Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

The Peripheral Profile of the Chitinase 3-like-1 in Benign Multiple Sclerosis – A Single Centre’s Experience

Author(s): Laura Barcutean, Adina Hutanu*, Sebastian Andone, Smaranda Maier and Rodica Balasa

Volume 23, Issue 6, 2024

Published on: 07 July, 2023

Page: [791 - 799] Pages: 9

DOI: 10.2174/1871527322666230609164534

Price: $65

conference banner
Abstract

Background: A limited subgroup of multiple sclerosis (MS) patients present with a longterm disease evolution characterized by a limited disease progression, known as benign MS (BMS). Chitinase 3-like-1 (CHI3L1) levels are sensitive to inflammatory processes and may play a role in the pathogenesis of MS. In this observational, cross-sectional study, we aimed to evaluate the implications of serum CHI3L1 and inflammatory cytokines in BMS patients treated with interferon β-1b for over a decade.

Methods: We collected serum samples from 17 BMS patients and 17 healthy controls (HC) to measure serum CHI3L1 levels and a Th17 panel of inflammatory cytokines. Serum levels of CHI3L1 were analysed using the sandwich ELISA method and the Th17 panel was assessed using the multiplex XMap technology on a Flexmap 3D Analyzer.

Results: Serum CHI3L1 levels did not differ significantly from HC. We identified a positive correlation between CHI3L1 levels and relapses during treatment.

Conclusion: Our findings suggest that there are no differences in serum CHI3L1 levels between BMS patients and HC. However, serum CHI3L1 levels are sensitive to clinical inflammatory activity and may be associated with relapses in BMS patients.

« Previous
Graphical Abstract

[1]
Dobson R, Giovannoni G. Multiple sclerosis - a review. Eur J Neurol 2019; 26(1): 27-40.
[http://dx.doi.org/10.1111/ene.13819] [PMID: 30300457]
[2]
Scalfari A, Neuhaus A, Daumer M, Muraro PA, Ebers GC. Onset of secondary progressive phase and long-term evolution of multiple sclerosis. J Neurol Neurosurg Psychiatry 2014; 85(1): 67-75.
[http://dx.doi.org/10.1136/jnnp-2012-304333] [PMID: 23486991]
[3]
Cree BAC, Gourraud PA, Oksenberg JR, et al. Long‐term evolution of multiple sclerosis disability in the treatment era. Ann Neurol 2016; 80(4): 499-510.
[http://dx.doi.org/10.1002/ana.24747] [PMID: 27464262]
[4]
Reynders T, D’haeseleer M, De Keyser J, Nagels G, D’hooghe MB. Definition, prevalence and predictive factors of benign multiple sclerosis. eNeurologicalSci 2017; 7: 37-43.
[http://dx.doi.org/10.1016/j.ensci.2017.05.002] [PMID: 29260023]
[5]
Kurtzke JF. Historical and clinical perspectives of the expanded disability status scale. Neuroepidemiology 2008; 31(1): 1-9.
[http://dx.doi.org/10.1159/000136645] [PMID: 18535394]
[6]
Leray E, Coustans M, Le Page E, Yaouanq J, Oger J, Edan G. ‘Clinically definite benign multiple sclerosis’, an unwarranted conceptual hodgepodge: evidence from a 30-year observational study. Mult Scler 2013; 19(4): 458-65.
[http://dx.doi.org/10.1177/1352458512456613] [PMID: 22859724]
[7]
Sayao AL, Devonshire V, Tremlett H. Longitudinal follow-up of “benign” multiple sclerosis at 20 years. Neurology 2007; 68(7): 496-500.
[http://dx.doi.org/10.1212/01.wnl.0000253185.03943.66] [PMID: 17296915]
[8]
Titus HE, Chen Y, Podojil JR, et al. Pre-clinical and Clinical Implications of “Inside-Out” vs. “Outside-In” Paradigms in Multiple Sclerosis Etiopathogenesis. Front Cell Neurosci 2020; 14: 599717.
[http://dx.doi.org/10.3389/fncel.2020.599717] [PMID: 33192332]
[9]
Filippi M, Bozzali M, Rovaris M, et al. Evidence for widespread axonal damage at the earliest clinical stage of multiple sclerosis. Brain 2003; 126(2): 433-7.
[http://dx.doi.org/10.1093/brain/awg038] [PMID: 12538409]
[10]
Van Der Voorn P, Tekstra J, Beelen RHJ, Tensen CP, Van Der Valk P, De Groot CJA. Expression of MCP-1 by reactive astrocytes in demyelinating multiple sclerosis lesions. Am J Pathol 1999; 154(1): 45-51.
[http://dx.doi.org/10.1016/S0002-9440(10)65249-2] [PMID: 9916917]
[11]
Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541(7638): 481-7.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[12]
Zhao T, Su Z, Li Y, Zhang X, You Q. Chitinase-3 like-protein-1 function and its role in diseases. Signal Transduct Target Ther 2020; 5(1): 201.
[http://dx.doi.org/10.1038/s41392-020-00303-7] [PMID: 32929074]
[13]
Floro S, Carandini T, Pietroboni AM, De Riz MA, Scarpini E, Galimberti D. Role of Chitinase 3–like 1 as a Biomarker in Multiple Sclerosis. Neurol Neuroimmunol Neuroinflamm 2022; 9(4): e1164.
[http://dx.doi.org/10.1212/NXI.0000000000001164] [PMID: 35534236]
[14]
McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: Guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50(1): 121-7.
[http://dx.doi.org/10.1002/ana.1032] [PMID: 11456302]
[15]
Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018; 17(2): 162-73.
[http://dx.doi.org/10.1016/S1474-4422(17)30470-2] [PMID: 29275977]
[16]
Kaufman M, Moyer D, Norton J. The significant change for the Timed 25-foot Walk in the multiple sclerosis functional composite. Mult Scler 2000; 6(4): 286-90.
[http://dx.doi.org/10.1177/135245850000600411] [PMID: 10962550]
[17]
Smith A. Symbol digit modalities test: Manual. Los Angeles, California: Western Psychological Corporation 2002.
[18]
Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960; 23(1): 56-62.
[http://dx.doi.org/10.1136/jnnp.23.1.56] [PMID: 14399272]
[19]
Balasa R I, Simu M, Voidazan S, et al. Natalizumab changes the peripheral profile of the Th17 panel in MS patients: New mechanisms of action. CNS Neurol Disord Drug Targets 2018; 16(9): 1018-26.
[20]
Dubuisson N, Puentes F, Giovannoni G, Gnanapavan S. Science is 1% inspiration and 99% biomarkers. Mult Scler 2017; 23(11): 1442-52.
[http://dx.doi.org/10.1177/1352458517709362] [PMID: 28537780]
[21]
Malmeström C, Haghighi S, Rosengren L, Andersen O, Lycke J. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 2003; 61(12): 1720-5.
[http://dx.doi.org/10.1212/01.WNL.0000098880.19793.B6] [PMID: 14694036]
[22]
Lee CG, Da Silva CA, Dela Cruz CS, et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol 2011; 73(1): 479-501.
[http://dx.doi.org/10.1146/annurev-physiol-012110-142250] [PMID: 21054166]
[23]
Bonneh-Barkay D, Wang G, LaFramboise WA, Wiley CA, Bissel SJ. Exacerbation of experimental autoimmune encephalomyelitis in the absence of breast regression protein 39/chitinase 3-like 1. J Neuropathol Exp Neurol 2012; 71(11): 948-58.
[http://dx.doi.org/10.1097/NEN.0b013e31826eaee7] [PMID: 23041842]
[24]
Chen Y, Zhang S, Wang Q, Zhang X. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol 2017; 10(1): 36.
[http://dx.doi.org/10.1186/s13045-017-0408-0] [PMID: 28143526]
[25]
Pinteac R, Montalban X, Comabella M. Chitinases and chitinase-like proteins as biomarkers in neurologic disorders. Neurol Neuroimmunol Neuroinflamm 2021; 8(1): e921.
[http://dx.doi.org/10.1212/NXI.0000000000000921] [PMID: 33293459]
[26]
Guan SP, Mok YK, Koo KN, Chu KL, Wong WS. Chitinases: biomarkers for human diseases. Protein Pept Lett 2009; 16(5): 490-8.
[http://dx.doi.org/10.2174/092986609788167842] [PMID: 19442228]
[27]
Yeo IJ, Lee CK, Han SB, Yun J, Hong JT. Roles of chitinase 3-like 1 in the development of cancer, neurodegenerative diseases, and inflammatory diseases. Pharmacol Ther 2019; 203: 107394.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107394] [PMID: 31356910]
[28]
Matute-Blanch C, Calvo-Barreiro L, Carballo-Carbajal I, et al. Chitinase 3-like 1 is neurotoxic in primary cultured neurons. Sci Rep 2020; 10(1): 7118.
[http://dx.doi.org/10.1038/s41598-020-64093-2] [PMID: 32346016]
[29]
Cantó E, Reverter F, Morcillo-Suárez C, et al. Chitinase 3-like 1 plasma levels are increased in patients with progressive forms of multiple sclerosis. Mult Scler 2012; 18(7): 983-90.
[http://dx.doi.org/10.1177/1352458511433063] [PMID: 22183936]
[30]
Cantó E, Tintoré M, Villar LM, et al. Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes. Brain 2015; 138(4): 918-31.
[http://dx.doi.org/10.1093/brain/awv017] [PMID: 25688078]
[31]
Cubas-Núñez L, Gil-Perotín S, Castillo-Villalba J, et al. Potential Role of CHI3L1+ Astrocytes in Progression in MS. Neurol Neuroimmunol Neuroinflamm 2021; 8(3): e972.
[http://dx.doi.org/10.1212/NXI.0000000000000972] [PMID: 33658322]
[32]
Martínez MAM, Olsson B, Bau L, et al. Glial and neuronal markers in cerebrospinal fluid predict progression in multiple sclerosis. Mult Scler 2015; 21(5): 550-61.
[http://dx.doi.org/10.1177/1352458514549397] [PMID: 25732842]
[33]
Pérez-Miralles F, Prefasi D, García-Merino A, et al. CSF chitinase 3-like-1 association with disability of primary progressive MS. Neurol Neuroimmunol Neuroinflamm 2020; 7(5): e815.
[http://dx.doi.org/10.1212/NXI.0000000000000815] [PMID: 32611760]
[34]
Matute-Blanch C, Río J, Villar LM, et al. Chitinase 3-like 1 is associated with the response to interferon-beta treatment in multiple sclerosis. J Neuroimmunol 2017; 303(303): 62-5.
[http://dx.doi.org/10.1016/j.jneuroim.2016.12.006] [PMID: 28063616]
[35]
Sellebjerg F, Royen L, Soelberg Sørensen P, Oturai AB, Jensen PEH. Prognostic value of cerebrospinal fluid neurofilament light chain and chitinase-3-like-1 in newly diagnosed patients with multiple sclerosis. Mult Scler 2019; 25(11): 1444-51.
[http://dx.doi.org/10.1177/1352458518794308] [PMID: 30113249]
[36]
Gil-Perotin S, Castillo-Villalba J, Cubas-Nuñez L, et al. Combined Cerebrospinal Fluid Neurofilament Light Chain Protein and Chitinase-3 Like-1 Levels in Defining Disease Course and Prognosis in Multiple Sclerosis. Front Neurol 2019; 10: 1008.
[http://dx.doi.org/10.3389/fneur.2019.01008] [PMID: 31608004]
[37]
Correale J, Fiol M. Chitinase effects on immune cell response in neuromyelitis optica and multiple sclerosis. Mult Scler 2011; 17(5): 521-31.
[http://dx.doi.org/10.1177/1352458510392619] [PMID: 21159721]
[38]
Oldoni E, Smets I, Mallants K, et al. CHIT1 at Diagnosis Reflects Long‐Term Multiple Sclerosis Disease Activity. Ann Neurol 2020; 87(4): 633-45.
[http://dx.doi.org/10.1002/ana.25691] [PMID: 31997416]
[39]
Schultz NA, Johansen JS. YKL-40 - A protein in the field of translational medicine: a role as a biomarker in cancer patients? Cancers (Basel) 2010; 2(3): 1453-91.
[http://dx.doi.org/10.3390/cancers2031453] [PMID: 24281168]
[40]
Dong C. Differentiation and function of pro-inflammatory Th17 cells. Microbes Infect 2009; 11(5): 584-8.
[http://dx.doi.org/10.1016/j.micinf.2009.04.001] [PMID: 19371793]
[41]
Balasa R, Barcutean L, Balasa A, Motataianu A, Roman-Filip C, Manu D. The action of TH17 cells on blood brain barrier in multiple sclerosis and experimental autoimmune encephalomyelitis. Hum Immunol 2020; 81(5): 237-43.
[http://dx.doi.org/10.1016/j.humimm.2020.02.009] [PMID: 32122685]
[42]
Stott B, Lavender P, Lehmann S, Pennino D, Durham S, Schmidt-Weber CB. Human IL-31 is induced by IL-4 and promotes TH2-driven inflammation. J Allergy Clin Immunol 2013; 132(2): 446-454.e5.
[http://dx.doi.org/10.1016/j.jaci.2013.03.050] [PMID: 23694808]
[43]
Qian Y, Zhang X, Qian Y. Mast cells and neuroinflammation. Med Sci Monit Basic Res 2014; 20: 200-6.
[http://dx.doi.org/10.12659/MSMBR.893093] [PMID: 25529562]
[44]
Skaper SD, Facci L, Giusti P. Mast cells, glia and neuroinflammation: partners in crime? Immunology 2014; 141(3): 314-27.
[http://dx.doi.org/10.1111/imm.12170] [PMID: 24032675]
[45]
Interferon beta-1b is effective in relapsing-remitting multiple sclerosis: I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 1993; 43(4): 655-61.
[http://dx.doi.org/10.1212/WNL.43.4.655] [PMID: 8469318]
[46]
Kappos L, Weinshenker B, Pozzilli C, et al. Interferon beta-1b in secondary progressive MS: A combined analysis of the two trials. Neurology 2004; 63(10): 1779-87.
[http://dx.doi.org/10.1212/01.WNL.0000145561.08973.4F] [PMID: 15557490]
[47]
Kappos L, Edan G, Freedman MS, et al. The 11-year long-term follow-up study from the randomized BENEFIT CIS trial. Neurology 2016; 87(10): 978-87.
[http://dx.doi.org/10.1212/WNL.0000000000003078] [PMID: 27511182]
[48]
Marziniak M, Meuth S. Current perspectives on interferon Beta-1b for the treatment of multiple sclerosis. Adv Ther 2014; 31(9): 915-31.
[http://dx.doi.org/10.1007/s12325-014-0149-1] [PMID: 25182864]
[49]
Bălaşa R, Huţanu A, Bajko Z, Feier C, Pascu I. Does the serum IL-17 titer influence the efficacy of interferon-β treatment in multiple sclerosis patients? Revista Romana de Medicina de Laborator 2011; 19(4)
[50]
Costelloe L, Thompson A, Walsh C, Tubridy N, Hutchinson M. Long-term clinical relevance of criteria for designating multiple sclerosis as benign after 10 years of disease. J Neurol Neurosurg Psychiatry 2008; 79(11): 1245-8.
[http://dx.doi.org/10.1136/jnnp.2008.143586] [PMID: 18477712]
[51]
Phan-Ba R, Pace A, Calay P, et al. Comparison of the timed 25-foot and the 100-meter walk as performance measures in multiple sclerosis. Neurorehabil Neural Repair 2011; 25(7): 672-9.
[http://dx.doi.org/10.1177/1545968310397204] [PMID: 21436388]
[52]
Ryan J, Woods RL, Britt CJ, et al. Normative data for the symbol digit modalities test in older white australians and americans, african-americans, and hispanic/latinos. ADR 2020; 4(1): 313-23.
[53]
Kiely KM, Butterworth P, Watson N, Wooden M. The symbol digit modalities test: Normative data from a large nationally representative sample of Australians. Arch Clin Neuropsychol 2014; 29(8): 767-75.
[http://dx.doi.org/10.1093/arclin/acu055] [PMID: 25352087]
[54]
Sheridan L, Fitzgerald H, Adams K, et al. Normative Symbol Digit Modalities Test performance in a community-based sample. Arch Clin Neuropsychol 2006; 21(1): 23-8.
[http://dx.doi.org/10.1016/j.acn.2005.07.003] [PMID: 16139470]
[55]
McAlpine D. The benign form of multiple sclerosis. A study based on 241 cases seen within three years of onset and followed up until the tenth year or more of the disease. Brain 1961; 84(2): 186-203.
[http://dx.doi.org/10.1093/brain/84.2.186] [PMID: 13773723]
[56]
Confavreux C, Vukusic S. The clinical course of multiple sclerosis. Handb Clin Neurol 2014; 122: 343-69.
[http://dx.doi.org/10.1016/B978-0-444-52001-2.00014-5] [PMID: 24507525]
[57]
Lublin FD. New multiple sclerosis phenotypic classification. Eur Neurol 2014; 72(S1): 1-5.
[http://dx.doi.org/10.1159/000367614] [PMID: 25278115]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy