Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Dietary Components and Nutritional Strategies for Dementia Prevention in the Elderly

Author(s): Xi-Peng Cao, Wei Xu, Zuo-Teng Wang, Lan Tan* and Jin-Tai Yu*

Volume 20, Issue 4, 2023

Published on: 09 June, 2023

Page: [224 - 243] Pages: 20

DOI: 10.2174/1567205020666230609155932

Price: $65

Abstract

Background: For decades, evidence from observational studies and randomized controlled trials has converged to suggest associations of dietary components, foods, and dietary patterns with dementia. With population aging and a projected exponential expansion of people living with dementia, formulating nutritional strategies for dementia prevention has become a research hotspot.

Objective: This review aimed to summarize available data on the roles of specific dietary components, food groups, and dietary patterns in dementia prevention among the elderly.

Methods: Database search was carried out using PubMed, the Cochrane Library, EMBASE, and Medline.

Results: Polyphenols, folate, vitamin D, omega-3 fatty acids, and β-carotene might decrease the risk of dementia. Consumption of green leafy vegetables, green tea, fish, and fruits is recommended. However, saturated fat, a diet rich in both dietary copper and saturated fat, aluminum from drinking water, and heavy drinking might increase dementia risk. Healthy dietary patterns, especially the Mediterranean diet, were proven to bring more cognitive benefits than single dietary components.

Conclusion: We discussed and summarized the evidence on the roles of dietary components and patterns in dementia prevention among the elderly and found that some factors were closely associated with dementia risk in elderly. This may pave the way for the identification of dietary components and patterns as new therapeutic targets for dementia prevention in the elderly population.

[1]
Gale SA, Acar D, Daffner KR. Dementia. Am J Med 2018; 131(10): 1161-9.
[http://dx.doi.org/10.1016/j.amjmed.2018.01.022] [PMID: 29425707]
[2]
Gauthier S, Webster C, Servaes S, Morais JA, Rosa-Neto P. World Alzheimer Report 2022: Life after diagnosis: Navigating treatment, care and support. Alzheimer’s Disease International 2022. Available from: http s://www.alzint.org/u/World-Alzheimer-Report-2022.pdf
[3]
Global status report on the public health response to dementia. WHO 2021. Available from: www.who.int/publications/i/item/9789240033245
[4]
Dening T, Sandilyan MB. Dementia: definitions and types. Nurs Stand 2015; 29(37): 37-42.
[http://dx.doi.org/10.7748/ns.29.37.37.e9405] [PMID: 25967445]
[5]
Wahlund LO, Pihlstrand E, Jönhagen ME. Mild cognitive impairment: experience from a memory clinic. Acta Neurol Scand 2003; 107: 21-4.
[http://dx.doi.org/10.1034/j.1600-0404.107.s179.3.x] [PMID: 12603246]
[6]
LaFerla FM, Oddo S. Alzheimer’s disease: Aβ tau and synaptic dysfunction. Trends Mol Med 2005; 11(4): 170-6.
[http://dx.doi.org/10.1016/j.molmed.2005.02.009] [PMID: 15823755]
[7]
McEvoy CT, Guyer H, Langa KM, Yaffe K. Neuroprotective diets are associated with better cognitive function: The health and retirement study. J Am Geriatr Soc 2017; 65(8): 1857-62.
[http://dx.doi.org/10.1111/jgs.14922] [PMID: 28440854]
[8]
Panza F, Solfrizzi V, Colacicco AM, et al. Mediterranean diet and cognitive decline. Public Health Nutr 2004; 7(7): 959-63.
[http://dx.doi.org/10.1079/PHN2004561] [PMID: 15482625]
[9]
Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA. Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol 2006; 59(6): 912-21.
[http://dx.doi.org/10.1002/ana.20854] [PMID: 16622828]
[10]
Tanaka T, Talegawkar S, Jin Y, Colpo M, Ferrucci L, Bandinelli S. Adherence to a mediterranean diet protects from cognitive decline in the invecchiare in chianti study of aging. Nutrients 2018; 10(12): 2007.
[http://dx.doi.org/10.3390/nu10122007] [PMID: 30572567]
[11]
Galbete C, Toledo E, Toledo JB, et al. Mediterranean diet and cognitive function: The sun project. J Nutr Health Aging 2015; 19(3): 305-12.
[http://dx.doi.org/10.1007/s12603-015-0441-z] [PMID: 25732216]
[12]
Cao L, Tan L, Wang HF, et al. Dietary patterns and risk of dementia: A systematic review and meta-analysis of cohort studies. Mol Neurobiol 2016; 53(9): 6144-54.
[http://dx.doi.org/10.1007/s12035-015-9516-4] [PMID: 26553347]
[13]
Martínez-Lapiscina EH, Clavero P, Toledo E, et al. Mediterranean diet improves cognition: The PREDIMED-NAVARRA randomised trial. J Neurol Neurosurg Psychiatry 2013; 84(12): 1318-25.
[http://dx.doi.org/10.1136/jnnp-2012-304792] [PMID: 23670794]
[14]
Valls-Pedret C, Sala-Vila A, Serra-Mir M, et al. Mediterranean diet and age-related cognitive decline. JAMA Intern Med 2015; 175(7): 1094-103.
[http://dx.doi.org/10.1001/jamainternmed.2015.1668] [PMID: 25961184]
[15]
Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care. Lancet 2017; 390(10113): 2673-734.
[http://dx.doi.org/10.1016/S0140-6736(17)31363-6] [PMID: 28735855]
[16]
Berendsen AAM, Kang JH, van de Rest O, Feskens EJM, de Groot LCPGM, Grodstein F. The dietary approaches to stop hypertension diet, cognitive function, and cognitive decline in American older women. J Am Med Dir Assoc 2017; 18(5): 427-32.
[http://dx.doi.org/10.1016/j.jamda.2016.11.026] [PMID: 28108204]
[17]
Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement 2015; 11(9): 1007-14.
[http://dx.doi.org/10.1016/j.jalz.2014.11.009] [PMID: 25681666]
[18]
Smith PJ, Blumenthal JA, Babyak MA, et al. Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition in overweight adults with high blood pressure. Hypertension 2010; 55(6): 1331-8.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.146795] [PMID: 20305128]
[19]
Tangney CC, Li H, Wang Y, et al. Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology 2014; 83(16): 1410-6.
[http://dx.doi.org/10.1212/WNL.0000000000000884] [PMID: 25230996]
[20]
Morris MC, Tangney CC, Wang Y, et al. MIND diet slows cognitive decline with aging. Alzheimers Dement 2015; 11(9): 1015-22.
[http://dx.doi.org/10.1016/j.jalz.2015.04.011] [PMID: 26086182]
[21]
Viña J, Lloret A, Ortí R, Alonso D. Molecular bases of the treatment of Alzheimer’s disease with antioxidants: Prevention of oxidative stress. Mol Aspects Med 2004; 25(1-2): 117-23.
[http://dx.doi.org/10.1016/j.mam.2004.02.013] [PMID: 15051321]
[22]
Rinaldi P, Polidori MC, Metastasio A, et al. Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol Aging 2003; 24(7): 915-9.
[http://dx.doi.org/10.1016/S0197-4580(03)00031-9] [PMID: 12928050]
[23]
Mecocci P, Boccardi V, Cecchetti R, et al. A long journey into aging, brain aging, and alzheimer’s disease following the oxidative stress tracks. J Alzheimers Dis 2018; 62(3): 1319-35.
[http://dx.doi.org/10.3233/JAD-170732] [PMID: 29562533]
[24]
Gugliandolo A, Bramanti P, Mazzon E. Role of vitamin E in the treatment of alzheimer’s disease: Evidence from animal models. Int J Mol Sci 2017; 18(12): 2504.
[http://dx.doi.org/10.3390/ijms18122504] [PMID: 29168797]
[25]
Mullan K, Cardwell CR, McGuinness B, Woodside JV, McKay GJ. Plasma antioxidant status in patients with alzheimer’s disease and cognitively intact elderly: A meta-analysis of case-control studies. J Alzheimers Dis 2018; 62(1): 305-17.
[http://dx.doi.org/10.3233/JAD-170758] [PMID: 29439339]
[26]
Basambombo LL, Carmichael PH, Côté S, Laurin D. Use of vitamin E and C supplements for the prevention of cognitive decline. Ann Pharmacother 2017; 51(2): 118-24.
[http://dx.doi.org/10.1177/1060028016673072] [PMID: 27708183]
[27]
Kang JH, Cook N, Manson J, Buring JE, Grodstein F. A randomized trial of vitamin E supplementation and cognitive function in women. Arch Intern Med 2006; 166(22): 2462-8.
[http://dx.doi.org/10.1001/archinte.166.22.2462] [PMID: 17159011]
[28]
Petersen RC, Thomas RG, Grundman M, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 2005; 352(23): 2379-88.
[http://dx.doi.org/10.1056/NEJMoa050151] [PMID: 15829527]
[29]
Montilla-López P, Muñoz-Águeda MC, Feijóo LM, Muñoz-Castañeda JR, Bujalance-Arenas I, Túnez-Fiñana I. Comparison of melatonin versus vitamin C on oxidative stress and antioxidant enzyme activity in Alzheimer’s disease induced by okadaic acid in neuroblastoma cells. Eur J Pharmacol 2002; 451(3): 237-43.
[http://dx.doi.org/10.1016/S0014-2999(02)02151-9] [PMID: 12242084]
[30]
Murakami K, Murata N, Ozawa Y, et al. Vitamin C restores behavioral deficits and amyloid-β oligomerization without affecting plaque formation in a mouse model of Alzheimer’s disease. J Alzheimers Dis 2011; 26(1): 7-18.
[http://dx.doi.org/10.3233/JAD-2011-101971] [PMID: 21558647]
[31]
Kook S-Y, Lee K-M, Kim Y, et al. High-dose of vitamin C supplementation reduces amyloid plaque burden and ameliorates pathological changes in the brain of 5XFAD mice. Cell Death Dis 2014; 5(2): e1083.
[http://dx.doi.org/10.1038/cddis.2014.26] [PMID: 24577081]
[32]
Jama JW, Launer LJ, Witteman JCM, et al. Dietary antioxidants and cognitive function in a population-based sample of older persons. The Rotterdam Study. Am J Epidemiol 1996; 144(3): 275-80.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a008922] [PMID: 8686696]
[33]
Luchsinger JA, Tang MX, Shea S, Mayeux R. Antioxidant vitamin intake and risk of Alzheimer disease. Arch Neurol 2003; 60(2): 203-8.
[http://dx.doi.org/10.1001/archneur.60.2.203] [PMID: 12580704]
[34]
Devore EE, Grodstein F, van Rooij FJA, et al. Dietary antioxidants and long-term risk of dementia. Arch Neurol 2010; 67(7): 819-25.
[http://dx.doi.org/10.1001/archneurol.2010.144] [PMID: 20625087]
[35]
Zandi PP, Anthony JC, Khachaturian AS, et al. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: The Cache County Study. Arch Neurol 2004; 61(1): 82-8.
[http://dx.doi.org/10.1001/archneur.61.1.82] [PMID: 14732624]
[36]
Engelhart MJ, Geerlings MI, Ruitenberg A, et al. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 2002; 287(24): 3223-9.
[http://dx.doi.org/10.1001/jama.287.24.3223] [PMID: 12076218]
[37]
Harrison FE. A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer’s disease. J Alzheimers Dis 2012; 29(4): 711-26.
[http://dx.doi.org/10.3233/JAD-2012-111853] [PMID: 22366772]
[38]
Ono K, Yamada M. Vitamin A and Alzheimer’s disease. Geriatr Gerontol Int 2012; 12(2): 180-8.
[http://dx.doi.org/10.1111/j.1447-0594.2011.00786.x] [PMID: 22221326]
[39]
Grodstein F, Kang JH, Glynn RJ, Cook NR, Gaziano JM. A randomized trial of beta carotene supplementation and cognitive function in men: The Physicians’ Health Study II. Arch Intern Med 2007; 167(20): 2184-90.
[http://dx.doi.org/10.1001/archinte.167.20.2184] [PMID: 17998490]
[40]
Richard T, Pawlus AD, Iglésias ML, et al. Neuroprotective properties of resveratrol and derivatives. Ann N Y Acad Sci 2011; 1215(1): 103-8.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05865.x] [PMID: 21261647]
[41]
Mori T, Rezai-Zadeh K, Koyama N, et al. Tannic acid is a natural β-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice. J Biol Chem 2012; 287(9): 6912-27.
[http://dx.doi.org/10.1074/jbc.M111.294025] [PMID: 22219198]
[42]
Spagnuolo C, Napolitano M, Tedesco I, Moccia S, Milito A, Luigi RG. Neuroprotective role of natural polyphenols. Curr Top Med Chem 2016; 16(17): 1943-50.
[http://dx.doi.org/10.2174/1568026616666160204122449] [PMID: 26845551]
[43]
Mendes D, Oliveira MM, Moreira PI, et al. Beneficial effects of white wine polyphenols-enriched diet on Alzheimer’s disease-like pathology. J Nutr Biochem 2018; 55: 165-77.
[http://dx.doi.org/10.1016/j.jnutbio.2018.02.001] [PMID: 29525608]
[44]
Bensalem J, Dudonné S, Etchamendy N, et al. Polyphenols from grape and blueberry improve episodic memory in healthy elderly with lower level of memory performance: A bicentric double-blind, randomized, placebo-controlled clinical study. J Gerontol A Biol Sci Med Sci 2019; 74(7): 996-1007.
[http://dx.doi.org/10.1093/gerona/gly166] [PMID: 30032176]
[45]
Smith AD, Refsum H, Bottiglieri T, et al. Homocysteine and dementia: An international consensus statement. J Alzheimers Dis 2018; 62(2): 561-70.
[http://dx.doi.org/10.3233/JAD-171042] [PMID: 29480200]
[46]
Hashim A, Wang L, Juneja K, Ye Y, Zhao Y, Ming LJ. Vitamin B6s inhibit oxidative stress caused by Alzheimer’s disease-related CuII-β-amyloid complexes—cooperative action of phospho-moiety. Bioorg Med Chem Lett 2011; 21(21): 6430-2.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.123] [PMID: 21944860]
[47]
Nilforooshan R, Broadbent D, Weaving G, et al. Homocysteine in Alzheimer’s disease: Role of dietary folate, vitamin B6 and B12. Int J Geriatr Psychiatry 2011; 26(8): 876-7.
[http://dx.doi.org/10.1002/gps.2666] [PMID: 21744387]
[48]
Wang H-X, Wahlin Å, Basun H, Fastbom J, Winblad B, Fratiglioni L. Vitamin B 12 and folate in relation to the development of Alzheimer’s disease. Neurology 2001; 56(9): 1188.1-94.
[http://dx.doi.org/10.1212/WNL.56.9.1188] [PMID: 11342684]
[49]
Morris MC, Evans DA, Schneider JA, Tangney CC, Bienias JL, Aggarwal NT. Dietary folate and vitamins B-12 and B-6 not associated with incident Alzheimer’s disease1. J Alzheimers Dis 2006; 9(4): 435-43.
[http://dx.doi.org/10.3233/JAD-2006-9410] [PMID: 16917153]
[50]
Ford AH, Almeida OP. Effect of vitamin B supplementation on cognitive function in the elderly: A systematic review and meta-analysis. Drugs Aging 2019; 36(5): 419-34.
[http://dx.doi.org/10.1007/s40266-019-00649-w] [PMID: 30949983]
[51]
Hankey GJ, Ford AH, Yi Q, et al. Effect of B vitamins and lowering homocysteine on cognitive impairment in patients with previous stroke or transient ischemic attack: A prespecified secondary analysis of a randomized, placebo-controlled trial and meta-analysis. Stroke 2013; 44(8): 2232-9.
[http://dx.doi.org/10.1161/STROKEAHA.113.001886] [PMID: 23765945]
[52]
Armitage JM, Bowman L, Clarke RJ, et al. Effects of homocysteine-lowering with folic acid plus vitamin B12 vs placebo on mortality and major morbidity in myocardial infarction survivors: A randomized trial. JAMA 2010; 303(24): 2486-94.
[http://dx.doi.org/10.1001/jama.2010.840] [PMID: 20571015]
[53]
Ford AH, Flicker L, Alfonso H, et al. Vitamins B12, B6, and folic acid for cognition in older men. Neurology 2010; 75(17): 1540-7.
[http://dx.doi.org/10.1212/WNL.0b013e3181f962c4] [PMID: 20861451]
[54]
Clarke R, Bennett D, Parish S, et al. Effects of homocysteine lowering with B vitamins on cognitive aging: Meta-analysis of 11 trials with cognitive data on 22,000 individuals. Am J Clin Nutr 2014; 100(2): 657-66.
[http://dx.doi.org/10.3945/ajcn.113.076349] [PMID: 24965307]
[55]
Lewerin C, Matousek M, Steen G, Johansson B, Steen B, Nilsson-Ehle H. Significant correlations of plasma homocysteine and serum methylmalonic acid with movement and cognitive performance in elderly subjects but no improvement from short-term vitamin therapy: A placebo-controlled randomized study. Am J Clin Nutr 2005; 81(5): 1155-62.
[http://dx.doi.org/10.1093/ajcn/81.5.1155] [PMID: 15883442]
[56]
McMahon JA, Green TJ, Skeaff CM, Knight RG, Mann JI, Williams SM. A controlled trial of homocysteine lowering and cognitive performance. N Engl J Med 2006; 354(26): 2764-72.
[http://dx.doi.org/10.1056/NEJMoa054025] [PMID: 16807413]
[57]
Eussen SJ, de Groot LC, Joosten LW, et al. Effect of oral vitamin B-12 with or without folic acid on cognitive function in older people with mild vitamin B-12 deficiency: A randomized, placebo-controlled trial1–3. Am J Clin Nutr 2006; 84(2): 361-70.
[http://dx.doi.org/10.1093/ajcn/84.2.361] [PMID: 16895884]
[58]
Durga J, van Boxtel MPJ, Schouten EG, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: A randomised, double blind, controlled trial. Lancet 2007; 369(9557): 208-16.
[http://dx.doi.org/10.1016/S0140-6736(07)60109-3] [PMID: 17240287]
[59]
Douaud G, Refsum H, de Jager CA, et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci USA 2013; 110(23): 9523-8.
[http://dx.doi.org/10.1073/pnas.1301816110] [PMID: 23690582]
[60]
Anastasiou CA, Yannakoulia M, Scarmeas N. Vitamin D and cognition: An update of the current evidence. J Alzheimers Dis 2014; 42(s3) (Suppl. 3): S71-80.
[http://dx.doi.org/10.3233/JAD-132636] [PMID: 24820017]
[61]
DeLuca HF. The transformation of a vitamin into a hormone: The vitamin D story. Harvey Lect 1979-1980; 75: 333-79.
[PMID: 400608]
[62]
Jayedi A, Rashidy-Pour A, Shab-Bidar S. Vitamin D status and risk of dementia and Alzheimer’s disease: A meta-analysis of dose-response. Nutr Neurosci 2019; 22(11): 750-9.
[http://dx.doi.org/10.1080/1028415X.2018.1436639] [PMID: 29447107]
[63]
Ghahremani M, Smith EE, Chen HY, Creese B, Goodarzi Z, Ismail Z. Vitamin D supplementation and incident dementia: Effects of sex, APOE, and baseline cognitive status. Alzheimers Dement 2023; 15(1): e12404.
[http://dx.doi.org/10.1002/dad2.12404] [PMID: 36874594]
[64]
Dean AJ, Bellgrove MA, Hall T, et al. Effects of vitamin D supplementation on cognitive and emotional functioning in young adults-A randomised controlled trial. PLoS One 2011; 6(11): e25966.
[http://dx.doi.org/10.1371/journal.pone.0025966] [PMID: 22073146]
[65]
Kang JH, Vyas CM, Okereke OI, et al. Effect of vitamin D on cognitive decline: results from two ancillary studies of the VITAL randomized trial. Sci Rep 2021; 11(1): 23253.
[http://dx.doi.org/10.1038/s41598-021-02485-8] [PMID: 34853363]
[66]
Stein MS, Scherer SC, Ladd KS, Harrison LC. A randomized controlled trial of high-dose vitamin D2 followed by intranasal insulin in Alzheimer’s disease. J Alzheimers Dis 2011; 26(3): 477-84.
[http://dx.doi.org/10.3233/JAD-2011-110149] [PMID: 21694461]
[67]
Jia J, Hu J, Huo X, Miao R, Zhang Y, Ma F. Effects of vitamin D supplementation on cognitive function and blood Aβ-related biomarkers in older adults with Alzheimer’s disease: A randomised, double-blind, placebo-controlled trial. J Neurol Neurosurg Psychiatry 2019; 90(12): jnnp-2018-320199.
[http://dx.doi.org/10.1136/jnnp-2018-320199] [PMID: 31296588]
[68]
Kryscio RJ, Abner EL, Caban-Holt A, et al. Association of antioxidant supplement use and dementia in the prevention of Alzheimer’s disease by vitamin E and selenium trial (PREADViSE). JAMA Neurol 2017; 74(5): 567-73.
[http://dx.doi.org/10.1001/jamaneurol.2016.5778] [PMID: 28319243]
[69]
Kang JH, Cook NR, Manson JE, Buring JE, Albert CM, Grodstein F. Vitamin E, vitamin C, beta carotene, and cognitive function among women with or at risk of cardiovascular disease: The Women’s Antioxidant and Cardiovascular Study. Circulation 2009; 119(21): 2772-80.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.816900] [PMID: 19451353]
[70]
Rossom RC, Espeland MA, Manson JE, et al. Calcium and vitamin D supplementation and cognitive impairment in the women’s health initiative. J Am Geriatr Soc 2012; 60(12): 2197-205.
[http://dx.doi.org/10.1111/jgs.12032] [PMID: 23176129]
[71]
Barberger-Gateau P, Raffaitin C, Letenneur L, et al. Dietary patterns and risk of dementia: The Three-City cohort study. Neurology 2007; 69(20): 1921-30.
[http://dx.doi.org/10.1212/01.wnl.0000278116.37320.52] [PMID: 17998483]
[72]
Lee ATC, Richards M, Chan WC, Chiu HFK, Lee RSY, Lam LCW. Lower risk of incident dementia among Chinese older adults having three servings of vegetables and two servings of fruits a day. Age Ageing 2017; 46(5): 773-9.
[http://dx.doi.org/10.1093/ageing/afx018] [PMID: 28338708]
[73]
Jiang X, Huang J, Song D, Deng R, Wei J, Zhang Z. Increased consumption of fruit and vegetables is related to a reduced risk of cognitive impairment and dementia: Meta-analysis. Front Aging Neurosci 2017; 9: 18.
[http://dx.doi.org/10.3389/fnagi.2017.00018] [PMID: 28223933]
[74]
Wu L, Sun D, Tan Y. Intake of fruit and vegetables and the incident risk of cognitive disorders: A systematic review and meta-analysis of cohort studies. J Nutr Health Aging 2017; 21(10): 1284-90.
[http://dx.doi.org/10.1007/s12603-017-0875-6] [PMID: 29188891]
[75]
Wu S, Fisher-Hoch SP, Reininger BM, McCormick JB. Association between fruit and vegetable intake and symptoms of mental health conditions in Mexican Americans. Health Psychol 2018; 37(11): 1059-66.
[http://dx.doi.org/10.1037/hea0000646] [PMID: 30299120]
[76]
Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS. Associations of vegetable and fruit consumption with age-related cognitive change. Neurology 2006; 67(8): 1370-6.
[http://dx.doi.org/10.1212/01.wnl.0000240224.38978.d8] [PMID: 17060562]
[77]
Nooyens ACJ, Bueno-de-Mesquita HB, van Boxtel MPJ, van Gelder BM, Verhagen H, Verschuren WMM. Fruit and vegetable intake and cognitive decline in middle-aged men and women: The Doetinchem Cohort Study. Br J Nutr 2011; 106(5): 752-61.
[http://dx.doi.org/10.1017/S0007114511001024] [PMID: 21477405]
[78]
Morris MC, Evans DA, Bienias JL, et al. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 2003; 60(7): 940-6.
[http://dx.doi.org/10.1001/archneur.60.7.940] [PMID: 12873849]
[79]
Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS. Fish consumption and cognitive decline with age in a large community study. Arch Neurol 2005; 62(12): 1849-53.
[http://dx.doi.org/10.1001/archneur.62.12.noc50161] [PMID: 16216930]
[80]
Dangour AD, Allen E, Elbourne D, Fletcher A, Richards M, Uauy R. Fish consumption and cognitive function among older people in the UK: Baseline data from the OPAL study. J Nutr Health Aging 2009; 13(3): 198-202.
[http://dx.doi.org/10.1007/s12603-009-0057-2] [PMID: 19262951]
[81]
Sydenham E, Dangour AD, Lim WS. Omega 3 fatty acid for the prevention of cognitive decline and dementia. Cochrane Database Syst Rev 2012; (6): CD005379.
[PMID: 22696350]
[82]
Ngabirano L, Samieri C, Feart C, et al. Intake of meat, fish, fruits, and vegetables and long-term risk of dementia and alzheimer’s disease. J Alzheimers Dis 2019; 68(2): 711-22.
[http://dx.doi.org/10.3233/JAD-180919] [PMID: 30883348]
[83]
Nooyens ACJ, van Gelder BM, Bueno-de-Mesquita HB, van Boxtel MPJ, Verschuren WMM. Fish consumption, intake of fats and cognitive decline at middle and older age: The Doetinchem Cohort Study. Eur J Nutr 2018; 57(4): 1667-75.
[http://dx.doi.org/10.1007/s00394-017-1453-8] [PMID: 28488130]
[84]
Qin B, Plassman BL, Edwards LJ, Popkin BM, Adair LS, Mendez MA. Fish intake is associated with slower cognitive decline in Chinese older adults. J Nutr 2014; 144(10): 1579-85.
[http://dx.doi.org/10.3945/jn.114.193854] [PMID: 25080536]
[85]
Dangour AD, Allen E, Elbourne D, et al. Effect of 2-y n−3 long-chain polyunsaturated fatty acid supplementation on cognitive function in older people: A randomized, double-blind, controlled trial. Am J Clin Nutr 2010; 91(6): 1725-32.
[http://dx.doi.org/10.3945/ajcn.2009.29121] [PMID: 20410089]
[86]
Geleijnse JM, Giltay EJ, Kromhout D. Effects of n‐3 fatty acids on cognitive decline: A randomized, double‐blind, placebo‐controlled trial in stable myocardial infarction patients. Alzheimers Dement 2012; 8(4): 278-87.
[http://dx.doi.org/10.1016/j.jalz.2011.06.002] [PMID: 21967845]
[87]
van de Rest O, Geleijnse JM, Kok FJ, et al. Effect of fish oil on cognitive performance in older subjects: A randomized, controlled trial. Neurology 2008; 71(6): 430-8.
[http://dx.doi.org/10.1212/01.wnl.0000324268.45138.86] [PMID: 18678826]
[88]
Cukierman-Yaffe T, Bosch J, Diaz R, et al. Effects of basal insulin glargine and omega-3 fatty acid on cognitive decline and probable cognitive impairment in people with dysglycaemia: A substudy of the ORIGIN trial. Lancet Diabetes Endocrinol 2014; 2(7): 562-72.
[http://dx.doi.org/10.1016/S2213-8587(14)70062-2] [PMID: 24898834]
[89]
Andrieu S, Guyonnet S, Coley N, et al. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): A randomised, placebo-controlled trial. Lancet Neurol 2017; 16(5): 377-89.
[http://dx.doi.org/10.1016/S1474-4422(17)30040-6] [PMID: 28359749]
[90]
Yurko-Mauro K, McCarthy D, Rom D, et al. Beneficial effects of docosahexaenoic acid on cognition in age‐related cognitive decline. Alzheimers Dement 2010; 6(6): 456-64.
[http://dx.doi.org/10.1016/j.jalz.2010.01.013] [PMID: 20434961]
[91]
Witte AV, Kerti L, Hermannstädter HM, et al. Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb Cortex 2014; 24(11): 3059-68.
[http://dx.doi.org/10.1093/cercor/bht163] [PMID: 23796946]
[92]
Hooper C, de Souto BP, Coley N, et al. Cognitive changes with omega-3 polyunsaturated fatty acids in non-demented older adults with low omega-3 index. J Nutr Health Aging 2017; 21(9): 988-93.
[http://dx.doi.org/10.1007/s12603-017-0957-5] [PMID: 29083439]
[93]
Andreeva VA, Kesse-Guyot E, Barberger-Gateau P, Fezeu L, Hercberg S, Galan P. Cognitive function after supplementation with B vitamins and long-chain omega-3 fatty acids: Ancillary findings from the SU.FOL.OM3 randomized trial. Am J Clin Nutr 2011; 94(1): 278-86.
[http://dx.doi.org/10.3945/ajcn.110.006320] [PMID: 21593490]
[94]
Lee LK, Shahar S, Chin AV, Yusoff NAM. Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): A 12-month randomised, double-blind, placebo-controlled trial. Psychopharmacology 2013; 225(3): 605-12.
[http://dx.doi.org/10.1007/s00213-012-2848-0] [PMID: 22932777]
[95]
McNamara D. The fifty year rehabilitation of the egg. Nutrients 2015; 7(10): 8716-22.
[http://dx.doi.org/10.3390/nu7105429] [PMID: 26506379]
[96]
Kane RL, Butler M, Fink HA, Brasure M, Davila H, Desai P, et al. Interventions to prevent age-related cognitive decline. Rockville, MD: Mild Cognitive Impairment, and Clinical Alzheimer's-Type Dementia 2017.
[PMID: 287591930]
[97]
Ylilauri MPT, Voutilainen S, Lönnroos E, et al. Association of dietary cholesterol and egg intakes with the risk of incident dementia or Alzheimer disease: The Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr 2017; 105(2): 476-84.
[http://dx.doi.org/10.3945/ajcn.116.146753] [PMID: 28052883]
[98]
Anstey KJ, Ashby-Mitchell K, Peters R. Updating the evidence on the association between serum cholesterol and risk of late-life dementia: Review and meta-analysis. J Alzheimers Dis 2017; 56(1): 215-28.
[http://dx.doi.org/10.3233/JAD-160826] [PMID: 27911314]
[99]
Morris MC, Evans DA, Bienias JL, Tangney CC, Wilson RS. Dietary fat intake and 6-year cognitive change in an older biracial community population. Neurology 2004; 62(9): 1573-9.
[http://dx.doi.org/10.1212/01.WNL.0000123250.82849.B6] [PMID: 15136684]
[100]
Engelhart MJ, Geerlings MI, Ruitenberg A, et al. Diet and risk of dementia: Does fat matter?: The Rotterdam Study. Neurology 2002; 59(12): 1915-21.
[http://dx.doi.org/10.1212/01.WNL.0000038345.77753.46] [PMID: 12499483]
[101]
Kalmijn S, Launer LJ, Ott A, Witteman JCM, Hofman A, Breteler MMB. Dietary fat intake and the risk of incident dementia in the Rotterdam study. Ann Neurol 1997; 42(5): 776-82.
[http://dx.doi.org/10.1002/ana.410420514] [PMID: 9392577]
[102]
Morris MC, Evans DA, Bienias JL, et al. Dietary fats and the risk of incident Alzheimer disease. Arch Neurol 2003; 60(2): 194-200.
[http://dx.doi.org/10.1001/archneur.60.2.194] [PMID: 12580703]
[103]
Vercambre M-N, Grodstein F, Kang JH. Dietary fat intake in relation to cognitive change in high-risk women with cardiovascular disease or vascular factors. Eur J Clin Nutr 2010; 64(10): 1134-40.
[http://dx.doi.org/10.1038/ejcn.2010.113] [PMID: 20648044]
[104]
Okereke OI, Rosner BA, Kim DH, et al. Dietary fat types and 4-year cognitive change in community-dwelling older women. Ann Neurol 2012; 72(1): 124-34.
[http://dx.doi.org/10.1002/ana.23593] [PMID: 22605573]
[105]
Laitinen MH, Ngandu T, Rovio S, et al. Fat intake at midlife and risk of dementia and Alzheimer’s disease: A population-based study. Dement Geriatr Cogn Disord 2006; 22(1): 99-107.
[http://dx.doi.org/10.1159/000093478] [PMID: 16710090]
[106]
Zhang Y, Chen J, Qiu J, Li Y, Wang J, Jiao J. Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: A dose-response meta-analysis of 21 cohort studies1–3. Am J Clin Nutr 2016; 103(2): 330-40.
[http://dx.doi.org/10.3945/ajcn.115.124081] [PMID: 26718417]
[107]
Ruan Y, Tang J, Guo X, Li K, Li D. Dietary fat intake and risk of alzheimer’s disease and dementia: A meta-analysis of cohort studies. Curr Alzheimer Res 2018; 15(9): 869-76.
[http://dx.doi.org/10.2174/1567205015666180427142350] [PMID: 29701155]
[108]
Cao GY, Li M, Han L, et al. Dietary fat intake and cognitive function among older populations: A systematic review and meta-analysis. J Prev Alzheimers Dis 2019; 6(3): 204-11.
[PMID: 31062836]
[109]
Roberts RO, Roberts LA, Geda YE, et al. Relative intake of macronutrients impacts risk of mild cognitive impairment or dementia. J Alzheimers Dis 2012; 32(2): 329-39.
[http://dx.doi.org/10.3233/JAD-2012-120862] [PMID: 22810099]
[110]
Taylor MK, Sullivan DK, Swerdlow RH, et al. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults. Am J Clin Nutr 2017; 106(6): 1463-70.
[http://dx.doi.org/10.3945/ajcn.117.162263] [PMID: 29070566]
[111]
Luchsinger JA, Tang MX, Mayeux R. Glycemic load and risk of Alzheimer’s disease. J Nutr Health Aging 2007; 11(3): 238-41.
[PMID: 17508100]
[112]
Ozawa M, Ohara T, Ninomiya T, et al. Milk and dairy consumption and risk of dementia in an elderly Japanese population: the Hisayama Study. J Am Geriatr Soc 2014; 62(7): 1224-30.
[http://dx.doi.org/10.1111/jgs.12887] [PMID: 24916840]
[113]
Kesse-Guyot E, Assmann KE, Andreeva VA, Ferry M, Hercberg S, Galan P. Consumption of dairy products and cognitive functioning: Findings from the SU.VI.MAX 2 study. J Nutr Health Aging 2016; 20(2): 128-37.
[http://dx.doi.org/10.1007/s12603-015-0593-x] [PMID: 26812508]
[114]
Petruski-Ivleva N, Kucharska-Newton A, Palta P, et al. Milk intake at midlife and cognitive decline over 20 years. The Atherosclerosis Risk in Communities (ARIC) study. Nutrients 2017; 9(10): 1134.
[http://dx.doi.org/10.3390/nu9101134] [PMID: 29039795]
[115]
Lee J, Fu Z, Chung M, Jang DJ, Lee HJ. Role of milk and dairy intake in cognitive function in older adults: A systematic review and meta-analysis. Nutr J 2018; 17(1): 82.
[http://dx.doi.org/10.1186/s12937-018-0387-1] [PMID: 30149812]
[116]
Crichton GE, Murphy KJ, Howe PRC, Buckley JD, Bryan J. Dairy consumption and working memory performance in overweight and obese adults. Appetite 2012; 59(1): 34-40.
[http://dx.doi.org/10.1016/j.appet.2012.03.019] [PMID: 22459311]
[117]
Zhang ZH, Wen L, Wu QY, et al. Long-term dietary supplementation with selenium-enriched yeast improves cognitive impairment, reverses synaptic deficits, and mitigates tau pathology in a triple transgenic mouse model of alzheimer’s disease. J Agric Food Chem 2017; 65(24): 4970-9.
[http://dx.doi.org/10.1021/acs.jafc.7b01465] [PMID: 28578584]
[118]
Corona C, Masciopinto F, Silvestri E, et al. Dietary zinc supplementation of 3xTg-AD mice increases BDNF levels and prevents cognitive deficits as well as mitochondrial dysfunction. Cell Death Dis 2010; 1(10): e91.
[http://dx.doi.org/10.1038/cddis.2010.73] [PMID: 21368864]
[119]
Brewer GJ, Kanzer SH, Zimmerman EA, et al. Subclinical zinc deficiency in Alzheimer’s disease and Parkinson’s disease. Am J Alzheimers Dis Other Demen 2010; 25(7): 572-5.
[http://dx.doi.org/10.1177/1533317510382283] [PMID: 20841345]
[120]
Baum L, Chan IHS, Cheung SKK, et al. Serum zinc is decreased in Alzheimer’s disease and serum arsenic correlates positively with cognitive ability. Biometals 2010; 23(1): 173-9.
[http://dx.doi.org/10.1007/s10534-009-9277-5] [PMID: 19911117]
[121]
Ventriglia M, Brewer GJ, Simonelli I, et al. Zinc in alzheimer’s disease: A meta-analysis of serum, plasma, and cerebrospinal fluid studies. J Alzheimers Dis 2015; 46(1): 75-87.
[http://dx.doi.org/10.3233/JAD-141296] [PMID: 25697706]
[122]
Brewer GJ. Copper excess, zinc deficiency, and cognition loss in Alzheimer’s disease. Biofactors 2012; 38(2): 107-13.
[http://dx.doi.org/10.1002/biof.1005] [PMID: 22438177]
[123]
Gromova OA, Torshin IY, Pronin AV, Kilchevsky MA. Synergistic application of zinc and vitamin C to support memory, attention and the reduction of the risk of the neurological diseases. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117(7): 112-9.
[http://dx.doi.org/10.17116/jnevro201711771112-119] [PMID: 28805771]
[124]
Yaffe K, Clemons TE, McBee WL, Lindblad AS. Impact of antioxidants, zinc, and copper on cognition in the elderly: A randomized, controlled trial. Neurology 2004; 63(9): 1705-7.
[http://dx.doi.org/10.1212/01.WNL.0000142969.19465.8F] [PMID: 15534261]
[125]
Sayre LM, Perry G, Harris PLR, Liu Y, Schubert KA, Smith MA. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: A central role for bound transition metals. J Neurochem 2000; 74(1): 270-9.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0740270.x] [PMID: 10617129]
[126]
Ventriglia M, Bucossi S, Panetta V, Squitti R. Copper in Alzheimer’s disease: A meta-analysis of serum, plasma, and cerebrospinal fluid studies. J Alzheimers Dis 2012; 30(4): 981-4.
[http://dx.doi.org/10.3233/JAD-2012-120244] [PMID: 22475798]
[127]
Bucossi S, Ventriglia M, Panetta V, et al. Corrected: Copper in Alzheimer’s disease: A meta-analysis of serum,plasma, and cerebrospinal fluid studies. J Alzheimers Dis 2011; 24(1): 175-85.
[http://dx.doi.org/10.3233/JAD-2010-101473] [PMID: 21187586]
[128]
Agarwal R, Kushwaha SS, Tripathi CB, Singh N, Chhillar N. Serum copper in Alzheimer’s disease and vascular dementia. Indian J Clin Biochem 2008; 23(4): 369-74.
[http://dx.doi.org/10.1007/s12291-008-0081-8] [PMID: 23105789]
[129]
Morris MC, Evans DA, Tangney CC, et al. Dietary copper and high saturated and trans fat intakes associated with cognitive decline. Arch Neurol 2006; 63(8): 1085-8.
[http://dx.doi.org/10.1001/archneur.63.8.1085] [PMID: 16908733]
[130]
Wei J, Gianattasio KZ, Bennett EE, et al. The associations of dietary copper with cognitive outcomes. Am J Epidemiol 2022; 191(7): 1202-11.
[http://dx.doi.org/10.1093/aje/kwac040] [PMID: 35238336]
[131]
Kessler H, Bayer TA, Bach D, et al. Intake of copper has no effect on cognition in patients with mild Alzheimer’s disease: A pilot phase 2 clinical trial. J Neural Transm (Vienna) 2008; 115(8): 1181-7.
[http://dx.doi.org/10.1007/s00702-008-0080-1] [PMID: 18587525]
[132]
Castellani RJ, Moreira PI, Perry G, Zhu X. The role of iron as a mediator of oxidative stress in Alzheimer disease. Biofactors 2012; 38(2): 133-8.
[http://dx.doi.org/10.1002/biof.1010] [PMID: 22447715]
[133]
Smith MA, Zhu X, Tabaton M, et al. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis 2010; 19(1): 363-72.
[http://dx.doi.org/10.3233/JAD-2010-1239] [PMID: 20061651]
[134]
Chung SD, Sheu JJ, Kao LT, Lin HC, Kang JH. Dementia is associated with iron-deficiency anemia in females: A population-based study. J Neurol Sci 2014; 346(1-2): 90-3.
[http://dx.doi.org/10.1016/j.jns.2014.07.062] [PMID: 25127441]
[135]
Pan W, Chen H, Ni C, Zong G, Yuan C, Yang M. Sex-specific associations of dietary iron intake with brain iron deposition on imaging and incident dementia: A prospective cohort study. J Nutr Health Aging 2022; 26(10): 954-61.
[http://dx.doi.org/10.1007/s12603-022-1852-2] [PMID: 36259584]
[136]
Liu J, Chen Y, Lu X, et al. The association between dietary iron intake and incidence of dementia in adults aged 60 years or over in the UK biobank. Nutrients 2023; 15(2): 260.
[http://dx.doi.org/10.3390/nu15020260] [PMID: 36678132]
[137]
Schiepers OJG, van Boxtel MPJ, de Groot RHM, et al. Serum iron parameters, HFE C282Y genotype, and cognitive performance in older adults: Results from the FACIT study. J Gerontol: Ser A 2010; 65A(12): 1312-21.
[http://dx.doi.org/10.1093/gerona/glq149] [PMID: 20813792]
[138]
Rondeau V, Commenges D, Jacqmin-Gadda H, Dartigues JF. Relation between aluminum concentrations in drinking water and Alzheimer’s disease: An 8-year follow-up study. Am J Epidemiol 2000; 152(1): 59-66.
[http://dx.doi.org/10.1093/aje/152.1.59] [PMID: 10901330]
[139]
Rondeau V, Jacqmin-Gadda H, Commenges D, Helmer C, Dartigues JF. Aluminum and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: Findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol 2008; 169(4): 489-96.
[http://dx.doi.org/10.1093/aje/kwn348] [PMID: 19064650]
[140]
Van Dyke N, Yenugadhati N, Birkett NJ, et al. Association between aluminum in drinking water and incident Alzheimer’s disease in the Canadian Study of Health and Aging cohort. Neurotoxicology 2021; 83: 157-65.
[http://dx.doi.org/10.1016/j.neuro.2020.04.002] [PMID: 32360354]
[141]
Langballe EM, Ask H, Holmen J, et al. Alcohol consumption and risk of dementia up to 27 years later in a large, population-based sample: The HUNT study, Norway. Eur J Epidemiol 2015; 30(9): 1049-56.
[http://dx.doi.org/10.1007/s10654-015-0029-2] [PMID: 25968174]
[142]
Sabia S, Fayosse A, Dumurgier J, et al. Alcohol consumption and risk of dementia: 23 year follow-up of Whitehall II cohort study. BMJ 2018; 362: k2927.
[http://dx.doi.org/10.1136/bmj.k2927] [PMID: 30068508]
[143]
Grønkjær M, Flensborg-Madsen T, Osler M, Sørensen HJ, Becker U, Mortensen EL. Adult-life alcohol consumption and age-related cognitive decline from early adulthood to late midlife. Alcohol Alcohol 2019; 54(4): 446-54.
[http://dx.doi.org/10.1093/alcalc/agz038] [PMID: 31044220]
[144]
Xu W, Wang H, Wan Y, et al. Alcohol consumption and dementia risk: A dose–response meta-analysis of prospective studies. Eur J Epidemiol 2017; 32(1): 31-42.
[http://dx.doi.org/10.1007/s10654-017-0225-3] [PMID: 28097521]
[145]
Scarmeas N, Anastasiou CA, Yannakoulia M. Nutrition and prevention of cognitive impairment. Lancet Neurol 2018; 17(11): 1006-15.
[http://dx.doi.org/10.1016/S1474-4422(18)30338-7] [PMID: 30244829]
[146]
Fischer K, Melo van Lent D, Wolfsgruber S, et al. Prospective Associations between single foods, alzheimer’s dementia and memory decline in the elderly. Nutrients 2018; 10(7): 852.
[http://dx.doi.org/10.3390/nu10070852] [PMID: 29966314]
[147]
Liu Y, Mitsuhashi T, Yamakawa M, et al. Alcohol consumption and incident dementia in older Japanese adults: The Okayama Study. Geriatr Gerontol Int 2019; 19(8): 740-6.
[http://dx.doi.org/10.1111/ggi.13694] [PMID: 31173440]
[148]
Xi B, Veeranki SP, Zhao M, Ma C, Yan Y, Mi J. Relationship of alcohol consumption to all-cause, cardiovascular, and cancer-related mortality in U.S. adults. J Am Coll Cardiol 2017; 70(8): 913-22.
[http://dx.doi.org/10.1016/j.jacc.2017.06.054] [PMID: 28818200]
[149]
Heckman MA, Weil J, de Mejia EG. Caffeine (1, 3, 7-trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci 2010; 75(3): R77-87.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01561.x] [PMID: 20492310]
[150]
Arendash GW, Mori T, Cao C, et al. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer’s disease mice. J Alzheimers Dis 2009; 17(3): 661-80.
[http://dx.doi.org/10.3233/JAD-2009-1087] [PMID: 19581722]
[151]
Arendash GW, Schleif W, Rezai-Zadeh K, et al. Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain β-amyloid production. Neuroscience 2006; 142(4): 941-52.
[http://dx.doi.org/10.1016/j.neuroscience.2006.07.021] [PMID: 16938404]
[152]
Dall’Igna OP, Fett P, Gomes MW, Souza DO, Cunha RA, Lara DR. Caffeine and adenosine A2a receptor antagonists prevent β-amyloid (25–35)-induced cognitive deficits in mice. Exp Neurol 2007; 203(1): 241-5.
[http://dx.doi.org/10.1016/j.expneurol.2006.08.008] [PMID: 17007839]
[153]
Corley J, Jia X, Kyle JAM, et al. Caffeine consumption and cognitive function at age 70: The Lothian Birth Cohort 1936 study. Psychosom Med 2010; 72(2): 206-14.
[http://dx.doi.org/10.1097/PSY.0b013e3181c92a9c] [PMID: 19995882]
[154]
Santos C, Lunet N, Azevedo A, de Mendonça A, Ritchie K, Barros H. Caffeine intake is associated with a lower risk of cognitive decline: A cohort study from Portugal. J Alzheimers Dis 2010; 20(s1): S175-85.
[http://dx.doi.org/10.3233/JAD-2010-091303] [PMID: 20182036]
[155]
Arab L, Biggs ML, O’Meara ES, Longstreth WT, Crane PK, Fitzpatrick AL. Gender differences in tea, coffee, and cognitive decline in the elderly: The Cardiovascular Health Study. J Alzheimers Dis 2011; 27(3): 553-66.
[http://dx.doi.org/10.3233/JAD-2011-110431] [PMID: 21841254]
[156]
Gelber RP, Petrovitch H, Masaki KH, Ross GW, White LR. Coffee intake in midlife and risk of dementia and its neuropathologic correlates. J Alzheimers Dis 2011; 23(4): 607-15.
[http://dx.doi.org/10.3233/JAD-2010-101428] [PMID: 21157028]
[157]
Vercambre MN, Berr C, Ritchie K, Kang JH. Caffeine and cognitive decline in elderly women at high vascular risk. J Alzheimers Dis 2013; 35(2): 413-21.
[http://dx.doi.org/10.3233/JAD-122371] [PMID: 23422357]
[158]
Cao C, Loewenstein DA, Lin X, et al. High Blood caffeine levels in MCI linked to lack of progression to dementia. J Alzheimers Dis 2012; 30(3): 559-72.
[http://dx.doi.org/10.3233/JAD-2012-111781] [PMID: 22430531]
[159]
Santos C, Costa J, Santos J, Vaz-Carneiro A, Lunet N. Caffeine intake and dementia: systematic review and meta-analysis. J Alzheimers Dis 2010; 20(s1) (Suppl. 1): S187-204.
[http://dx.doi.org/10.3233/JAD-2010-091387] [PMID: 20182026]
[160]
Kim YS, Kwak SM, Myung SK. Caffeine intake from coffee or tea and cognitive disorders: A meta-analysis of observational studies. Neuroepidemiology 2015; 44(1): 51-63.
[http://dx.doi.org/10.1159/000371710] [PMID: 25721193]
[161]
van Gelder BM, Buijsse B, Tijhuis M, et al. Coffee consumption is inversely associated with cognitive decline in elderly European men: The FINE Study. Eur J Clin Nutr 2007; 61(2): 226-32.
[http://dx.doi.org/10.1038/sj.ejcn.1602495] [PMID: 16929246]
[162]
Solfrizzi V, Panza F, Imbimbo BP, et al. Coffee consumption habits and the risk of mild cognitive impairment: The Italian longitudinal study on aging. J Alzheimers Dis 2015; 47(4): 889-99.
[http://dx.doi.org/10.3233/JAD-150333] [PMID: 26401769]
[163]
Liu QP, Wu YF, Cheng HY, et al. Habitual coffee consumption and risk of cognitive decline/dementia: A systematic review and meta-analysis of prospective cohort studies. Nutrition 2016; 32(6): 628-36.
[http://dx.doi.org/10.1016/j.nut.2015.11.015] [PMID: 26944757]
[164]
Wu L, Sun D, He Y. Coffee intake and the incident risk of cognitive disorders: A dose–response meta-analysis of nine prospective cohort studies. Clin Nutr 2017; 36(3): 730-6.
[http://dx.doi.org/10.1016/j.clnu.2016.05.015] [PMID: 27288328]
[165]
Wang Y, Ho CT. Polyphenolic chemistry of tea and coffee: A century of progress. J Agric Food Chem 2009; 57(18): 8109-14.
[http://dx.doi.org/10.1021/jf804025c] [PMID: 19719133]
[166]
Basurto-Islas G, Blanchard J, Tung YC, et al. Therapeutic benefits of a component of coffee in a rat model of Alzheimer’s disease. Neurobiol Aging 2014; 35(12): 2701-12.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.06.012] [PMID: 25034344]
[167]
Kitamura K, Watanabe Y, Nakamura K, et al. Modifiable factors associated with cognitive impairment in 1,143 Japanese outpatients: The Project in sado for total health (PROST). Dement Geriatr Cogn Disord Extra 2016; 6(2): 341-9.
[http://dx.doi.org/10.1159/000447963] [PMID: 27703467]
[168]
Feng L, Gwee X, Kua EH, Ng TP. Cognitive function and tea consumption in community dwelling older Chinese in Singapore. J Nutr Health Aging 2010; 14(6): 433-8.
[http://dx.doi.org/10.1007/s12603-010-0095-9] [PMID: 20617284]
[169]
Feng L, Li J, Kua EH, et al. Association between tea consumption and depressive symptoms in older Chinese adults. J Am Geriatr Soc 2012; 60(12): 2358-60.
[http://dx.doi.org/10.1111/jgs.12011] [PMID: 23231552]
[170]
Chan SP, Yong PZ, Sun Y, et al. Associations of long-term tea consumption with depressive and anxiety symptoms in community-living elderly: Findings from the diet and healthy aging study. J Prev Alzheimers Dis 2018; 5(1): 21-5.
[PMID: 29405228]
[171]
Chen X, Huang Y, Cheng HG. Lower intake of vegetables and legumes associated with cognitive decline among illiterate elderly Chinese: A 3-year cohort study. J Nutr Health Aging 2012; 16(6): 549-52.
[http://dx.doi.org/10.1007/s12603-012-0023-2] [PMID: 22659995]
[172]
Qiu L, Sautter J, Gu D. Associations between frequency of tea consumption and health and mortality: Evidence from old Chinese. Br J Nutr 2012; 108(9): 1686-97.
[http://dx.doi.org/10.1017/S0007114511007173] [PMID: 22243697]
[173]
Feng L, Li J, Ng TP, Lee TS, Kua EH, Zeng Y. Tea drinking and cognitive function in oldest-old Chinese. J Nutr Health Aging 2012; 16(9): 754-8.
[http://dx.doi.org/10.1007/s12603-012-0077-1] [PMID: 23131816]
[174]
Tomata Y, Sugiyama K, Kaiho Y, et al. Green tea consumption and the risk of incident dementia in elderly Japanese: The Ohsaki cohort 2006 study. Am J Geriatr Psychiatry 2016; 24(10): 881-9.
[http://dx.doi.org/10.1016/j.jagp.2016.07.009] [PMID: 27594507]
[175]
Liu X, Du X, Han G, Gao W. Association between tea consumption and risk of cognitive disorders: A dose-response meta-analysis of observational studies. Oncotarget 2017; 8(26): 43306-21.
[http://dx.doi.org/10.18632/oncotarget.17429] [PMID: 28496007]
[176]
Polito C, Cai ZY, Shi YL, et al. Association of tea consumption with risk of alzheimer’s disease and anti-beta-amyloid effects of tea. Nutrients 2018; 10(5): 655.
[http://dx.doi.org/10.3390/nu10050655] [PMID: 29789466]
[177]
Licher S, Ahmad S. Karamujić-Čomić H, et al. Genetic predisposition, modifiable-risk-factor profile and long-term dementia risk in the general population. Nat Med 2019; 25(9): 1364-9.
[http://dx.doi.org/10.1038/s41591-019-0547-7] [PMID: 31451782]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy