Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

In silico Identification of Potential Inhibitors against Staphylococcus aureus Tyrosyl-tRNA Synthetase

Author(s): Kohei Monobe, Hinata Taniguchi and Shunsuke Aoki*

Volume 20, Issue 5, 2024

Published on: 03 July, 2023

Page: [452 - 462] Pages: 11

DOI: 10.2174/1573409919666230612120819

Price: $65

Abstract

Background: Drug-resistant Staphylococcus aureus (S. aureus) has spread from nosocomial to community-acquired infections. Novel antimicrobial drugs that are effective against resistant strains should be developed. S. aureus tyrosyl-tRNA synthetase (saTyrRS) is considered essential for bacterial survival and is an attractive target for drug screening.

Objectives: The purpose of this study was to identify potential new inhibitors of saTyrRS by screening compounds in silico and evaluating them using molecular dynamics (MD) simulations.

Methods: A 3D structural library of 154,118 compounds was screened using the DOCK and GOLD docking simulations and short-time MD simulations. The selected compounds were subjected to MD simulations of a 75-ns time frame using GROMACS.

Results: Thirty compounds were selected by hierarchical docking simulations. The binding of these compounds to saTyrRS was assessed by short-time MD simulations. Two compounds with an average value of less than 0.15 nm for the ligand RMSD were ultimately selected. The longtime (75 ns) MD simulation results demonstrated that two novel compounds bound stably to saTyrRS in silico.

Conclusion: Two novel potential saTyrRS inhibitors with different skeletons were identified by in silico drug screening using MD simulations. The in vitro validation of the inhibitory effect of these compounds on enzyme activity and their antibacterial effect on drug-resistant S. aureus would be useful for developing novel antibiotics.

Graphical Abstract

[1]
Cheung, GYC; Bae, JS; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence., 2021, 12(1), 547.
[http://dx.doi.org/10.1080/21505594.2021.1878688]
[2]
Kluytmans, J.A.J.W.; Wertheim, H.F.L. Nasal carriage of Staphylococcus aureus and prevention of nosocomial infections. Infection, 2005, 33(1), 3-8.
[http://dx.doi.org/10.1007/s15010-005-4012-9] [PMID: 15750752]
[3]
Lakhundi, S; Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev., 2018, 31(4), e00020-e00028.
[4]
McGuinness, WA; Malachowa, N; DeLeo, FR Focus: Infectious diseases: Vancomycin resistance in Staphylococcus aureus. Yale J. Biol. Med., 2017, 90(2), 269.
[5]
Otto, M. community-associated MRSA: What makes them special? Int. J. Med. Microbiol., 2013, 303(0), 324.
[6]
Balakirski, G.; Hischebeth, G.; Altengarten, J.; Exner, D.; Bieber, T.; Dohmen, J.; Engelhart, S. Recurrent mucocutaneous infections caused by PVL‐positive Staphylococcus aureus strains: A challenge in clinical practice. J. Dtsch. Dermatol. Ges., 2020, 18(4), 315-322.
[http://dx.doi.org/10.1111/ddg.14058] [PMID: 32196137]
[7]
Deurenberg, R.H.; Stobberingh, E.E. The evolution of Staphylococcus aureus. Infect. Genet. Evol., 2008, 8(6), 747-763.
[http://dx.doi.org/10.1016/j.meegid.2008.07.007] [PMID: 18718557]
[8]
Toner, E.; Adalja, A.; Gronvall, GK; Cicero, A.; Inglesby, V.TV Antimicrobial resistance is a global health emergency. Health Secur., 2015, 13(3), 153.
[9]
Lee Ventola, C. The antibiotic resistance crisis: Part 2: Management strategies and new agents. Pharm Ther., 2015, 40(5), 344.
[10]
WHO. global priority pathogens list of antibiotic-resistant bacteria, Available from: https://www.doherty.edu.au/news-events/news/who-global-priority-pathogens-list-of-antibiotic-resistant-bacteria
[12]
Bouz, G.; Zitko, J. Inhibitors of aminoacyl-tRNA synthetases as antimycobacterial compounds: An up-to-date review. Bioorg. Chem., 2021, 110, 104806.
[http://dx.doi.org/10.1016/j.bioorg.2021.104806] [PMID: 33799176]
[13]
Skupińska, M.; Stȩpniak, P.; Łȩtowska, I.; Rychlewski, L.; Barciszewska, M.; Barciszewski, J. Natural compounds as inhibitors of tyrosyl-tRNA synthetase. Microb Drug Resist., 2017, 23(3), 308.
[http://dx.doi.org/10.1089/mdr.2015.0272]
[14]
Xiao, Z.P.; Ma, T.W.; Liao, M.L.; Feng, Y.T.; Peng, X.C.; Li, J.L.; Li, Z.P.; Wu, Y.; Luo, Q.; Deng, Y.; Liang, X.; Zhu, H.L. Tyrosyl-tRNA synthetase inhibitors as antibacterial agents: Synthesis, molecular docking and structure–activity relationship analysis of 3-aryl-4-arylaminofuran-2(5H)-ones. Eur. J. Med. Chem., 2011, 46(10), 4904-4914.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.047] [PMID: 21856050]
[15]
Brown, P.; Eggleston, D.S.; Haltiwanger, R.C.; Jarvest, R.L.; Mensah, L.; O’Hanlon, P.J.; Pope, A.J. Synthetic analogues of SB-219383. Novel C-glycosyl peptides as inhibitors of tyrosyl tRNA synthetase. Bioorg. Med. Chem. Lett., 2001, 11(5), 711-714.
[http://dx.doi.org/10.1016/S0960-894X(01)00039-7] [PMID: 11266175]
[16]
Qiu, X; Janson, CA; Smith, WW; Green, SM; McDevitt, P; Johanson, K Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors. Protein Sci., 2008, 10(10), 2008.
[17]
Li, T.; Froeyen, M.; Herdewijn, P. Comparative structural dynamics of Tyrosyl-tRNA synthetase complexed with different substrates explored by molecular dynamics. Eur. Biophys. J., 2008, 38(1), 25-35.
[http://dx.doi.org/10.1007/s00249-008-0350-8] [PMID: 18560823]
[18]
Greenwood, R.C.; Gentry, D.R. Confirmation of the antibacterial mode of action of SB-219383, a novel tyrosyl tRNA synthetase inhibitor from a Micromonospora sp. J. Antibiot., 2002, 55(4), 423-426.
[http://dx.doi.org/10.7164/antibiotics.55.423] [PMID: 12061551]
[19]
ChemBridge, Home. Available from: https://www.chembridge.com/
[20]
Molecular operating environment (MOE) | MOEsaic.. PSILO, Available from: https://www.chemcomp.com/Products.htm
[21]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235.
[22]
Lang, PT; Brozell, SR; Mukherjee, S; Pettersen, EF; Meng, EC; Thomas, V DOCK 6: Combining techniques to model RNA–small molecule complexes. RNA., 2009, 15(6), 1219.
[23]
Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. Cohen. J. Mol. Biol., 1997, 267(3), 727-748.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]
[24]
Hollingsworth, SA; Dror, RO Molecular dynamics simulation for all. Neuron., 2018, 99(6), 1129.
[http://dx.doi.org/10.1016/j.neuron.2018.08.011]
[25]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[26]
Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem., 2008, 29(11), 1859-1865.
[http://dx.doi.org/10.1002/jcc.20945] [PMID: 18351591]
[27]
Brooks, B.R.; Brooks, C.L., III; Mackerell, A.D., Jr; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A.R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R.W.; Post, C.B.; Pu, J.Z.; Schaefer, M.; Tidor, B.; Venable, R.M.; Woodcock, H.L.; Wu, X.; Yang, W.; York, D.M.; Karplus, M. CHARMM: The biomolecular simulation program. J. Comput. Chem., 2009, 30(10), 1545-1614.
[http://dx.doi.org/10.1002/jcc.21287] [PMID: 19444816]
[28]
Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; Jo, S.; Pande, V.S.; Case, D.A.; Brooks, C.L., III; MacKerell, A.D., Jr; Klauda, J.B.; Im, W. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput., 2016, 12(1), 405-413.
[http://dx.doi.org/10.1021/acs.jctc.5b00935] [PMID: 26631602]
[29]
Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem., 1997, 18(12), 1463-1472.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H]
[30]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N Ŋlog(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092.
[http://dx.doi.org/10.1063/1.464397]
[31]
Taira, J.; Murakami, K.; Monobe, K.; Kuriki, K.; Fujita, M.; Ochi, Y. Identification of novel inhibitors for mycobacterial polyketide synthase 13 via in silico drug screening assisted by the parallel compound screening with genetic algorithm-based programs. J Antibiot, 2022, 75(10), 552-558.
[32]
Kuriki, K.; Matsumoto, R.; Ijichi, C.; Taira, J.; Aoki, S. Establishment of in silico prediction methods for potential bitter molecules using the human T2R14 homology-model structure. Chem. Biol. Lett., 2022, 9(3), 351.
[33]
Miryala, S.K.; Basu, S.; Naha, A.; Debroy, R.; Ramaiah, S.; Anbarasu, A.; Natarajan, S. Identification of bioactive natural compounds as efficient inhibitors against Mycobacterium tuberculosis protein-targets: A molecular docking and molecular dynamics simulation study. J. Mol. Liq., 2021, 341, 117340.
[http://dx.doi.org/10.1016/j.molliq.2021.117340]
[34]
Karami, TK; Hailu, S; Feng, S; Graham, R; Gukasyan, HJ Eyes on Lipinski’s rule of five: A new “rule of thumb” for physicochemical design space of ophthalmic drugs. J. Ocul. Pharmacol. Ther., 2022, 38(1), 43.
[35]
Guterres, H; Im, W Improving protein-ligand docking results with high-throughput Molecular Dynamics simulations. J. Chem. Inf. Model., 2020, 60(4), 2189.
[36]
Shehadi, IA; Abdelrahman, MT; Abdelraof, M; Rashdan, HRM Solvent-free synthesis, in vitro and in silico studies of novel potential 1,3,4-thiadiazole-based molecules against microbial pathogens. Molecules., 2022, 27(2), 342.
[37]
Xiao, Z.P.; Wei, W.; Wang, P.F.; Shi, W.K.; Zhu, N.; Xie, M.Q.; Sun, Y.W.; Li, L.X.; Xie, Y.X.; Zhu, L.S.; Tang, N.; Ouyang, H.; Li, X.H.; Wang, G.C.; Zhu, H.L. Synthesis and evaluation of new tyrosyl-tRNA synthetase inhibitors as antibacterial agents based on a N2-(arylacetyl)glycinanilide scaffold. Eur. J. Med. Chem., 2015, 102, 631-638.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.025] [PMID: 26318069]
[38]
Wei, W.; Shi, W.K.; Wang, P.F.; Zeng, X.T.; Li, P.; Zhang, J.R.; Li, Q.; Tang, Z.P.; Peng, J.; Wu, L.Z.; Xie, M.Q.; Liu, C.; Li, X.H.; Wang, Y.C.; Xiao, Z.P.; Zhu, H.L. Adenosine analogs as inhibitors of tyrosyl-tRNA synthetase: Design, synthesis and antibacterial evaluation. Bioorg. Med. Chem., 2015, 23(20), 6602-6611.
[http://dx.doi.org/10.1016/j.bmc.2015.09.018] [PMID: 26404408]
[39]
Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res., 2021, 49(W1), W530-W534.
[http://dx.doi.org/10.1093/nar/gkab294] [PMID: 33950214]
[40]
Poli, G; Granchi, C; Rizzolio, F; Tuccinardi, T. Application of MM-PBSA methods in virtual screening. Molecules, 2020, 25(8), 1971.
[http://dx.doi.org/10.3390/molecules25081971]
[41]
Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. Gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput., 2021, 17(10), 6281-6291.
[http://dx.doi.org/10.1021/acs.jctc.1c00645] [PMID: 34586825]
[42]
Miller, B.R., III; McGee, T.D., Jr; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput., 2012, 8(9), 3314-3321.
[http://dx.doi.org/10.1021/ct300418h] [PMID: 26605738]
[43]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy