Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Zero-valent Iron Nanoparticles: Biogenic Synthesis and their Medical Applications; Existing Challenges and Future Prospects

Author(s): Minahil Hayat*, Sayyad Ali Raza Bukhari, Muhammad Irfan Ashraf and Sumreen Hayat

Volume 25, Issue 11, 2024

Published on: 23 June, 2023

Page: [1362 - 1376] Pages: 15

DOI: 10.2174/1389201024666230609102243

Price: $65

conference banner
Abstract

Objectives: In the last decade, nanobiotechnology is emerging as a keen prudence area owing to its widespread applications in the medical field. In this context, zero-valent iron nanoparticles (nZVI) have garnered tremendous attention attributed to their cheap, non-toxic, excellent paramagnetic nature, extremely reactive surface, and dual oxidation state that makes them excellent antioxidants and free-radical scavengers. Facile biogenic synthesis, in which a biological source is used as a template for the synthesis of NPs, is presumably dominant among other physical and chemical synthetic procedures. The purpose of this review is to elucidate plant-mediated synthesis of nZVI, although they have been successfully fabricated by microbes and other biological entities (such as starch, chitosan, alginate, cashew nut shell, etc.) as well.

Methods: The methodology of the study involved keyword searches of electronic databases, including ScienceDirect, NCBI, and Google Scholar (2008-2023). Search terms of the review included ‘biogenic synthesis of nZVI’, ‘plant-mediated synthesis of nZVI’, ‘medical applications of nZVI’, and ‘Recent advancements and future prospects of nZVI’.

Results: Various articles were identified and reviewed for biogenic fabrication of stable nZVI with the vast majority of studies reporting positive findings. The resultant nanomaterial found great interest for biomedical purposes such as their use as biocompatible anticancer, antimicrobial, antioxidant, and albumin binding agents that have not been adequately accessed in previous studies.

Conclusion: This review shows that there are potential cost savings applications to be made when using biogenic nZVI for medical purposes. However, the encountering challenges concluded later, along with the prospects for sustainable future development.

Graphical Abstract

[1]
Maťátková, O.; Michailidu, J.; Miškovská, A.; Kolouchová, I.; Masák, J.; Čejková, A. Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol. Adv., 2022, 58, 107905.
[http://dx.doi.org/10.1016/j.biotechadv.2022.107905] [PMID: 35031394]
[2]
Fu, R.; Yang, Y.; Xu, Z.; Zhang, X.; Guo, X.; Bi, D. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere, 2015, 138, 726-734.
[http://dx.doi.org/10.1016/j.chemosphere.2015.07.051] [PMID: 26267258]
[3]
Mathew, N.K. K, R.V.; G, T.; Navaneethan, M.; Balakumar, S. Probing the influence of liquid nitrogen assisted chemical reduction on the nature of passivation layer, magnetic properties, and Cr (VI) remediation performance of nanoscale zero valent iron. J. Environ. Chem. Eng., 2023, 11(1), 109096.
[http://dx.doi.org/10.1016/j.jece.2022.109096]
[4]
Galdames, A.; Ruiz-Rubio, L.; Orueta, M.; Sánchez-Arzalluz, M.; Vilas-Vilela, J.L. Zero-valent iron nanoparticles for soil and groundwater remediation. Int. J. Environ. Res. Public Health, 2020, 17(16), 5817.
[http://dx.doi.org/10.3390/ijerph17165817] [PMID: 32796749]
[5]
Hua, Y.; Li, D.; Zou, J.; Wang, W.; Wu, X.; Zhang, X.; Liu, Q.; Zhao, G.; Li, M.; Zhang, W.; Yang, J. Evolutional solid phase and solid-liquid interface uranium immobilization mechanisms by nanoscale zero-valent iron and enhanced uranium stability control strategy. Chem. Eng. J., 2023, 453, 139924.
[http://dx.doi.org/10.1016/j.cej.2022.139924]
[6]
Wang, Y.; Frutschi, M.; Suvorova, E.; Phrommavanh, V.; Descostes, M.; Osman, A.A.A.; Geipel, G.; Bernier-Latmani, R. Mobile uranium(IV)-bearing colloids in a mining-impacted wetland. Nat. Commun., 2013, 4(1), 2942.
[http://dx.doi.org/10.1038/ncomms3942] [PMID: 24346245]
[7]
Guo, X.; Shang, Y.; Liang, X.; Diao, Z.; Song, G.; Chen, D.; Wang, S.; Kong, L. A comparison of Ni-Co layered double oxides with memory effect on recovering U(VI) from wastewater to hydroxides. Chem. Eng. J., 2022, 446, 137220.
[http://dx.doi.org/10.1016/j.cej.2022.137220]
[8]
Gu, Y.; Gong, L.; Qi, J.; Cai, S.; Tu, W.; He, F. Sulfidation mitigates the passivation of zero valent iron at alkaline pHs: Experimental evidences and mechanism. Water Res., 2019, 159, 233-241.
[http://dx.doi.org/10.1016/j.watres.2019.04.061] [PMID: 31100577]
[9]
Zhou, H.; Ma, M.; Zhao, Y.; Baig, S.A.; Hu, S.; Ye, M.; Wang, J. Integrated green complexing agent and biochar modified nano zero-valent iron for hexavalent chromium removal: A characterisation and performance study. Sci. Total Environ., 2022, 834, 155080.
[http://dx.doi.org/10.1016/j.scitotenv.2022.155080] [PMID: 35398438]
[10]
Guo, J.; Yin, Z.; Zhong, W.; Jing, C. Immobilization and transformation of co-existing arsenic and antimony in highly contaminated sediment by nano zero-valent iron. J. Environ. Sci. (China), 2022, 112, 152-160.
[http://dx.doi.org/10.1016/j.jes.2021.05.007] [PMID: 34955198]
[11]
Muthukumar, H.; Mohammed, S.N.; Chandrasekaran, N.; Sekar, A.D.; Pugazhendhi, A.; Matheswaran, M. Effect of iron doped Zinc oxide nanoparticles coating in the anode on current generation in microbial electrochemical cells. Int. J. Hydrogen Energy, 2019, 44(4), 2407-2416.
[http://dx.doi.org/10.1016/j.ijhydene.2018.06.046]
[12]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update post COVID ‐19 vaccines. Bioeng. Transl. Med., 2021, 6(3), e10246.
[http://dx.doi.org/10.1002/btm2.10246] [PMID: 34514159]
[13]
Mauro, N.; Utzeri, M.A.; Varvarà, P.; Cavallaro, G. Functionalization of metal and carbon nanoparticles with potential in cancer theranostics. Molecules, 2021, 26(11), 3085.
[http://dx.doi.org/10.3390/molecules26113085] [PMID: 34064173]
[14]
Okazoe, S.; Yasaka, Y.; Kudo, M.; Maeno, H.; Murakami, Y.; Kimura, Y. Synthesis of zero-valent iron nanoparticles via laser ablation in a formate ionic liquid under atmospheric conditions. Chem. Commun. (Camb.), 2018, 54(56), 7834-7837.
[http://dx.doi.org/10.1039/C8CC03350A] [PMID: 29947375]
[15]
Li, S.; Yan, W.; Zhang, W. Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chem., 2009, 11(10), 1618.
[http://dx.doi.org/10.1039/b913056j]
[16]
Glasgow, W.; Fellows, B.; Qi, B.; Darroudi, T.; Kitchens, C.; Ye, L.; Crawford, T.M.; Mefford, O.T. Continuous synthesis of iron oxide (Fe3O4) nanoparticles via thermal decomposition. Particuology, 2016, 26, 47-53.
[http://dx.doi.org/10.1016/j.partic.2015.09.011]
[17]
Dongsheng, Z.; Wenqiang, G.; Guozhang, C.; Shuai, L.; Weizhou, J.; Youzhi, L. Removal of heavy metal lead(II) using nanoscale zero-valent iron with different preservation methods. Adv. Powder Technol., 2019, 30(3), 581-589.
[http://dx.doi.org/10.1016/j.apt.2018.12.013]
[18]
Parimala, L.; Santhanalakshmi, J. Studies on the iron nanoparticles catalyzed reduction of substituted aromatic ketones to alcohols. Journal of Nanoparticles, 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/156868]
[19]
Xie, Y.; Cwiertny, D.M. Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems. Environ. Sci. Technol., 2010, 44(22), 8649-8655.
[http://dx.doi.org/10.1021/es102451t] [PMID: 20968304]
[20]
Nasiri, J.; Motamedi, E.; Naghavi, M.R.; Ghafoori, M. Removal of crystal violet from water using β-cyclodextrin functionalized biogenic zero-valent iron nanoadsorbents synthesized via aqueous root extracts of Ferula persica. J. Hazard. Mater., 2019, 367, 325-338.
[http://dx.doi.org/10.1016/j.jhazmat.2018.12.079] [PMID: 30599405]
[21]
Elcey, C.; Kuruvilla, A.T.; Thomas, D. Synthesis of magnetite nanoparticles from optimized iron reducing bacteria isolated from iron ore mining sites. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3, 408-417.
[22]
Ding, C.; Cheng, W.; Sun, Y.; Wang, X. RETRACTED: Effects of Bacillus subtilis on the reduction of U(VI) by nano-Fe0. Geochim. Cosmochim. Acta, 2015, 165, 86-107.
[http://dx.doi.org/10.1016/j.gca.2015.05.036]
[23]
Liu, L.; Zhang, Y.; Liu, R.; Wang, Z.; Xu, F.; Chen, Y.; Lin, K. Aerobic debromination of BDE-209 by Rhodococcus sp. coupled with zerovalent iron/activated carbon. Environ. Sci. Pollut. Res. Int., 2016, 23(4), 3925-3933.
[http://dx.doi.org/10.1007/s11356-015-5663-4] [PMID: 26503005]
[24]
Guler, U.A.; Ersan, M.S. cerevisiae cells modified with nZVI: A novel magnetic biosorbent for nickel removal from aqueous solutions. Desalination Water Treat., 2016, 57(16), 7196-7208.
[http://dx.doi.org/10.1080/19443994.2015.1013992]
[25]
Subramaniyam, V.; Subashchandrabose, S.R.; Thavamani, P.; Megharaj, M.; Chen, Z.; Naidu, R. Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. J. Appl. Phycol., 2015, 27(5), 1861-1869.
[http://dx.doi.org/10.1007/s10811-014-0492-2]
[26]
Mohamed, Y.M.; Azzam, A.M.; Amin, B.H.; Safwat, N.A. Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. Afr. J. Biotechnol., 2015, 14(14), 1234-1241.
[http://dx.doi.org/10.5897/AJB2014.14286]
[27]
Pavani, K.V.; Kumar, N.S. Adsorption of iron and synthesis of iron nanoparticles by Aspergillus species Kvp 12. Am J Nanomater, 2013, 1(2), 24-26.
[28]
Monga, Y.; Kumar, P.; Sharma, R.K.; Filip, J.; Varma, R.S. Zbořil, R.; Gawande, M.B. Sustainable synthesis of nanoscale zerovalent iron particles for environmental remediation. ChemSusChem, 2020, 13(13), 3288-3305.
[http://dx.doi.org/10.1002/cssc.202000290] [PMID: 32357282]
[29]
Shahwan, T.; Abu Sirriah, S.; Nairat, M. Boyacı E.; Eroğlu, A.E.; Scott, T.B.; Hallam, K.R. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J., 2011, 172(1), 258-266.
[http://dx.doi.org/10.1016/j.cej.2011.05.103]
[30]
La Torre, G.; Backhaus, I.; Mannocci, A. Rating for narrative reviews: Concept and development of the International Narrative Systematic Assessment tool. Senses Sci, 2015, 2(2)
[http://dx.doi.org/10.14616/sands-2015-1-3135]
[31]
Liu, A.; Liu, J.; Zhang, W. Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water. Chemosphere, 2015, 119, 1068-1074.
[http://dx.doi.org/10.1016/j.chemosphere.2014.09.026] [PMID: 25317915]
[32]
Turabik, M.; Simsek, U.B. Effect of synthesis parameters on the particle size of the zero valent iron particles. Inorganic and Nano-Metal Chemistry, 2017, 47(7), 1033-1043.
[http://dx.doi.org/10.1080/15533174.2016.1219869]
[33]
Pullin, H.; Springell, R.; Parry, S.; Scott, T. The effect of aqueous corrosion on the structure and reactivity of zero-valent iron nanoparticles. Chem. Eng. J., 2017, 308, 568-577.
[http://dx.doi.org/10.1016/j.cej.2016.09.088]
[34]
Qureashi, A.; Pandith, A.H.; Bashir, A.; Manzoor, T.; Malik, L.A.; Sheikh, F.A. Citrate coated magnetite: A complete magneto dielectric, electrochemical and DFT study for detection and removal of heavy metal ions. Surf. Interfaces, 2021, 23, 101004.
[http://dx.doi.org/10.1016/j.surfin.2021.101004]
[35]
Khare, P.; Singh, A.; Verma, S.; Bhati, A.; Sonker, A.K.; Tripathi, K.M.; Sonkar, S.K. Sunlight-induced selective photocatalytic degradation of methylene blue in bacterial culture by pollutant soot derived nontoxic graphene nanosheets. ACS Sustain. Chem.& Eng., 2018, 6(1), 579-589.
[http://dx.doi.org/10.1021/acssuschemeng.7b02929]
[36]
Xu, J.; Avellan, A.; Li, H.; Clark, E.A.; Henkelman, G.; Kaegi, R.; Lowry, G.V. Iron and sulfur precursors affect crystalline structure, speciation, and reactivity of sulfidized nanoscale zerovalent iron. Environ. Sci. Technol., 2020, 54(20), 13294-13303.
[http://dx.doi.org/10.1021/acs.est.0c03879] [PMID: 32966049]
[37]
Kaur, M.; Gautam, A.; Guleria, P.; Singh, K.; Kumar, V. Green synthesis of metal nanoparticles and their environmental applications. Curr. Opin. Environ. Sci. Health, 2022, 29, 100390.
[http://dx.doi.org/10.1016/j.coesh.2022.100390]
[38]
Fazlzadeh, M.; Rahmani, K.; Zarei, A.; Abdoallahzadeh, H.; Nasiri, F.; Khosravi, R. A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Adv. Powder Technol., 2017, 28(1), 122-130.
[http://dx.doi.org/10.1016/j.apt.2016.09.003]
[39]
Ren, G.; Yang, L.; Zhang, Z.; Zhong, B.; Yang, X.; Wang, X. A new green synthesis of porous magnetite nanoparticles from waste ferrous sulfate by solid-phase reduction reaction. J. Alloys Compd., 2017, 710, 875-879.
[http://dx.doi.org/10.1016/j.jallcom.2017.03.337]
[40]
Chau, T.P.; Brindhadevi, K.; Krishnan, R.; Alyousef, M.A.; Almoallim, H.S.; Whangchai, N.; Pikulkaew, S. A novel synthesis, analysis and evaluation of Musa coccinea based zero valent iron nanoparticles for antimicrobial and antioxidant. Environ. Res., 2022, 209, 112770.
[http://dx.doi.org/10.1016/j.envres.2022.112770] [PMID: 35063432]
[41]
Ali, I.; Afshinb, S.; Poureshgh, Y.; Azari, A.; Rashtbari, Y.; Feizizadeh, A.; Hamzezadeh, A.; Fazlzadeh, M. Green preparation of activated carbon from pomegranate peel coated with zero-valent iron nanoparticles (nZVI) and isotherm and kinetic studies of amoxicillin removal in water. Environ. Sci. Pollut. Res. Int., 2020, 27(29), 36732-36743.
[http://dx.doi.org/10.1007/s11356-020-09310-1] [PMID: 32564327]
[42]
Jha, A.K.; Chakraborty, S. Photocatalytic degradation of tetracycline and ciprofloxacin antibiotic residues in aqueous phase by biosynthesized nZVI using Sal (Shorea robusta) leaf extract. J. Water Supply, 2023, jws2023113.
[http://dx.doi.org/10.2166/aqua.2023.113]
[43]
Saleh, M.; Isik, Z.; Aktas, Y.; Arslan, H.; Yalvac, M.; Dizge, N. Green synthesis of zero valent iron nanoparticles using Verbascum thapsus and its Cr (VI) reduction activity. Bioresour. Technol. Rep., 2021, 13, 100637.
[http://dx.doi.org/10.1016/j.biteb.2021.100637]
[44]
Du, C.; Chen, H.; Gao, W.; Sun, W.; Peng, L.; Xu, N. Green synthesis of nano-zero valence iron with green tea and it’s implication in lead removal. Bull. Environ. Contam. Toxicol., 2023, 110(1), 10.
[http://dx.doi.org/10.1007/s00128-022-03649-6] [PMID: 36512068]
[45]
Rashtbari, Y.; Sher, F.; Afshin, S.; Hamzezadeh, A.; Ahmadi, S.; Azhar, O.; Rastegar, A.; Ghosh, S.; Poureshgh, Y. Green synthesis of zero-valent iron nanoparticles and loading effect on activated carbon for furfural adsorption. Chemosphere, 2022, 287(Pt 1), 132114.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132114] [PMID: 34481171]
[46]
Panić S.; Petronijević M.; Vukmirović J.; Grba, N.; Savić S. Green synthesis of nanoscale zero-valent iron aggregates for catalytic degradation of textile dyes. Catal. Lett., 2023.
[http://dx.doi.org/10.1007/s10562-022-04257-z]
[47]
Abdelfatah, A.M.; El-Maghrabi, N.; Mahmoud, A.E.D.; Fawzy, M. Synergetic effect of green synthesized reduced graphene oxide and nano-zero valent iron composite for the removal of doxycycline antibiotic from water. Sci. Rep., 2022, 12(1), 19372.
[http://dx.doi.org/10.1038/s41598-022-23684-x] [PMID: 36371519]
[48]
Slijepčević N.; Pilipović D.T.; Kerkez, Đ.; Krčmar, D.; Bečelić-Tomin, M.; Beljin, J.; Dalmacija, B. A cost effective method for immobilization of Cu and Ni polluted river sediment with nZVI synthesized from leaf extract. Chemosphere, 2021, 263, 127816.
[http://dx.doi.org/10.1016/j.chemosphere.2020.127816] [PMID: 32835965]
[49]
Apriliani, N. Green synthesis of nanoscale zero-valent iron and its activity as an adsorbent for Ni(II) and Cr(VI). Chem. Mater., 2022, 1(3), 71-76.
[http://dx.doi.org/10.56425/cma.v1i3.29]
[50]
Anasdass, J.R.; Kannaiyan, P.; Gopinath, S.C.B. Biosynthesis of zerovalent iron nanoparticles for catalytic reduction of 4‐nitrophenol and decoloration of textile dyes. Biotechnol. Appl. Biochem., 2022, 69(6), 2780-2793.
[http://dx.doi.org/10.1002/bab.2323] [PMID: 35293654]
[51]
Abdel-Aziz, H.M.; Farag, R.S.; Abdel-Gawad, S.A. Carbamazepine removal from aqueous solution by green synthesis zero-valent iron/cu nanoparticles with Ficus benjamina leaves’ extract. Int. J. Environ. Res., 2019, 13(5), 843-852.
[http://dx.doi.org/10.1007/s41742-019-00220-w]
[52]
Sravanthi, K.; Ayodhya, D.; Swamy, P.Y. Green synthesis, characterization and catalytic activity of 4-nitrophenol reduction and formation of benzimidazoles using bentonite supported zero valent iron nanoparticles. Mater. Sci. Energy Technol., 2019, 2(2), 298-307.
[http://dx.doi.org/10.1016/j.mset.2019.02.003]
[53]
Abdelfatah, A.M.; Fawzy, M.; Eltaweil, A.S.; El-Khouly, M.E. Green synthesis of nano-zero-valent iron using Ricinus Communis seeds extract: Characterization and application in the treatment of methylene blue-polluted water. ACS Omega, 2021, 6(39), 25397-25411.
[http://dx.doi.org/10.1021/acsomega.1c03355] [PMID: 34632198]
[54]
Rashtbari, Y.; Hazrati, S.; Azari, A.; Afshin, S.; Fazlzadeh, M.; Vosoughi, M. A novel, eco-friendly and green synthesis of PPAC-ZnO and PPAC-nZVI nanocomposite using pomegranate peel: Cephalexin adsorption experiments, mechanisms, isotherms and kinetics. Adv. Powder Technol., 2020, 31(4), 1612-1623.
[http://dx.doi.org/10.1016/j.apt.2020.02.001]
[55]
Gopal, G.; Sankar, H.; Natarajan, C.; Mukherjee, A. Tetracycline removal using green synthesized bimetallic nZVI-Cu and bentonite supported green nZVI-Cu nanocomposite: A comparative study. J. Environ. Manage., 2020, 254, 109812.
[http://dx.doi.org/10.1016/j.jenvman.2019.109812] [PMID: 31733482]
[56]
Zhou, Y.; Li, X. Green synthesis of modified polyethylene packing supported tea polyphenols-NZVI for nitrate removal from wastewater: Characterization and mechanisms. Sci. Total Environ., 2022, 806(Pt 2), 150596.
[http://dx.doi.org/10.1016/j.scitotenv.2021.150596] [PMID: 34592281]
[57]
Han, X.; Zhao, Y.; Zhao, F.; Wang, F.; Tian, G.; Liang, J. Novel synthesis of nanoscale zero-valent iron from iron ore tailings and green tea for the removal of methylene blue. Colloids Surf. A Physicochem. Eng. Asp., 2023, 656, 130412.
[http://dx.doi.org/10.1016/j.colsurfa.2022.130412]
[58]
Le, N.T.; Dang, T.D.; Hoang Binh, K.; Nguyen, T.M.; Xuan, T.N.; La, D.D.; Kumar Nadda, A.; Chang, S.W.; Nguyen, D.D. Green synthesis of highly stable zero-valent iron nanoparticles for organic dye treatment using Cleistocalyx operculatus leaf extract. Sustain. Chem. Pharm., 2022, 25, 100598.
[http://dx.doi.org/10.1016/j.scp.2022.100598]
[59]
Hassan, A.K.; Al-Kindi, G.Y.; Ghanim, D. Green synthesis of bentonite-supported iron nanoparticles as a heterogeneous Fenton-like catalyst: Kinetics of decolorization of reactive blue 238 dye. Water Sci. Eng., 2020, 13(4), 286-298.
[http://dx.doi.org/10.1016/j.wse.2020.12.001]
[60]
Yousefi, M.; Rahmani, K.; Jalilzadeh Yengejeh, R.; Goudarzi, G. Green synthesis of zero iron nanoparticles and its application in the degradation of Sulphacetamide by using of PS/nZVI process. Int. J. Environ. Anal. Chem., 2021, 1-14.
[http://dx.doi.org/10.1080/03067319.2021.1942862]
[61]
Van Hoang, N.; Thi Xuan Quynh, N.; Dang, T.D.; Nguyen Xuan, T.; Ngoc Toan, V.; Duc La, D. Green synthesis of fe/graphene nanocomposite using Cleistocalyx operculatus leaf extract as a reducing agent: Removal of pollutants (RhB Dye and Cr6+ Ions) in aqueous media. ChemistrySelect, 2022, 7(47)
[http://dx.doi.org/10.1002/slct.202203499]
[62]
Puiatti, G.A.; de Carvalho, J.P.; de Matos, A.T.; Lopes, R.P. Green synthesis of Fe0 nanoparticles using Eucalyptus grandis leaf extract: Characterization and application for dye degradation by a (Photo)Fenton-like process. J. Environ. Manage., 2022, 311, 114828.
[http://dx.doi.org/10.1016/j.jenvman.2022.114828] [PMID: 35278918]
[63]
Van Hoang, N.; Nguyen-Thi, L.; Kim, G.M.; Dang, T.D.; Ngoc Toan, V.; La, D.D. Green synthesis of zero-valent iron nanoparticles by Cleistocalyx operculatus leaf extract using microfluidic device for degradation of the Rhodamine B dye. Adv Nat Sci Nanosci Nanotechnol, 2022, 13(4), 045007.
[http://dx.doi.org/10.1088/2043-6262/aca023]
[64]
Deewan, R.; Yan, D.Y.S.; Khamdahsag, P.; Tanboonchuy, V. Remediation of arsenic-contaminated water by green zero-valent iron nanoparticles. Environ. Sci. Pollut. Res. Int., 2022.
[http://dx.doi.org/10.1007/s11356-022-24535-y] [PMID: 36527549]
[65]
Zhang, J.; Niu, Y.; Zhou, Y.; Ju, S.; Gu, Y. Green preparation of nano-zero-valent iron-copper bimetals for nitrate removal: Characterization, reduction reaction pathway, and mechanisms. Adv. Powder Technol., 2022, 33(11), 103807.
[http://dx.doi.org/10.1016/j.apt.2022.103807]
[66]
Du, C.; Xu, N.; Yao, Z.; Bai, X.; Gao, Y.; Peng, L.; Gu, B.; Zhao, J. Mechanistic insights into sulfate and phosphate-mediated hexavalent chromium removal by tea polyphenols wrapped nano-zero-valent iron. Sci. Total Environ., 2022, 850, 157996.
[http://dx.doi.org/10.1016/j.scitotenv.2022.157996] [PMID: 35964743]
[67]
Jha, A.K.; Chakraborty, S. Photocatalytic degradation of Congo Red under UV irradiation by zero valent iron nano particles (nZVI) synthesized using Shorea robusta (Sal) leaf extract. Water Sci. Technol., 2020, 82(11), 2491-2502.
[http://dx.doi.org/10.2166/wst.2020.517] [PMID: 33339802]
[68]
Vitta, Y.; Figueroa, M.; Calderon, M.; Ciangherotti, C. Synthesis of iron nanoparticles from aqueous extract of Eucalyptus robusta Sm and evaluation of antioxidant and antimicrobial activity. Mater. Sci. Energy Technol., 2020, 3, 97-103.
[http://dx.doi.org/10.1016/j.mset.2019.10.014]
[69]
Hamzezadeh, A.; Fazlzadeh, M.; Rahmani, K.; Poureshgh, Y. A novel green synthesis of zero valent iron nanoparticles (nZVI) using walnut green skin: characterisation, catalytic degradation and toxicity studies. Int. J. Environ. Anal. Chem., 2021, 1-17.
[http://dx.doi.org/10.1080/03067319.2021.1957463]
[70]
Koliana, R. Green synthesis of zero valent iron nanoparticles using malva extract and their antimicrobial activity; Notre Dame University-Louaize, 2022. PhD Thesis
[71]
Qureashi, A.; Pandith, A.H.; Bashir, A.; Malik, L.A.; Manzoor, T.; Sheikh, F.A.; Fatima, K.; Haq, Z. Electrochemical analysis of glyphosate using porous biochar surface corrosive nZVI nanoparticles. Nanoscale Adv., 2023, 5(3), 742-755.
[http://dx.doi.org/10.1039/D2NA00610C] [PMID: 36756521]
[72]
Yang, C.; Ge, C.; Li, X.; Li, L.; Wang, B.; Lin, A.; Yang, W. Does soluble starch improve the removal of Cr(VI) by nZVI loaded on biochar? Ecotoxicol. Environ. Saf., 2021, 208, 111552.
[http://dx.doi.org/10.1016/j.ecoenv.2020.111552] [PMID: 33396093]
[73]
Kumari, N.; Behera, M.; Singh, R. Facile synthesis of biopolymer decorated magnetic coreshells for enhanced removal of xenobiotic azo dyes through experimental modelling. Food Chem. Toxicol., 2023, 171, 113518.
[http://dx.doi.org/10.1016/j.fct.2022.113518] [PMID: 36436617]
[74]
Prabu, D.; Parthiban, R.; Kumar, P.S.; Namasivayam, S.K. Synthesis, characterization and antibacterial activity of nano zero-valent iron impregnated cashew nut shell. Int. J. Pharm. Pharm. Sci., 2015, 7(1), 139-141.
[75]
Lawrinenko, M.; Laird, D.A.; van Leeuwen, J.H. Sustainable pyrolytic production of zerovalent iron. ACS Sustain. Chem.& Eng., 2017, 5(1), 767-773.
[http://dx.doi.org/10.1021/acssuschemeng.6b02105]
[76]
Vázquez-Guerrero, A.; Cortés-Martínez, R.; Alfaro-Cuevas-Villanueva, R.; Rivera-Muñoz, E.; Huirache-Acuña, R. Cd(II) and Pb(II) adsorption using a composite obtained from moringa oleifera lam. cellulose nanofibrils impregnated with iron nanoparticles. Water, 2021, 13(1), 89.
[http://dx.doi.org/10.3390/w13010089]
[77]
Ahmed, M.F.; Abbas, M.A.; Mahmood, A.; Ahmad, N.M.; Rasheed, H.; Qadir, M.A.; Khan, A.U.; Qiblawey, H.; Zhu, S.; Sadiq, R.; Khan, N.A. Hybrid beads of zero valent iron oxide nanoparticles and chitosan for removal of arsenic in contaminated water. Water, 2021, 13(20), 2876.
[http://dx.doi.org/10.3390/w13202876]
[78]
Parnis, M.; García, F.E.; Toledo, M.V.; Montesinos, V.N.; Quici, N. Zerovalent iron nanoparticles-alginate nanocomposites for Cr(VI) removal in water—influence of temperature, ph, dissolved oxygen, matrix, and nZVI surface composition. Water, 2022, 14(3), 484.
[http://dx.doi.org/10.3390/w14030484]
[79]
Sciscenko, I.; Luca, V.; Ramos, C.P.; Scott, T.B.; Montesinos, V.N.; Quici, N. Immobilization of nanoscale zerovalent iron in hierarchically channelled polyacrylonitrile for Cr(VI) remediation in wastewater. J. Water Process Eng., 2021, 39, 101704.
[http://dx.doi.org/10.1016/j.jwpe.2020.101704]
[80]
Li, Z.; Sun, Y.; Yang, Y.; Han, Y.; Wang, T.; Chen, J.; Tsang, D.C.W. Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater. J. Hazard. Mater., 2020, 383, 121240.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121240] [PMID: 31563767]
[81]
Prabu, D.; Kumar, P.S.; Narendrakumar, G.; Sathish, S. Characterization and optimization of process parameter for pharmaceutical waste management and disposal by using nano zero valent iron impregnated agricultural waste from aqueous solution. Res. J. Pharm. Technol., 2020, 13(11), 5306-5312.
[82]
Prabu, D.; Kumar, P.S.; Varsha, M.; Sathish, S.; Vijai Anand, K.; Mercy, J.; Tiwari, A. Potential of nanoscale size zero valent iron nanoparticles impregnated activated carbon prepared from palm kernel shell for cadmium removal to avoid water pollution. Int. J. Environ. Anal. Chem., 2022, 102(18), 7224-7240.
[http://dx.doi.org/10.1080/03067319.2020.1828387]
[83]
Holloway, R.W.; Marignani, P.A. Targeting mTOR and glycolysis in HER2-positive breast cancer. Cancers (Basel), 2021, 13(12), 2922.
[http://dx.doi.org/10.3390/cancers13122922] [PMID: 34208071]
[84]
Nolte, T.M.; Lu, B.; Hendriks, A.J. Nanoparticles in bodily tissues: predicting their equilibrium distributions. Environ. Sci. Nano, 2023, 10(2), 424-439.
[http://dx.doi.org/10.1039/D2EN00469K]
[85]
Santos, F.S.; Lago, F.R.; Yokoyama, L.; Fonseca, F.V. Synthesis and characterization of zero-valent iron nanoparticles supported on SBA-15. J. Mater. Res. Technol., 2017, 6(2), 178-183.
[http://dx.doi.org/10.1016/j.jmrt.2016.11.004]
[86]
Chen, K.; Lu, P.; Beeraka, N.M.; Sukocheva, O.A.; Madhunapantula, S.V.; Liu, J.; Sinelnikov, M.Y.; Nikolenko, V.N.; Bulygin, K.V.; Mikhaleva, L.M.; Reshetov, I.V.; Gu, Y.; Zhang, J.; Cao, Y.; Somasundaram, S.G.; Kirkland, C.E.; Fan, R.; Aliev, G. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers. Semin. Cancer Biol., 2022, 83, 556-569.
[http://dx.doi.org/10.1016/j.semcancer.2020.09.012] [PMID: 33035656]
[87]
Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem., 2017, 86(1), 715-748.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
[88]
Benhar, M.; Shytaj, I.L.; Stamler, J.S.; Savarino, A. Dual targeting of the thioredoxin and glutathione systems in cancer and HIV. J. Clin. Invest., 2016, 126(5), 1630-1639.
[http://dx.doi.org/10.1172/JCI85339] [PMID: 27135880]
[89]
Wu, Y.N.; Shieh, D.B.; Yang, L.X.; Sheu, H.S.; Thordarson, R.; Chen, D-H.; Braet, F.; Braet, F. Characterization of Iron Core–Gold Shell Nanoparticles for Anti-Cancer Treatments: Chemical and Structural Transformations During Storage and Use. Materials (Basel), 2018, 11(12), 2572.
[http://dx.doi.org/10.3390/ma11122572] [PMID: 30563014]
[90]
Hashemi, Z.; Ebrahimzadeh, M.A.; Biparva, P.; Mortazavi-Derazkola, S.; Goli, H.R.; Sadeghian, F.; Kardan, M.; Rafiei, A. Biogenic silver and zero-valent iron nanoparticles by Feijoa: Biosynthesis, characterization, cytotoxic, antibacterial and antioxidant activities. Anticancer. Agents Med. Chem., 2020, 20(14), 1673-1687.
[http://dx.doi.org/10.2174/1871520620666200619165910] [PMID: 32560617]
[91]
Shevtsov, M.A.; Parr, M.A.; Ryzhov, V.A.; Zemtsova, E.G.; Arbenin, A.Y.; Ponomareva, A.N.; Smirnov, V.M.; Multhoff, G. Zero-valent Fe confined mesoporous silica nanocarriers (Fe(0) @ MCM-41) for targeting experimental orthotopic glioma in rats. Sci. Rep., 2016, 6(1), 29247.
[http://dx.doi.org/10.1038/srep29247] [PMID: 27386761]
[92]
Huang, K.J.; Wei, Y.H.; Chiu, Y.C.; Wu, S.R.; Shieh, D.B. Assessment of zero-valent iron-based nanotherapeutics for ferroptosis induction and resensitization strategy in cancer cells. Biomater. Sci., 2019, 7(4), 1311-1322.
[http://dx.doi.org/10.1039/C8BM01525B] [PMID: 30734774]
[93]
Yazdani, Z.; Biparva, P.; Rafiei, A.; Kardan, M.; Hadavi, S. Combination effect of cold atmospheric plasma with green synthesized zero-valent iron nanoparticles in the treatment of melanoma cancer model. PLoS One, 2022, 17(12), e0279120.
[http://dx.doi.org/10.1371/journal.pone.0279120] [PMID: 36534669]
[94]
Yu, H.H.; Lin, C.H.; Chen, Y.C.; Chen, H.H.; Lin, Y.J.; Lin, K.Y.A. Dopamine‐modified zero‐valent iron nanoparticles for dual‐modality photothermal and photodynamic breast cancer therapy. ChemMedChem, 2020, 15(17), 1645-1651.
[http://dx.doi.org/10.1002/cmdc.202000192] [PMID: 32338431]
[95]
Lacroix, A.; Edwardson, T.G.W.; Hancock, M.A.; Dore, M.D.; Sleiman, H.F. Development of DNA nanostructures for high-affinity binding to human serum albumin. J. Am. Chem. Soc., 2017, 139(21), 7355-7362.
[http://dx.doi.org/10.1021/jacs.7b02917] [PMID: 28475327]
[96]
Mohan, V.; Sengupta, B.; Acharyya, A.; Yadav, R.; Das, N.; Sen, P. Region-specific double denaturation of human serum albumin: Combined effects of temperature and GnHCl on structural and dynamical responses. ACS Omega, 2018, 3(8), 10406-10417.
[http://dx.doi.org/10.1021/acsomega.8b00967] [PMID: 31459168]
[97]
Sedaghat Anbouhi, T.; Mokhtari Esfidvajani, E.; Nemati, F.; Haghighat, S.; Sari, S.; Attar, F.; Pakaghideh, A.; Sohrabi, M.J.; Mousavi, S.E.; Falahati, M. Albumin binding, anticancer and antibacterial properties of synthesized zero valent iron nanoparticles. Int. J. Nanomedicine, 2018, 14, 243-256.
[http://dx.doi.org/10.2147/IJN.S188497] [PMID: 30643404]
[98]
Rana, P.; Sharma, S.; Sharma, R.; Banerjee, K. Apple pectin supported superparamagnetic (γ-Fe2O3) maghemite nanoparticles with antimicrobial potency. Mater. Sci. Energy Technol., 2019, 2(1), 15-21.
[http://dx.doi.org/10.1016/j.mset.2018.09.001]
[99]
Liu, S.S.; Qu, H.M.; Yang, D.; Hu, H.; Liu, W.L.; Qiu, Z.G.; Hou, A.M.; Guo, J.; Li, J.W.; Shen, Z.Q.; Jin, M. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. Water Res., 2018, 136, 131-136.
[http://dx.doi.org/10.1016/j.watres.2018.02.036] [PMID: 29501757]
[100]
Webster, T.M.; McFarland, A.; Gebert, M.J.; Oliverio, A.M.; Nichols, L.M.; Dunn, R.R.; Hartmann, E.M.; Fierer, N. Structure and functional attributes of bacterial communities in premise plumbing across the United States. Environ. Sci. Technol., 2021, 55(20), 14105-14114.
[http://dx.doi.org/10.1021/acs.est.1c03309] [PMID: 34606240]
[101]
Devatha, C.P. Effect of green synthesized iron nanoparticles by Azardirachta indica in different proportions on antibacterial activity. Environ. Nanotechnol. Monit. Manag., 2018, 9, 85-94.
[http://dx.doi.org/10.1016/j.enmm.2017.11.007]
[102]
Shaker Ardakani, L.; Alimardani, V.; Tamaddon, A.M.; Amani, A.M.; Taghizadeh, S. Green synthesis of iron-based nanoparticles using Chlorophytum comosum leaf extract: Methyl orange dye degradation and antimicrobial properties. Heliyon, 2021, 7(2), e06159.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06159] [PMID: 33644459]
[103]
Jeyasundari, J.; Praba, P.S.; Jacob, Y.B.A.; Vasantha, V.S.; Shanmugaiah, V. Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Psidium guajava plant and their antibacterial activity. Chem. Sci. Rev. Lett., 2017, 6(22), 1244-1252.
[104]
Lu, X.; Hou, J.; Yang, K.; Zhu, L.; Xing, B.; Lin, D. Binding force and site-determined desorption and fragmentation of antibiotic resistance genes from metallic nanomaterials. Environ. Sci. Technol., 2021, 55(13), 9305-9316.
[http://dx.doi.org/10.1021/acs.est.1c02047] [PMID: 34138538]
[105]
Yu, Z.; Li, X.; Guo, J. Combat antimicrobial resistance emergence and biofilm formation through nanoscale zero-valent iron particles. Chem. Eng. J., 2022, 444, 136569.
[http://dx.doi.org/10.1016/j.cej.2022.136569]
[106]
Lian, F.; Yu, W.; Zhou, Q.; Gu, S.; Wang, Z.; Xing, B. Size Matters: Nano-biochar triggers decomposition and transformation inhibition of antibiotic resistance genes in aqueous environments. Environ. Sci. Technol., 2020, 54(14), 8821-8829.
[http://dx.doi.org/10.1021/acs.est.0c02227] [PMID: 32558563]
[107]
Zargar, S.M.; Agrawal, G.K.; Rakwal, R.; Fukao, Y. Quantitative proteomics reveals role of sugar in decreasing photosynthetic activity due to Fe deficiency. Front. Plant Sci., 2015, 6, 592.
[http://dx.doi.org/10.3389/fpls.2015.00592] [PMID: 26284105]
[108]
Tiwari, A.; Mamedov, F.; Grieco, M.; Suorsa, M.; Jajoo, A.; Styring, S.; Tikkanen, M.; Aro, E.M. Photodamage of iron–sulphur clusters in photosystem I induces non-photochemical energy dissipation. Nat. Plants, 2016, 2(4), 16035.
[http://dx.doi.org/10.1038/nplants.2016.35] [PMID: 27249566]
[109]
Miller, C.J.; Rose, A.L.; Waite, T.D. Importance of iron complexation for fenton-mediated hydroxyl radical production at circumneutral pH. Front. Mar. Sci., 2016, 3.
[http://dx.doi.org/10.3389/fmars.2016.00134]
[110]
Palchoudhury, S.; Jungjohann, K.L.; Weerasena, L.; Arabshahi, A.; Gharge, U.; Albattah, A.; Miller, J.; Patel, K.; Holler, R.A. Enhanced legume root growth with pre-soaking in α-Fe 2 O 3 nanoparticle fertilizer. RSC Advances, 2018, 8(43), 24075-24083.
[http://dx.doi.org/10.1039/C8RA04680H] [PMID: 35539206]
[111]
Wang, J.; Fang, Z.; Cheng, W.; Yan, X.; Tsang, P.E.; Zhao, D. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Environ. Pollut., 2016, 210, 338-345.
[http://dx.doi.org/10.1016/j.envpol.2016.01.028] [PMID: 26803790]
[112]
Ghosh, I.; Mukherjee, A.; Mukherjee, A. In planta genotoxicity of nZVI: Influence of colloidal stability on uptake, DNA damage, oxidative stress and cell death. Mutagenesis, 2017, 32(3), 371-387.
[http://dx.doi.org/10.1093/mutage/gex006] [PMID: 28371930]
[113]
Auffan, M.; Achouak, W.; Rose, J.; Roncato, M.A.; Chanéac, C.; Waite, D.T.; Masion, A.; Woicik, J.C.; Wiesner, M.R.; Bottero, J.Y. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ. Sci. Technol., 2008, 42(17), 6730-6735.
[http://dx.doi.org/10.1021/es800086f] [PMID: 18800556]
[114]
Eslami, S.; Ebrahimzadeh, M.A.; Biparva, P. Green synthesis of safe zero valent iron nanoparticles by Myrtus communis leaf extract as an effective agent for reducing excessive iron in iron-overloaded mice, a thalassemia model. RSC Advances, 2018, 8(46), 26144-26155.
[http://dx.doi.org/10.1039/C8RA04451A] [PMID: 35541956]
[115]
Turunc, E.; Binzet, R.; Gumus, I.; Binzet, G.; Arslan, H. Green synthesis of silver and palladium nanoparticles using Lithodora hispidula (Sm.) Griseb. (Boraginaceae) and application to the electrocatalytic reduction of hydrogen peroxide. Mater. Chem. Phys., 2017, 202, 310-319.
[http://dx.doi.org/10.1016/j.matchemphys.2017.09.032]
[116]
Gao, J.F.; Li, H.Y.; Pan, K.L.; Si, C.Y. Green synthesis of nanoscale zero-valent iron using a grape seed extract as a stabilizing agent and the application for quick decolorization of azo and anthraquinone dyes. RSC Advances, 2016, 6(27), 22526-22537.
[http://dx.doi.org/10.1039/C5RA26668H]
[117]
Leili, M.; Fazlzadeh, M.; Bhatnagar, A. Green synthesis of nano-zero-valent iron from Nettle and Thyme leaf extracts and their application for the removal of cephalexin antibiotic from aqueous solutions. Environ. Technol., 2018, 39(9), 1158-1172.
[http://dx.doi.org/10.1080/09593330.2017.1323956] [PMID: 28443364]
[118]
Ebrahiminezhad, A.; Zare-Hoseinabadi, A.; Berenjian, A.; Ghasemi, Y. Green synthesis and characterization of zero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract. Green Process Synth, 2017, 6(5), 469-475.
[http://dx.doi.org/10.1515/gps-2016-0133]
[119]
Kamat, S.; Kumari, M. Emergence of microbial resistance against nanoparticles: Mechanisms and strategies. Front. Microbiol., 2023, 14, 1102615.
[http://dx.doi.org/10.3389/fmicb.2023.1102615] [PMID: 36778867]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy