Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Review Article

Photocatalytic Multi-Component Reactions: An Emerging Avenue

Author(s): Sreekumar Ariya, Mohan Neetha and Gopinathan Anilkumar*

Volume 12, Issue 1, 2023

Published on: 04 July, 2023

Page: [1 - 17] Pages: 17

DOI: 10.2174/2211544712666230609124259

Price: $65

Abstract

In recent years, photocatalytic multi-component reactions have emerged as a cuttingedge innovation in the field of organic synthesis. These reactions allow the simultaneous transformation of multiple reactants, which not only saves time and resources but also provides access to a diverse range of complex molecules. The use of photocatalysts in these reactions provides several advantages, including mild reaction conditions, high selectivity, and high functional group tolerance. Moreover, the integration of renewable energy sources such as visible light as a driving force for these reactions further adds to their sustainability. This innovation has opened up new avenues for the synthesis of complex molecules and holds great promise for the development of sustainable and efficient chemical processes. This review gives a broad understanding of photocatalyzed multi- component reaction protocols developed with wide applications in synthetic organic chemistry. These green, efficient, and straightforward reactions utilize recyclable photocatalyst, solvent-free or catalyst-free conditions for the synthesis of compounds with biological significance in a costeffective fashion. They are easily purified due to the minimum or no by-product formation. The review is divided into sections based on the type of photocatalysts involved and covers literature up to 2022.

Next »
Graphical Abstract

[1]
Müller, T.J.J. Multicomponent reactions. Beilstein J. Org. Chem., 2011, 7, 960-961.
[http://dx.doi.org/10.3762/bjoc.7.107] [PMID: 21915194]
[2]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[3]
Tour, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109, 4439.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390]
[4]
Saranya, S.; Rohit, K.R.; Radhika, S.; Anilkumar, G. Palladiumcatalyzed multicomponent reactions: an overview. Org. Biomol. Chem., 2019, 17(35), 8048-8061.
[http://dx.doi.org/10.1039/C9OB01538H] [PMID: 31410440]
[5]
Strecker, A. Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Justus Liebigs Ann. Chem., 1850, 75(1), 27-45.
[http://dx.doi.org/10.1002/jlac.18500750103]
[6]
Zuend, S.J.; Coughlin, M.P.; Lalonde, M.P.; Jacobsen, E.N. Scaleable catalytic asymmetric Strecker syntheses of unnatural α-amino acids. Nature, 2009, 461(7266), 968-970.
[http://dx.doi.org/10.1038/nature08484] [PMID: 19829379]
[7]
Yan, H.; Suk Oh, J.; Lee, J.W.; Eui Song, C. Scalable organocatalytic asymmetric Strecker reactions catalysed by a chiral cyanide generator. Nat. Commun., 2012, 3(1), 1212.
[http://dx.doi.org/10.1038/ncomms2216] [PMID: 23169053]
[8]
Wang, J.; Liu, X.; Feng, X. Asymmetric strecker reactions. Chem. Rev., 2011, 111(11), 6947-6983.
[http://dx.doi.org/10.1021/cr200057t] [PMID: 21851054]
[9]
Mannich, C.; Krösche, W. Ueber ein kondensationsprodukt aus formaldehyde, ammonia und antipyrin. Arch. Pharm., 1912, 250, 647.
[http://dx.doi.org/10.1002/ardp.19122500151]
[10]
Shilpa, T.; Dhanya, R.; Saranya, S.; Anilkumar, G. An overview of rhodium-catalysed multi-component reactions. Chem Select, 2020, 5(2), 898-915.
[http://dx.doi.org/10.1002/slct.201904441]
[11]
Gore, R. P.; Rajput, A. P. A review on recent progress in multicomponent reactions of pyrimidine synthesis. Drug invent tod, 2013, 5(2), 148-152.
[12]
Weber, L.; Illgen, K.; Almstetter, M. Discovery of new multi component reactions with combinatorial methods. Synlett, 1999, 1999(3), 366-374.
[http://dx.doi.org/10.1055/s-1999-2612]
[13]
Zhu, J. Multicomponent Reactions, 2005.
[14]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem, 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[15]
Ruijter, E.; Scheffelaar, R.; Orru, R.V.A. Multicomponent reaction design in the quest for molecular complexity and diversity. Angew. Chem. Int. Ed., 2011, 50(28), 6234-6246.
[http://dx.doi.org/10.1002/anie.201006515]
[16]
Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res., 2009, 42(3), 463-472.
[http://dx.doi.org/10.1021/ar800214s] [PMID: 19175315]
[17]
Bharti, R.; Kumari, P.; Parvin, T.; Choudhury, L.H. Recent advances of aminopyrimidines in multicomponent reactions. Curr. Org. Chem., 2018, 22(5), 417-445.
[http://dx.doi.org/10.2174/1385272822666171212152406]
[18]
Rotstein, B.H.; Zaretsky, S.; Rai, V.; Yudin, A.K. Small heterocycles in multicomponent reactions. Chem Rev., 2014, 114(16), 8323-8359.
[19]
Biggs-Houck, J.E.; Younai, A.; Shaw, J.T. Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr Opin Chem Biol., 2010, 14(3), 371-382.
[20]
Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390]
[21]
Wessjohann, L.A.; Rivera, D.G.; Vercillo, O.E. Multiple multicomponent macrocyclizations (MiBs): a strategic development toward macrocycle diversity. Chem. Rev., 2009, 109(2), 796-814.
[http://dx.doi.org/10.1021/cr8003407] [PMID: 19166290]
[22]
Dondoni, A.; Massi, A. Design and synthesis of new classes of heterocyclic C-glycoconjugates and carbon-linked sugar and heterocyclic amino acids by asymmetric multicomponent reactions (AMCRs). Acc. Chem. Res., 2006, 39(7), 451-463.
[http://dx.doi.org/10.1021/ar068023r] [PMID: 16846209]
[23]
Kim, Y.; Kumar, M.R.; Park, N.; Heo, Y.; Lee, S. Copper-catalyzed, one-pot, three-component synthesis of benzimidazoles by condensation and C-N bond formation. J. Org. Chem., 2011, 76(23), 9577-9583.
[http://dx.doi.org/10.1021/jo2019416] [PMID: 22034860]
[24]
Fairoosa, J.; Saranya, S.; Radhika, S.; Anilkumar, G. Recent advances in microwave assisted multicomponent reactions. Chem Select, 2020, 5(17), 5180-5197.
[http://dx.doi.org/10.1002/slct.202000683]
[25]
Shilpa, T.; Dhanya, R.; Saranya, S.; Anilkumar, G. An overview of rhodium-catalysed multi-component reactions. Chem Select, 2020, 5(2), 898-915.
[http://dx.doi.org/10.1002/slct.201904441]
[26]
Peringer, F.; do Nascimento, J.E.R.; Abib, P.B.; Barcellos, T.; Van der Eycken, E.V.; Perin, G.; Jacob, R.G.; Alves, D.; Alves, D. Copper-catalyzed multicomponent reactions: Synthesis of fused 1,2,3-Triazolo-1,3,6-triazonines. Eur. J. Org. Chem., 2017, 2017(18), 2579-2586.
[http://dx.doi.org/10.1002/ejoc.201700170]
[27]
Cherian, R.M.; Harry, N.A.; Saranya, S.; Rohit, K.R.; Anilkumar, G. Copper-catalysed multicomponent syntheses of heterocycles. Asian J. Org. Chem., 2019, 8(2), 197-233.
[http://dx.doi.org/10.1002/ajoc.201800619]
[28]
Evano, G.; Blanchard, N.; Toumi, M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev., 2008, 108(8), 3054-3131.
[http://dx.doi.org/10.1021/cr8002505] [PMID: 18698737]
[29]
Sharma, R.K.; Yadav, S.; Sharma, S.; Dutta, S.; Sharma, A. Expanding the horizon of multicomponent oxidative coupling reaction via the design of a unique, 3d copper isophthalate mof-based catalyst decorated with mixed spinel CoFe 2 O 4 nanoparticles. ACS Omega, 2018, 3(11), 15100-15111.
[http://dx.doi.org/10.1021/acsomega.8b02061] [PMID: 31458175]
[30]
Visbal, R.; Graus, S.; Herrera, R.P.; Gimeno, M.C. Gold catalyzed multicomponent reactions beyond A3 coupling. Molecules, 2018, 23(9), 2255.
[http://dx.doi.org/10.3390/molecules23092255] [PMID: 30181514]
[31]
Schultz, D.M.; Babij, N.R.; Wolfe, J.P. Intermolecular gold(I)-catalyzed alkyne carboalkoxylation reactions for the multicomponent assembly of β-alkoxy ketones. Adv. Synth. Catal., 2012, 354(18), 3451-3455.
[http://dx.doi.org/10.1002/adsc.201200825]
[32]
Neetha, M.; Rohit, K.R.; Saranya, S.; Anilkumar, G. Zinc-catalysed multi-component reactions: an overview. Chem Select, 2020, 5(3), 1054-1070.
[http://dx.doi.org/10.1002/slct.201904146]
[33]
Saranya, S.; Rohit, K.R.; Radhika, S.; Anilkumar, G. Palladium-catalyzed multicomponent reactions: an overview. Org. Biomol. Chem., 2019, 17(35), 8048-8061.
[http://dx.doi.org/10.1039/C9OB01538H] [PMID: 31410440]
[34]
Abbiati, G.; Rossi, E. Silver and gold-catalyzed multicomponent reactions. Beilstein J. Org. Chem., 2014, 10, 481-513.
[http://dx.doi.org/10.3762/bjoc.10.46] [PMID: 24605168]
[35]
Song, Q.Y.; Yang, B.L.; Tian, S.K. FeSO4 x 7H2O-catalyzed four-component synthesis of protected homoallylic amines. J. Org. Chem., 2007, 72(14), 5407-5410.
[http://dx.doi.org/10.1021/jo0704558] [PMID: 17550291]
[36]
Allen, E.E.; Zhu, C.; Panek, J.S.; Schaus, S.E. Multicomponent condensation reactions via ortho -quinone methides. Org. Lett., 2017, 19(7), 1878-1881.
[http://dx.doi.org/10.1021/acs.orglett.7b00647] [PMID: 28357870]
[37]
Wei, D.; Ma, H.; Zhou, X.; Shi, C.; Luo, X.; Huang, G. Cobalt and copper co-catalyzed three-component reactions for the synthesis of 1,3,4-trisubstituted pyrazoles. ChemistrySelect, 2017, 2(22), 6231-6234.
[http://dx.doi.org/10.1002/slct.201700987]
[38]
Erver, F.; Hilt, G. Double- and triple-cobalt catalysis in multicomponent reactions. Org. Lett., 2012, 14(7), 1884-1887.
[http://dx.doi.org/10.1021/ol300504f] [PMID: 22432934]
[39]
Saranya, S.; Aneeja, T.; Neetha, M.; Anilkumar, G. Recent advances in the iron-catalysed multicomponent reactions. Appl. Organomet. Chem., 2020, 34(12), 5991.
[http://dx.doi.org/10.1002/aoc.5991]
[40]
Sreedevi, R.; Saranya, S.; Rohit, K.R.; Anilkumar, G. Recent trends in iron-catalyzed reactions towards the synthesis of nitrogen-containing heterocycles. Adv. Synth. Catal., 2019, 361(10), 2236-2249.
[http://dx.doi.org/10.1002/adsc.201801471]
[41]
Motti, E.; Rossetti, M.; Bocelli, G.; Catellani, M. Palladium catalyzed multicomponent reactions in ordered sequence: new syntheses of o,o′-dialkylsubstituted diarylacetylenes and diarylalkylidenehexahydromethanofluorenes. J. Organomet. Chem., 2004, 689(23), 3741-3749.
[http://dx.doi.org/10.1016/j.jorganchem.2004.05.035]
[42]
Dhawan, R.; Dghaym, R.D.; St Cyr, D.J.; Arndtsen, B.A. Direct, palladium-catalyzed, multicomponent synthesis of beta-lactams from imines, acid chloride, and carbon monoxide. Org. Lett., 2006, 8(18), 3927-3930.
[http://dx.doi.org/10.1021/ol061308j] [PMID: 16928040]
[43]
Balme, G.; Bossharth, E.; Monteiro, N. Pd-assisted multicomponent synthesis of heterocycles. Eur. J. Org. Chem., 2003, 2003(21), 4101-4111.
[http://dx.doi.org/10.1002/ejoc.200300378]
[44]
Mikami, K.; Shimizu, M. Asymmetric ene reactions in organic synthesis. Chem. Rev., 1992, 92(5), 1021-1050.
[http://dx.doi.org/10.1021/cr00013a014]
[45]
Zhang, X.; Guo, X.; Yang, L.P.; Hu, W.H. Rh(II) and Zn(II) co-catalyzed multi-component reaction for the synthesis of vicinal diols. Chin. Chem. Lett., 2009, 20(11), 1299-1302.
[http://dx.doi.org/10.1016/j.cclet.2009.06.014]
[46]
Zhang, X.; Huang, H.; Guo, X.; Guan, X.; Yang, L.; Hu, W. Catalytic enantioselective trapping of an alcoholic oxonium ylide with aldehydes: Rh II/Zr IV -co-catalyzed three-component reactions of aryl diazoacetates, benzyl alcohol, and aldehydes. Angew. Chem. Int. Ed., 2008, 47(35), 6647-6649.
[http://dx.doi.org/10.1002/anie.200801510]
[47]
Zhang, X.; Zhang, N.; Guo, X.; Yang, L.; Hu, W. Rhodium(II) catalyzed multi-component reactions of aryldiazoacetates with titanium(IV) isopropoxide and imines. Tetrahedron, 2009, 65(39), 8277-8282.
[http://dx.doi.org/10.1016/j.tet.2009.07.049]
[48]
Xi, J.B.; Ma, M.L.; Hu, W. Rh2(OAc)4 and InCl3 co-catalyzed diastereoselective trapping of carbamate ammonium ylides with aldehydes for the synthesis of β-hydroxyl-α-amino acid derivatives. Tetrahedron, 2016, 72(5), 579-583.
[http://dx.doi.org/10.1016/j.tet.2015.11.027]
[49]
Guo, X.; Yue, Y.; Hu, G.; Zhou, J.; Zhao, Y.; Yang, L.; Hu, W. Trapping of an ammonium ylide with activated ketones: synthesis of β-hydroxy-α-amino esters with adjacent quaternary stereocenters Synlett, 2009, 2009(13), 2109.
[50]
Qian, Y.; Jing, C.; Liu, S.; Hu, W. A highly enantioselective four-component reaction for the efficient construction of chiral β-hydroxy-α-amino acid derivatives. Chem. Commun., 2013, 49(26), 2700-2702.
[http://dx.doi.org/10.1039/c3cc40546j] [PMID: 23435435]
[51]
Huang, H.; Wang, Y.; Chen, Z.; Hu, W. Rhodium-catalyzed, three-component reaction of diazo compounds with amines and azodicarboxylates. Adv. Synth. Catal., 2005, 347(4), 531-534.
[http://dx.doi.org/10.1002/adsc.200404306]
[52]
Wang, Z.; Li, T.; Xing, S.; Zhu, B. Highly efficient construction of pentacyclic carboline-containing salts via a [cp*rhcl 2] 2 -catalyzed tandem reaction. Asian J. Org. Chem., 2019, 8(1), 191-195.
[http://dx.doi.org/10.1002/ajoc.201800642]
[53]
Lowe, R.; Fathy, S.; Sridharan, V. Rhodium catalyzed, one-pot, three component redox-neutral process towards fused ring heterocycles. Tetrahedron Lett., 2017, 58(27), 2658-2660.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.077]
[54]
Huang, J.R.; Song, Q.; Zhu, Y.Q.; Qin, L.; Qian, Z.Y.; Dong, L. Rhodium(III)-catalyzed three-component reaction of imines, alkynes, and aldehydes through C-H activation. Chemistry, 2014, 20(51), 16882-16886.
[http://dx.doi.org/10.1002/chem.201404576] [PMID: 25363627]
[55]
Querard, P.; Li, C.J. Direct synthesis of indenes via a rhodium-catalyzed multicomponent C sp2 –H annulation reaction. Org. Biomol. Chem., 2018, 16(43), 8042-8047.
[http://dx.doi.org/10.1039/C8OB02359J] [PMID: 30349921]
[56]
Murarka, S.; Golz, C.; Strohmann, C.; Antonchick, A.P.; Waldmann, H. Highly enantioselective catalytic vinylogous propargylation of coumarins yields a class of autophagy inhibitors. Synthesis, 2017, 49, 89.
[57]
Muthusamy, S.; Krishnamurthi, J.; Suresh, E. Multicomponent reactions involving tricyclooxonium ylide intermediate: diastereoselective synthesis of mono- and bisalkoxyoctahydro-1,4-benzodioxocin-6(5H)-one frameworks. Chem. Commun., 2007, 8(8), 861-863.
[http://dx.doi.org/10.1039/B613008A] [PMID: 17308656]
[58]
Nasrollahzadeh, M.; Motahharifar, N.; Ghorbannezhad, F.; Soheili Bidgoli, N.S.; Baran, T.; Varma, R.S.; Varma, R.S. Recent advances in polymer supported palladium complexes as (nano)catalysts for Sonogashira coupling reaction. Molecular Catal, 2020, 480110645.
[http://dx.doi.org/10.1016/j.mcat.2019.110645]
[59]
Yoon, T.P.; Ischay, M.A.; Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem., 2010, 2(7), 527-532.
[http://dx.doi.org/10.1038/nchem.687] [PMID: 20571569]
[60]
Narayanam, J.M.R.; Stephenson, C.R.J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev., 2011, 40(1), 102-113.
[http://dx.doi.org/10.1039/B913880N] [PMID: 20532341]
[61]
Shaw, M.H.; Twilton, J.; MacMillan, D.W.C. Photoredox catalysis in organic chemistry. J. Org. Chem., 2016, 81(16), 6898-6926.
[http://dx.doi.org/10.1021/acs.joc.6b01449] [PMID: 27477076]
[62]
Ravelli, D.; Protti, S.; Fagnoni, M. Carbon–carbon bond forming reactions via photogenerated intermediates. Chem. Rev., 2016, 116(17), 9850-9913.
[http://dx.doi.org/10.1021/acs.chemrev.5b00662] [PMID: 27070820]
[63]
Fox, M.A.; Dulay, M.T. Heterogeneous photocatalysis. Chem. Rev., 1993, 93(1), 341-357.
[http://dx.doi.org/10.1021/cr00017a016]
[64]
Linsebigler, A.L.; Lu, G.; Yates, J.T., Jr Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev., 1995, 95(3), 735-758.
[http://dx.doi.org/10.1021/cr00035a013]
[65]
Maldotti, A.; Molinari, A.; Amadelli, R. Photocatalysis with organized systems for the oxofunctionalization of hydrocarbons by O2. Chem. Rev., 2002, 102(10), 3811-3836.
[http://dx.doi.org/10.1021/cr010364p] [PMID: 12371903]
[66]
Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev., 2007, 107(7), 2891-2959.
[http://dx.doi.org/10.1021/cr0500535] [PMID: 17590053]
[67]
Choi, J.H.; Park, C.M. Three-component synthesis of quinolines based on radical cascade visible-light photoredox catalysis. Adv. Synth. Catal., 2018, 360(18), 3553-3562.
[http://dx.doi.org/10.1002/adsc.201800734]
[68]
Guillemard, L.; Colobert, F. Adv. Synth. Catal., 2018, 360, 4184.
[http://dx.doi.org/10.1002/adsc.201800692]
[69]
Hou, H.; Li, H.; Xu, Y.; Song, C.; Wang, C.; Shi, Y.; Han, Y.; Yan, C.; Zhu, S. Visible-light-mediated chlorosulfonylative cyclizations of 1,6-enynes. Adv. Synth. Catal., 2018, 360(22), 4325-4329.
[http://dx.doi.org/10.1002/adsc.201801157]
[70]
Shiraishi, Y.; Hirai, T. Selective organic transformations on titanium oxide-based photocatalysts. J. Photochem. Photobiol. Photochem. Rev., 2008, 9(4), 157-170.
[http://dx.doi.org/10.1016/j.jphotochemrev.2008.05.001]
[71]
Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev., 2013, 113(7), 5322-5363.
[http://dx.doi.org/10.1021/cr300503r] [PMID: 23509883]
[72]
Jong-Hwa, S.; Dooyoung, K.; Rathnayake, M.D.; Sittel, S.; Weaver, J.; Teets, T.S. Photoredox catalysis on unactivated substrates with strongly reducing iridium photosensitizers. Chem. Sci., 2021, 12, 4069.
[http://dx.doi.org/10.1039/D0SC06306A]
[73]
Fu, W.; Zhu, M.; Zou, G.; Xu, C.; Wang, Z.; Ji, B. Visible-light-mediated radical aryldifluoroacetylation of alkynes with ethyl bromodifluoroacetate for the synthesis of 3-difluoroacetylated coumarins. J. Org. Chem., 2015, 80(9), 4766-4770.
[http://dx.doi.org/10.1021/acs.joc.5b00305] [PMID: 25843358]
[74]
Srivastava, V.; Singh, P.K.; Singh, P.P. Recent advances of visible-light photocatalysis in the functionalization of organic compounds. J. Photochem. Photobiol. Photochem. Rev., 2022, 50100488.
[http://dx.doi.org/10.1016/j.jphotochemrev.2022.100488]
[75]
Kalyanasundaram, C. Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Chem. Rev., 1982, 46, 159.
[76]
Amos, S.G.E.; Garreau, M.; Buzzetti, L.; Waser, J. Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis. Beilstein J. Org. Chem., 2020, 16, 1163-1187.
[http://dx.doi.org/10.3762/bjoc.16.103] [PMID: 32550931]
[77]
Garbarino, S.; Ravelli, D.; Protti, S.; Basso, A. Photoinduced multicomponent reactions. Angew. Chem. Int. Ed., 2016, 55(50), 15476-15484.
[http://dx.doi.org/10.1002/anie.201605288]
[78]
Fairoosa, J.; Neetha, M.; Anilkumar, G. Recent developments and perspectives in the copper-catalyzed multicomponent synthesis of heterocycles. RSC Advances, 2021, 11(6), 3452-3469.
[http://dx.doi.org/10.1039/D0RA10472H] [PMID: 35424324]
[79]
Fuentes de Arriba, A.L.; Urbitsch, F.; Dixon, D.J. Umpolung synthesis of branched α-functionalized amines from imines via photocatalytic three-component reductive coupling reactions. Chem. Commun., 2016, 52(100), 14434-14437.
[http://dx.doi.org/10.1039/C6CC09172E] [PMID: 27901532]
[80]
Singh, H.K.; Kamal, A.; Kumari, S.; Kumar, D.; Maury, S.K.; Srivastava, V.; Singh, S. Eosin Y-catalyzed synthesis of 3-aminoimidazo[1,2- a]pyridines via the hat process under visible light through formation of the C–N Bond. ACS Omega, 2020, 5(46), 29854-29863.
[http://dx.doi.org/10.1021/acsomega.0c03941] [PMID: 33251420]
[81]
Fan, X.Z.; Rong, J.W.; Wu, H.L.; Zhou, Q.; Deng, H.P.; Tan, J.D.; Xue, C.W.; Wu, L.Z.; Tao, H.R.; Wu, J. Eosin Y as a direct hydrogen-atom transfer photocatalyst for the functionalization of C−H bonds. Angew. Chem. Int. Ed., 2018, 57(28), 8514-8518.
[http://dx.doi.org/10.1002/anie.201803220]
[82]
Ghosh, K.G.; Das, D.; Chandu, P.; Sureshkumar, D. Visible-light driven organo-photocatalyzed multicomponent reaction for C(sp3)−H alkylation of phosphoramides with in situ generated michael acceptors. Eur. J. Org. Chem., 2021, 2021(30), 4293-4298.
[http://dx.doi.org/10.1002/ejoc.202100561]
[83]
Lv, Y.; Luo, J.; Lin, M.; He, L.; Yue, H.; Liu, R.; Wei, W. Metal-free multi-component sulfur dioxide insertion reaction leading to quinoxalin-2-one-containing vinyl sulfones under visible-light photoredox catalysis. Adv. Synth. Catal., 2021, 363, 1.
[http://dx.doi.org/10.1002/adsc.202001427]
[84]
Wang, Z.; Liu, Q.; Liu, R.; Ji, Z.; Li, Y.; Zhao, X.; Wei, W. Visible-light-initiated 4CzIPN catalyzed multi-component tandem reactions to assemble sulfonated quinoxalin-2(1H)-ones. Chin. Chem. Lett., 2022, 33(3), 1479-1482.
[http://dx.doi.org/10.1016/j.cclet.2021.08.036]
[85]
Tzirakis, M.D.; Lykakis, I.N.; Orfanopoulos, M. Decatungstate as an efficient photocatalyst in organic chemistry. Chem. Soc. Rev., 2009, 38(9), 2609-2621.
[http://dx.doi.org/10.1039/b812100c] [PMID: 19690741]
[86]
Tanielian, C. Decatungstate photocatalysis Coord. Chem. Rev., 1998, 178, 1165.
[87]
Ryu, I.; Tani, A.; Fukuyama, T.; Ravelli, D.; Fagnoni, M.; Albini, A. Atom-economical synthesis of unsymmetrical ketones through photocatalyzed ch activation of alkanes and coupling with co and electrophilic alkenes. Angew. Chem. Int. Ed., 2011, 50(8), 1869-1872.
[http://dx.doi.org/10.1002/anie.201004854]
[88]
Ananthakrishnan, R.; Gazi, S. [Ru(bpy)3]2+ aided photocatalytic synthesis of 2-arylpyridines via Hantzsch reaction under visible irradiation and oxygen atmosphere. Catal. Sci. Technol., 2012, 2(7), 1463.
[http://dx.doi.org/10.1039/c2cy20050c]
[89]
Vila, C.; Rueping, M. Visible-light mediated heterogeneous C–H functionalization: oxidative multi-component reactions using a recyclable titanium dioxide (TiO2) catalyst. Green Chem., 2013, 15(8), 2056.
[http://dx.doi.org/10.1039/c3gc40587g]
[90]
An, X.D.; Zhang, H.; Xu, Q.; Yu, L.; Yu, S. Stereodivergent synthesis of α-aminomethyl cinnamyl ethers via photoredox-catalyzed radical relay reaction. Chin. J. Chem., 2018, 36(12), 1147-1150.
[http://dx.doi.org/10.1002/cjoc.201800387]
[91]
Zhang, J.; Zhang, F.; Lai, L.; Cheng, J.; Sun, J.; Wu, J. Generation of sulfonated 1-isoindolinones through a multicomponent reaction with the insertion of sulfur dioxide. Chem. Commun., 2018, 54(31), 3891-3894.
[http://dx.doi.org/10.1039/C8CC01124A] [PMID: 29610789]
[92]
Zhou, X.; Li, G.; Shao, Z.; Fang, K.; Gao, H.; Li, Y.; She, Y. Fourcomponent acyloxy-trifluoromethylation of arylalkenes mediated by a photoredox catalyst. Org. Biomol. Chem., 2019, 17(1), 24-29.
[http://dx.doi.org/10.1039/C8OB02239A] [PMID: 30324949]
[93]
Blackwell, H.; Harris, R.; Smith, A.; Gaunt, J. Modular photocatalytic synthesis of α-trialkyl-α-tertiary amines J. Am. Chem. Soc., 2021, 143, 15946.
[http://dx.doi.org/10.1021/jacs.1c07402] [PMID: 34551248]
[94]
Wu, W.; Chen, J.; Qiao, L.; Lv, H.; Zhang, F.; Zhu, Y.; Wu, S.; Fan, B. Ruthenium-photocatalyzed synthesis of borasiloxanes in a one-pot manner from readily available silanes and pinacolborane. Asian J. Org. Chem., 2021, 10(12), 3249-3252.
[http://dx.doi.org/10.1002/ajoc.202100544]
[95]
Jarrahi, M.; Tayebee, R.; Maleki, B.; Salimi, A. One-pot multicomponent green LED photoinduced synthesis of chromeno[4,3- b]chromenes catalyzed by a new nanophotocatalyst histaminium tetrachlorozincate. RSC Advances, 2021, 11(32), 19723-19736.
[http://dx.doi.org/10.1039/D1RA00189B] [PMID: 35479251]
[96]
Guo, H.; Zhu, C.; Li, J.; Xu, G.; Sun, J. Photo-Assisted Multi-Component Reactions (MCR): A new entry to 2-pyrimidinethiones. Adv. Synth. Catal., 2014, 356(13), 2801-2806.
[http://dx.doi.org/10.1002/adsc.201400290]
[97]
Jaiswal, D.; Mishra, A.; Rai, P.; Srivastava, M.; Tripathi, B.P.; Yadav, S.; Singh, J.; Singh, J. A visible light-initiated, one-pot, multi-component synthesis of 2-amino-4-(5-hydroxy-3-methyl-1Hpyrazol-4-yl)-4H-chromene-3-carbonitrile derivatives under solvent- and catalyst-free conditions. Res. Chem. Intermed., 2018, 44(1), 231-246.
[http://dx.doi.org/10.1007/s11164-017-3100-7]
[98]
Ahmad, N.A.A.; Rokade, S.M.; Garande, A.M.; Bhate, P.M. Catalyst- and chromatography-free synthesis of pyrrole-substituted indolinone derivatives in water. Tetrahedron Lett., 2014, 55(40), 5458-5461.
[http://dx.doi.org/10.1016/j.tetlet.2014.08.001]
[99]
Zhang, J.; Cui, Z.; Wang, F.; Wang, Y.; Miao, Z.; Chen, R. Mannich type reactions of chlorophosphites, phosphoramides and aldehydes (ketones) under solvent-free and catalyst-free conditions—synthesis of N-phosphoramino α-aminophosphonates. Green Chem., 2007, 9(12), 1341.
[http://dx.doi.org/10.1039/b710008f]
[100]
Patel, G.; Patel, A.R.; Banerjee, S. Visible light-emitting diode light-driven one-pot four component synthesis of polyfunctionalized imidazoles under catalyst- and solvent-free conditions. New J. Chem., 2020, 44(31), 13295-13300.
[http://dx.doi.org/10.1039/D0NJ02527E]
[101]
Chen, L.; lin, Z.; Zhang, X.; Tan, L.; Zhang, M.; Li, Y. Catalystfree visible-light induced synthesis of nitrogen- and oxygencontaining heterocycles from 1,3-diketones. Environ. Chem. Lett., 2021, 19(2), 1831-1837.
[http://dx.doi.org/10.1007/s10311-020-01150-2]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy