CSE repressed NLRP3 inflammasome, and IL-1β and IL-18 activation induced by C. albicans in Leuk-1 cells.

Conclusion: Our results suggested that in oral epithelial cells, the NLRP3 inflammasome might be one of the target pathways by which CSE attenuates innate immunity and leads to oral disorders.

[1]
Feldman C, Anderson R. Cigarette smoking and mechanisms of susceptibility to infections of the respiratory tract and other organ systems. J Infect 2013; 67(3): 169-84.
[http://dx.doi.org/10.1016/j.jinf.2013.05.004] [PMID: 23707875]
[2]
Lee J, Taneja V, Vassallo R. Cigarette smoking and inflammation: Cellular and molecular mechanisms. J Dent Res 2012; 91(2): 142-9.
[http://dx.doi.org/10.1177/0022034511421200] [PMID: 21876032]
[3]
Bagaitkar J, Demuth DR, Scott DA. Tobacco use increases susceptibility to bacterial infection. Tob Induc Dis 2008; 4(1): 12.
[http://dx.doi.org/10.1186/1617-9625-4-12] [PMID: 19094204]
[4]
Furukawa S, Ueno M, Kawaguchi Y. Influence of tobacco on dental and oral diseases. Jpn J Clin Med 2013; 71(3): 459-63.
[PMID: 23631235]
[5]
Tomar SL, Hecht SS, Jaspers I, Gregory RL, Stepanov I. Oral health effects of combusted and smokeless tobacco products. Adv Dent Res 2019; 30(1): 4-10.
[http://dx.doi.org/10.1177/0022034519872480] [PMID: 31538806]
[6]
Cheng SC, Joosten LAB, Kullberg BJ, Netea MG. Interplay between Candida albicans and the mammalian innate host defense. Infect Immun 2012; 80(4): 1304-13.
[http://dx.doi.org/10.1128/IAI.06146-11] [PMID: 22252867]
[7]
Qian Y, Wang X, Gao Y, et al. Cigarette smoke modulates nod1 signal pathway and human ß defensins expression in human oral mucosa. Cell Physiol Biochem 2015; 36(2): 457-73.
[http://dx.doi.org/10.1159/000430112] [PMID: 25968832]
[8]
Shiels MS, Katki HA, Freedman ND, et al. Cigarette smoking and variations in systemic immune and inflammation markers. J Natl Cancer Inst 2014; 106(11): dju294.
[http://dx.doi.org/10.1093/jnci/dju294] [PMID: 25274579]
[9]
Velloso FJ, Trombetta-Lima M, Anschau V, Sogayar MC, Correa RG. NOD-like receptors: Major players (and targets) in the interface between innate immunity and cancer. Biosci Rep 2019; 39(4): BSR20181709.
[http://dx.doi.org/10.1042/BSR20181709]
[10]
Szabo G, Csak T. Inflammasomes in liver diseases. J Hepatol 2012; 57(3): 642-54.
[http://dx.doi.org/10.1016/j.jhep.2012.03.035] [PMID: 22634126]
[11]
Ramana KV, Plowman TJ, Shah MH, Fernandez E, Christensen H, Aiges M. Role of innate immune and inflammatory responses in the development of secondary diabetic complications. Curr Mol Med 2022; 23 (Online ahead of print)..
[http://dx.doi.org/10.2174/1566524023666220922114701]
[12]
Lv K, Wang G, Shen C, Zhang X, Yao H. Role and mechanism of the nod-like receptor family pyrin domain-containing 3 inflammasome in oral disease. Arch Oral Biol 2019; 97(5): 1-11.
[http://dx.doi.org/10.1016/j.archoralbio.2018.10.003] [PMID: 30315987]
[13]
Wang H, Luo Q, Feng X, Zhang R, Li J, Chen F. NLRP3 promotes tumor growth and metastasis in human oral squamous cell carcinoma. BMC Cancer 2018; 18(1): 500.
[http://dx.doi.org/10.1186/s12885-018-4403-9] [PMID: 29716544]
[14]
Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011; 117(14): 3720-32.
[http://dx.doi.org/10.1182/blood-2010-07-273417] [PMID: 21304099]
[15]
Heine H. TLRs, NLRs and RLRs: Innate sensors and their impact on allergic diseases – A current view. Immunol Lett 2011; 139(1-2): 14-24.
[http://dx.doi.org/10.1016/j.imlet.2011.04.010] [PMID: 21554901]
[16]
Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int J Mol Sci 2019; 20(13): 3328.
[http://dx.doi.org/10.3390/ijms20133328] [PMID: 31284572]
[17]
Dadar M, Tiwari R, Karthik K, Chakraborty S, Shahali Y, Dhama K. Candida albicans - Biology, molecular characterization, pathogenicity, and advances in diagnosis and control – An update. Microb Pathog 2018; 117: 128-38.
[http://dx.doi.org/10.1016/j.micpath.2018.02.028] [PMID: 29454824]
[18]
Castillo GV, Blanc SL, Sotomayor CE, Azcurra AI. Study of virulence factor of Candida species in oral lesions and its association with potentially malignant and malignant lesions. Arch Oral Biol 2018; 91(6): 35-41.
[http://dx.doi.org/10.1016/j.archoralbio.2018.02.012] [PMID: 29656214]
[19]
Arendorf TM, Walker DM. The prevalence and intra-oral distribution of Candida albicans in man. Arch Oral Biol 1980; 25(1): 1-10.
[http://dx.doi.org/10.1016/0003-9969(80)90147-8] [PMID: 6996654]
[20]
Semlali A, Killer K, Alanazi H, Chmielewski W, Rouabhia M. Cigarette smoke condensate increases C. albicans adhesion, growth, biofilm formation, and EAP1, HWP1 and SAP2 gene expression. BMC Microbiol 2014; 14(1): 61.
[http://dx.doi.org/10.1186/1471-2180-14-61]
[21]
Ye P, Wang X, Ge S, Chen W, Wang W, Han X. Long-term cigarette smoking suppresses NLRP3 inflammasome activation in oral mucosal epithelium and attenuates host defense against Candida albicans in a rat model. Biomed Pharmacother 2019; 113: 108597.
[http://dx.doi.org/10.1016/j.biopha.2019.01.058] [PMID: 30851547]
[22]
Wang W, Ye P, Qian Y, et al. Effects of whole cigarette smoke on human beta defensins expression and secretion by oral mucosal epithelial cells. Tob Induc Dis 2015; 13(1): 3.
[http://dx.doi.org/10.1186/s12971-015-0029-8] [PMID: 25635179]
[23]
Huang F, Song Y, Chen W, et al. Effects of Candida albicans infection on defense effector secretion by human oral mucosal epithelial cells. Arch Oral Biol 2019; 103: 55-61.
[http://dx.doi.org/10.1016/j.archoralbio.2019.05.013] [PMID: 31136880]
[24]
Wang X, Qian Y, Zhou Q, et al. Caspase-12 silencing attenuates inhibitory effects of cigarette smoke extract on NOD1 signaling and hBDs expression in human oral mucosal epithelial cells. PLoS One 2014; 9(12): e115053.
[http://dx.doi.org/10.1371/journal.pone.0115053] [PMID: 25503380]
[25]
Peters BM, Palmer GE, Nash AK, Lilly EA, Fidel PL Jr, Noverr MC. Fungal morphogenetic pathways are required for the hallmark inflammatory response during Candida albicans vaginitis. Infect Immun 2014; 82(2): 532-43.
[http://dx.doi.org/10.1128/IAI.01417-13] [PMID: 24478069]
[26]
Wilson D, Naglik JR, Hube B. The missing link between Candida albicans hyphal morphogenesis and host cell damage. PLoS Pathog 2016; 12(10): e1005867.
[http://dx.doi.org/10.1371/journal.ppat.1005867] [PMID: 27764260]
[27]
Rodrigues AG, Mårdh PA, Pina-Vaz C, Martinez-de-Oliveira J, Fonseca AF. Germ tube formation change surface hydrophobicity of Candida cells. Infect Dis Obstet Gynecol 1999; 7(5): 222-6.
[http://dx.doi.org/10.1002/(SICI)1098-0997(1999)7:5<222:AID-IDOG3>3.0.CO;2-L] [PMID: 10524666]
[28]
Sudbery PE. Growth of Candida albicans hyphae. Nat Rev Microbiol 2011; 9(10): 737-48.
[http://dx.doi.org/10.1038/nrmicro2636] [PMID: 21844880]
[29]
Keten HS, Keten D, Ucer H, Yildirim F, Hakkoymaz H, Isik O. Prevalence of oral Candida carriage and Candida species among cigarette and maras powder users. Int J Clin Exp Med 2015; 8(6): 9847-54.
[PMID: 26309667]
[30]
Soysa NS, Ellepola ANB. The impact of cigarette/tobacco smoking on oral candidosis: An overview. Oral Dis 2005; 11(5): 268-73.
[http://dx.doi.org/10.1111/j.1601-0825.2005.01115.x] [PMID: 16120112]
[31]
Hise AG, Tomalka J, Ganesan S, et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 2009; 5(5): 487-97.
[http://dx.doi.org/10.1016/j.chom.2009.05.002] [PMID: 19454352]
[32]
Gross O, Poeck H, Bscheider M, et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 2009; 459(7245): 433-6.
[http://dx.doi.org/10.1038/nature07965]
[33]
Morris GF, Danchuk S, Wang Y, et al. Cigarette smoke represses the innate immune response to asbestos. Physiol Rep 2015; 3(12): e12652.
[http://dx.doi.org/10.14814/phy2.12652] [PMID: 26660560]
[34]
Han S, Jerome JA, Gregory AD, Mallampalli RK. Cigarette smoke destabilizes NLRP3 protein by promoting its ubiquitination. Respir Res 2017; 18(1): 2.
[http://dx.doi.org/10.1186/s12931-016-0485-6] [PMID: 28056996]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy